// polynomial used for __v_log(x) // // Copyright (c) 2019, Arm Limited. // SPDX-License-Identifier: MIT deg = 6; // poly degree a = -0x1.fc1p-9; b = 0x1.009p-8; // find log(1+x)/x polynomial with minimal relative error // (minimal relative error polynomial for log(1+x) is the same * x) deg = deg-1; // because of /x // f = log(1+x)/x; using taylor series f = 0; for i from 0 to 60 do { f = f + (-x)^i/(i+1); }; // return p that minimizes |f(x) - poly(x) - x^d*p(x)|/|f(x)| approx = proc(poly,d) { return remez(1 - poly(x)/f(x), deg-d, [a;b], x^d/f(x), 1e-10); }; // first coeff is fixed, iteratively find optimal double prec coeffs poly = 1; for i from 1 to deg do { p = roundcoefficients(approx(poly,i), [|D ...|]); poly = poly + x^i*coeff(p,0); }; display = hexadecimal; print("rel error:", accurateinfnorm(1-poly(x)/f(x), [a;b], 30)); print("in [",a,b,"]"); print("coeffs:"); for i from 0 to deg do coeff(poly,i);