// Purpose: // Verifies that the debugging experience of loops marked optnone is as expected. // REQUIRES: lldb // UNSUPPORTED: system-windows // UNSUPPORTED: system-darwin // RUN: %dexter --fail-lt 1.0 -w \ // RUN: --builder 'clang' --debugger 'lldb' \ // RUN: --cflags "-O2 -g" -- %s // A simple loop of assignments. // With optimization level > 0 the compiler reorders basic blocks // based on the basic block frequency analysis information. // This also happens with optnone and it shouldn't. // This is not affecting debug info so it is a minor limitation. // Basic block placement based on the block frequency analysis // is normally done to improve i-Cache performances. __attribute__((optnone)) void simple_memcpy_loop(int *dest, const int *src, unsigned nelems) { for (unsigned i = 0; i != nelems; ++i) dest[i] = src[i]; // DexLabel('target_simple_memcpy_loop') } // DexLimitSteps('i', 0, 4, 8, on_line='target_simple_memcpy_loop') // DexExpectWatchValue('nelems', '16', on_line='target_simple_memcpy_loop') // DexExpectWatchValue('src[i]', '3', '7', '1', on_line='target_simple_memcpy_loop') // A trivial loop that could be optimized into a builtin memcpy // which is either expanded into a optimal sequence of mov // instructions or directly into a call to memset@plt __attribute__((optnone)) void trivial_memcpy_loop(int *dest, const int *src) { for (unsigned i = 0; i != 16; ++i) dest[i] = src[i]; // DexLabel('target_trivial_memcpy_loop') } // DexLimitSteps('i', 3, 7, 9, 14, 15, on_line='target_trivial_memcpy_loop') // DexExpectWatchValue('i', 3, 7, 9, 14, 15, on_line='target_trivial_memcpy_loop') // DexExpectWatchValue('dest[i-1] == src[i-1]', 'true', on_line='target_trivial_memcpy_loop') __attribute__((always_inline)) int foo(int a) { return a + 5; } // A trivial loop of calls to a 'always_inline' function. __attribute__((optnone)) void nonleaf_function_with_loop(int *dest, const int *src) { for (unsigned i = 0; i != 16; ++i) dest[i] = foo(src[i]); // DexLabel('target_nonleaf_function_with_loop') } // DexLimitSteps('i', 1, on_line='target_nonleaf_function_with_loop') // DexExpectWatchValue('dest[0]', '8', on_line='target_nonleaf_function_with_loop') // DexExpectWatchValue('dest[1]', '4', on_line='target_nonleaf_function_with_loop') // DexExpectWatchValue('dest[2]', '5', on_line='target_nonleaf_function_with_loop') // DexExpectWatchValue('src[0]', '8', on_line='target_nonleaf_function_with_loop') // DexExpectWatchValue('src[1]', '4', on_line='target_nonleaf_function_with_loop') // DexExpectWatchValue('src[2]', '5', on_line='target_nonleaf_function_with_loop') // DexExpectWatchValue('src[1] == dest[1]', 'true', on_line='target_nonleaf_function_with_loop') // DexExpectWatchValue('src[2] == dest[2]', 'true', on_line='target_nonleaf_function_with_loop') // This entire function could be optimized into a // simple movl %esi, %eax. // That is because we can compute the loop trip count // knowing that ind-var 'i' can never be negative. __attribute__((optnone)) int counting_loop(unsigned values) { unsigned i = 0; while (values--) // DexLabel('target_counting_loop') i++; return i; } // DexLimitSteps('i', 8, 16, on_line='target_counting_loop') // DexExpectWatchValue('i', 8, 16, on_line='target_counting_loop') // This loop could be rotated. // while(cond){ // .. // cond--; // } // // --> // if(cond) { // do { // ... // cond--; // } while(cond); // } // // the compiler will not try to optimize this function. // However the Machine BB Placement Pass will try // to reorder the basic block that computes the // expression 'count' in order to simplify the control // flow. __attribute__((optnone)) int loop_rotate_test(int *src, unsigned count) { int result = 0; while (count) { result += src[count - 1]; // DexLabel('target_loop_rotate_test') count--; } return result; // DexLabel('target_loop_rotate_test_ret') } // DexLimitSteps('result', 13, on_line='target_loop_rotate_test') // DexExpectWatchValue('src[count]', 13, on_line='target_loop_rotate_test') // DexLimitSteps('result', 158, on_line='target_loop_rotate_test_ret') // DexExpectWatchValue('result', 158, on_line='target_loop_rotate_test_ret') typedef int *intptr __attribute__((aligned(16))); // This loop can be vectorized if we enable // the loop vectorizer. __attribute__((optnone)) void loop_vectorize_test(intptr dest, intptr src) { unsigned count = 0; int tempArray[16]; while(count != 16) { // DexLabel('target_loop_vectorize_test') tempArray[count] = src[count]; tempArray[count+1] = src[count+1]; // DexLabel('target_loop_vectorize_test_2') tempArray[count+2] = src[count+2]; // DexLabel('target_loop_vectorize_test_3') tempArray[count+3] = src[count+3]; // DexLabel('target_loop_vectorize_test_4') dest[count] = tempArray[count]; // DexLabel('target_loop_vectorize_test_5') dest[count+1] = tempArray[count+1]; // DexLabel('target_loop_vectorize_test_6') dest[count+2] = tempArray[count+2]; // DexLabel('target_loop_vectorize_test_7') dest[count+3] = tempArray[count+3]; // DexLabel('target_loop_vectorize_test_8') count += 4; // DexLabel('target_loop_vectorize_test_9') } } // DexLimitSteps('count', 4, 8, 12, 16, from_line='target_loop_vectorize_test', to_line='target_loop_vectorize_test_9') // DexExpectWatchValue('tempArray[count] == src[count]', 'true', on_line='target_loop_vectorize_test_2') // DexExpectWatchValue('tempArray[count+1] == src[count+1]', 'true', on_line='target_loop_vectorize_test_3') // DexExpectWatchValue('tempArray[count+2] == src[count+2]', 'true', on_line='target_loop_vectorize_test_4') // DexExpectWatchValue('tempArray[count+3] == src[count+3]', 'true', on_line='target_loop_vectorize_test_5') // DexExpectWatchValue('dest[count] == tempArray[count]', 'true', on_line='target_loop_vectorize_test_6') // DexExpectWatchValue('dest[count+1] == tempArray[count+1]', 'true', on_line='target_loop_vectorize_test_7') // DexExpectWatchValue('dest[count+2] == tempArray[count+2]', 'true', on_line='target_loop_vectorize_test_8') // DexExpectWatchValue('dest[count+3] == tempArray[count+3]', 'true', on_line='target_loop_vectorize_test_9') int main() { int A[] = {3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; int B[] = {13, 14, 15, 16, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; int C[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; simple_memcpy_loop(C, A, 16); trivial_memcpy_loop(B, C); nonleaf_function_with_loop(B, B); int count = counting_loop(16); count += loop_rotate_test(B, 16); loop_vectorize_test(A, B); return A[0] + count; }