; RUN: llc < %s -asm-verbose=false -wasm-disable-explicit-locals -wasm-keep-registers -disable-wasm-fallthrough-return-opt | FileCheck %s ; Test constant load and store address offsets. target datalayout = "e-m:e-p:32:32-i64:64-n32:64-S128" target triple = "wasm32-unknown-unknown" ;===---------------------------------------------------------------------------- ; Loads: 32-bit ;===---------------------------------------------------------------------------- ; Basic load. ; CHECK-LABEL: load_i32_no_offset: ; CHECK: i32.load $push0=, 0($0){{$}} ; CHECK-NEXT: return $pop0{{$}} define i32 @load_i32_no_offset(i32 *%p) { %v = load i32, i32* %p ret i32 %v } ; With an nuw add, we can fold an offset. ; CHECK-LABEL: load_i32_with_folded_offset: ; CHECK: i32.load $push0=, 24($0){{$}} define i32 @load_i32_with_folded_offset(i32* %p) { %q = ptrtoint i32* %p to i32 %r = add nuw i32 %q, 24 %s = inttoptr i32 %r to i32* %t = load i32, i32* %s ret i32 %t } ; With an inbounds gep, we can fold an offset. ; CHECK-LABEL: load_i32_with_folded_gep_offset: ; CHECK: i32.load $push0=, 24($0){{$}} define i32 @load_i32_with_folded_gep_offset(i32* %p) { %s = getelementptr inbounds i32, i32* %p, i32 6 %t = load i32, i32* %s ret i32 %t } ; We can't fold a negative offset though, even with an inbounds gep. ; CHECK-LABEL: load_i32_with_unfolded_gep_negative_offset: ; CHECK: i32.const $push0=, -24{{$}} ; CHECK: i32.add $push1=, $0, $pop0{{$}} ; CHECK: i32.load $push2=, 0($pop1){{$}} define i32 @load_i32_with_unfolded_gep_negative_offset(i32* %p) { %s = getelementptr inbounds i32, i32* %p, i32 -6 %t = load i32, i32* %s ret i32 %t } ; Without nuw, and even with nsw, we can't fold an offset. ; CHECK-LABEL: load_i32_with_unfolded_offset: ; CHECK: i32.const $push0=, 24{{$}} ; CHECK: i32.add $push1=, $0, $pop0{{$}} ; CHECK: i32.load $push2=, 0($pop1){{$}} define i32 @load_i32_with_unfolded_offset(i32* %p) { %q = ptrtoint i32* %p to i32 %r = add nsw i32 %q, 24 %s = inttoptr i32 %r to i32* %t = load i32, i32* %s ret i32 %t } ; Without inbounds, we can't fold a gep offset. ; CHECK-LABEL: load_i32_with_unfolded_gep_offset: ; CHECK: i32.const $push0=, 24{{$}} ; CHECK: i32.add $push1=, $0, $pop0{{$}} ; CHECK: i32.load $push2=, 0($pop1){{$}} define i32 @load_i32_with_unfolded_gep_offset(i32* %p) { %s = getelementptr i32, i32* %p, i32 6 %t = load i32, i32* %s ret i32 %t } ; When loading from a fixed address, materialize a zero. ; CHECK-LABEL: load_i32_from_numeric_address ; CHECK: i32.const $push0=, 0{{$}} ; CHECK: i32.load $push1=, 42($pop0){{$}} define i32 @load_i32_from_numeric_address() { %s = inttoptr i32 42 to i32* %t = load i32, i32* %s ret i32 %t } ; CHECK-LABEL: load_i32_from_global_address ; CHECK: i32.const $push0=, 0{{$}} ; CHECK: i32.load $push1=, gv($pop0){{$}} @gv = global i32 0 define i32 @load_i32_from_global_address() { %t = load i32, i32* @gv ret i32 %t } ;===---------------------------------------------------------------------------- ; Loads: 64-bit ;===---------------------------------------------------------------------------- ; Basic load. ; CHECK-LABEL: load_i64_no_offset: ; CHECK: i64.load $push0=, 0($0){{$}} ; CHECK-NEXT: return $pop0{{$}} define i64 @load_i64_no_offset(i64 *%p) { %v = load i64, i64* %p ret i64 %v } ; With an nuw add, we can fold an offset. ; CHECK-LABEL: load_i64_with_folded_offset: ; CHECK: i64.load $push0=, 24($0){{$}} define i64 @load_i64_with_folded_offset(i64* %p) { %q = ptrtoint i64* %p to i32 %r = add nuw i32 %q, 24 %s = inttoptr i32 %r to i64* %t = load i64, i64* %s ret i64 %t } ; With an inbounds gep, we can fold an offset. ; CHECK-LABEL: load_i64_with_folded_gep_offset: ; CHECK: i64.load $push0=, 24($0){{$}} define i64 @load_i64_with_folded_gep_offset(i64* %p) { %s = getelementptr inbounds i64, i64* %p, i32 3 %t = load i64, i64* %s ret i64 %t } ; We can't fold a negative offset though, even with an inbounds gep. ; CHECK-LABEL: load_i64_with_unfolded_gep_negative_offset: ; CHECK: i32.const $push0=, -24{{$}} ; CHECK: i32.add $push1=, $0, $pop0{{$}} ; CHECK: i64.load $push2=, 0($pop1){{$}} define i64 @load_i64_with_unfolded_gep_negative_offset(i64* %p) { %s = getelementptr inbounds i64, i64* %p, i32 -3 %t = load i64, i64* %s ret i64 %t } ; Without nuw, and even with nsw, we can't fold an offset. ; CHECK-LABEL: load_i64_with_unfolded_offset: ; CHECK: i32.const $push0=, 24{{$}} ; CHECK: i32.add $push1=, $0, $pop0{{$}} ; CHECK: i64.load $push2=, 0($pop1){{$}} define i64 @load_i64_with_unfolded_offset(i64* %p) { %q = ptrtoint i64* %p to i32 %r = add nsw i32 %q, 24 %s = inttoptr i32 %r to i64* %t = load i64, i64* %s ret i64 %t } ; Without inbounds, we can't fold a gep offset. ; CHECK-LABEL: load_i64_with_unfolded_gep_offset: ; CHECK: i32.const $push0=, 24{{$}} ; CHECK: i32.add $push1=, $0, $pop0{{$}} ; CHECK: i64.load $push2=, 0($pop1){{$}} define i64 @load_i64_with_unfolded_gep_offset(i64* %p) { %s = getelementptr i64, i64* %p, i32 3 %t = load i64, i64* %s ret i64 %t } ;===---------------------------------------------------------------------------- ; Stores: 32-bit ;===---------------------------------------------------------------------------- ; Basic store. ; CHECK-LABEL: store_i32_no_offset: ; CHECK-NEXT: .functype store_i32_no_offset (i32, i32) -> (){{$}} ; CHECK-NEXT: i32.store 0($0), $1{{$}} ; CHECK-NEXT: return{{$}} define void @store_i32_no_offset(i32 *%p, i32 %v) { store i32 %v, i32* %p ret void } ; With an nuw add, we can fold an offset. ; CHECK-LABEL: store_i32_with_folded_offset: ; CHECK: i32.store 24($0), $pop0{{$}} define void @store_i32_with_folded_offset(i32* %p) { %q = ptrtoint i32* %p to i32 %r = add nuw i32 %q, 24 %s = inttoptr i32 %r to i32* store i32 0, i32* %s ret void } ; With an inbounds gep, we can fold an offset. ; CHECK-LABEL: store_i32_with_folded_gep_offset: ; CHECK: i32.store 24($0), $pop0{{$}} define void @store_i32_with_folded_gep_offset(i32* %p) { %s = getelementptr inbounds i32, i32* %p, i32 6 store i32 0, i32* %s ret void } ; We can't fold a negative offset though, even with an inbounds gep. ; CHECK-LABEL: store_i32_with_unfolded_gep_negative_offset: ; CHECK: i32.const $push0=, -24{{$}} ; CHECK: i32.add $push1=, $0, $pop0{{$}} ; CHECK: i32.store 0($pop1), $pop2{{$}} define void @store_i32_with_unfolded_gep_negative_offset(i32* %p) { %s = getelementptr inbounds i32, i32* %p, i32 -6 store i32 0, i32* %s ret void } ; Without nuw, and even with nsw, we can't fold an offset. ; CHECK-LABEL: store_i32_with_unfolded_offset: ; CHECK: i32.const $push0=, 24{{$}} ; CHECK: i32.add $push1=, $0, $pop0{{$}} ; CHECK: i32.store 0($pop1), $pop2{{$}} define void @store_i32_with_unfolded_offset(i32* %p) { %q = ptrtoint i32* %p to i32 %r = add nsw i32 %q, 24 %s = inttoptr i32 %r to i32* store i32 0, i32* %s ret void } ; Without inbounds, we can't fold a gep offset. ; CHECK-LABEL: store_i32_with_unfolded_gep_offset: ; CHECK: i32.const $push0=, 24{{$}} ; CHECK: i32.add $push1=, $0, $pop0{{$}} ; CHECK: i32.store 0($pop1), $pop2{{$}} define void @store_i32_with_unfolded_gep_offset(i32* %p) { %s = getelementptr i32, i32* %p, i32 6 store i32 0, i32* %s ret void } ; When storing from a fixed address, materialize a zero. ; CHECK-LABEL: store_i32_to_numeric_address: ; CHECK: i32.const $push0=, 0{{$}} ; CHECK-NEXT: i32.const $push1=, 0{{$}} ; CHECK-NEXT: i32.store 42($pop0), $pop1{{$}} define void @store_i32_to_numeric_address() { %s = inttoptr i32 42 to i32* store i32 0, i32* %s ret void } ; CHECK-LABEL: store_i32_to_global_address: ; CHECK: i32.const $push0=, 0{{$}} ; CHECK: i32.const $push1=, 0{{$}} ; CHECK: i32.store gv($pop0), $pop1{{$}} define void @store_i32_to_global_address() { store i32 0, i32* @gv ret void } ;===---------------------------------------------------------------------------- ; Stores: 64-bit ;===---------------------------------------------------------------------------- ; Basic store. ; CHECK-LABEL: store_i64_with_folded_offset: ; CHECK: i64.store 24($0), $pop0{{$}} define void @store_i64_with_folded_offset(i64* %p) { %q = ptrtoint i64* %p to i32 %r = add nuw i32 %q, 24 %s = inttoptr i32 %r to i64* store i64 0, i64* %s ret void } ; With an nuw add, we can fold an offset. ; CHECK-LABEL: store_i64_with_folded_gep_offset: ; CHECK: i64.store 24($0), $pop0{{$}} define void @store_i64_with_folded_gep_offset(i64* %p) { %s = getelementptr inbounds i64, i64* %p, i32 3 store i64 0, i64* %s ret void } ; With an inbounds gep, we can fold an offset. ; CHECK-LABEL: store_i64_with_unfolded_gep_negative_offset: ; CHECK: i32.const $push0=, -24{{$}} ; CHECK: i32.add $push1=, $0, $pop0{{$}} ; CHECK: i64.store 0($pop1), $pop2{{$}} define void @store_i64_with_unfolded_gep_negative_offset(i64* %p) { %s = getelementptr inbounds i64, i64* %p, i32 -3 store i64 0, i64* %s ret void } ; We can't fold a negative offset though, even with an inbounds gep. ; CHECK-LABEL: store_i64_with_unfolded_offset: ; CHECK: i32.const $push0=, 24{{$}} ; CHECK: i32.add $push1=, $0, $pop0{{$}} ; CHECK: i64.store 0($pop1), $pop2{{$}} define void @store_i64_with_unfolded_offset(i64* %p) { %q = ptrtoint i64* %p to i32 %r = add nsw i32 %q, 24 %s = inttoptr i32 %r to i64* store i64 0, i64* %s ret void } ; Without nuw, and even with nsw, we can't fold an offset. ; CHECK-LABEL: store_i64_with_unfolded_gep_offset: ; CHECK: i32.const $push0=, 24{{$}} ; CHECK: i32.add $push1=, $0, $pop0{{$}} ; CHECK: i64.store 0($pop1), $pop2{{$}} define void @store_i64_with_unfolded_gep_offset(i64* %p) { %s = getelementptr i64, i64* %p, i32 3 store i64 0, i64* %s ret void } ; Without inbounds, we can't fold a gep offset. ; CHECK-LABEL: store_i32_with_folded_or_offset: ; CHECK: i32.store8 2($pop{{[0-9]+}}), $pop{{[0-9]+}}{{$}} define void @store_i32_with_folded_or_offset(i32 %x) { %and = and i32 %x, -4 %t0 = inttoptr i32 %and to i8* %arrayidx = getelementptr inbounds i8, i8* %t0, i32 2 store i8 0, i8* %arrayidx, align 1 ret void } ;===---------------------------------------------------------------------------- ; Sign-extending loads ;===---------------------------------------------------------------------------- ; Fold an offset into a sign-extending load. ; CHECK-LABEL: load_i8_i32_s_with_folded_offset: ; CHECK: i32.load8_s $push0=, 24($0){{$}} define i32 @load_i8_i32_s_with_folded_offset(i8* %p) { %q = ptrtoint i8* %p to i32 %r = add nuw i32 %q, 24 %s = inttoptr i32 %r to i8* %t = load i8, i8* %s %u = sext i8 %t to i32 ret i32 %u } ; CHECK-LABEL: load_i32_i64_s_with_folded_offset: ; CHECK: i64.load32_s $push0=, 24($0){{$}} define i64 @load_i32_i64_s_with_folded_offset(i32* %p) { %q = ptrtoint i32* %p to i32 %r = add nuw i32 %q, 24 %s = inttoptr i32 %r to i32* %t = load i32, i32* %s %u = sext i32 %t to i64 ret i64 %u } ; Fold a gep offset into a sign-extending load. ; CHECK-LABEL: load_i8_i32_s_with_folded_gep_offset: ; CHECK: i32.load8_s $push0=, 24($0){{$}} define i32 @load_i8_i32_s_with_folded_gep_offset(i8* %p) { %s = getelementptr inbounds i8, i8* %p, i32 24 %t = load i8, i8* %s %u = sext i8 %t to i32 ret i32 %u } ; CHECK-LABEL: load_i16_i32_s_with_folded_gep_offset: ; CHECK: i32.load16_s $push0=, 48($0){{$}} define i32 @load_i16_i32_s_with_folded_gep_offset(i16* %p) { %s = getelementptr inbounds i16, i16* %p, i32 24 %t = load i16, i16* %s %u = sext i16 %t to i32 ret i32 %u } ; CHECK-LABEL: load_i16_i64_s_with_folded_gep_offset: ; CHECK: i64.load16_s $push0=, 48($0){{$}} define i64 @load_i16_i64_s_with_folded_gep_offset(i16* %p) { %s = getelementptr inbounds i16, i16* %p, i32 24 %t = load i16, i16* %s %u = sext i16 %t to i64 ret i64 %u } ; 'add' in this code becomes 'or' after DAG optimization. Treat an 'or' node as ; an 'add' if the or'ed bits are known to be zero. ; CHECK-LABEL: load_i8_i32_s_with_folded_or_offset: ; CHECK: i32.load8_s $push{{[0-9]+}}=, 2($pop{{[0-9]+}}){{$}} define i32 @load_i8_i32_s_with_folded_or_offset(i32 %x) { %and = and i32 %x, -4 %t0 = inttoptr i32 %and to i8* %arrayidx = getelementptr inbounds i8, i8* %t0, i32 2 %t1 = load i8, i8* %arrayidx %conv = sext i8 %t1 to i32 ret i32 %conv } ; CHECK-LABEL: load_i8_i64_s_with_folded_or_offset: ; CHECK: i64.load8_s $push{{[0-9]+}}=, 2($pop{{[0-9]+}}){{$}} define i64 @load_i8_i64_s_with_folded_or_offset(i32 %x) { %and = and i32 %x, -4 %t0 = inttoptr i32 %and to i8* %arrayidx = getelementptr inbounds i8, i8* %t0, i32 2 %t1 = load i8, i8* %arrayidx %conv = sext i8 %t1 to i64 ret i64 %conv } ; When loading from a fixed address, materialize a zero. ; CHECK-LABEL: load_i16_i32_s_from_numeric_address ; CHECK: i32.const $push0=, 0{{$}} ; CHECK: i32.load16_s $push1=, 42($pop0){{$}} define i32 @load_i16_i32_s_from_numeric_address() { %s = inttoptr i32 42 to i16* %t = load i16, i16* %s %u = sext i16 %t to i32 ret i32 %u } ; CHECK-LABEL: load_i8_i32_s_from_global_address ; CHECK: i32.const $push0=, 0{{$}} ; CHECK: i32.load8_s $push1=, gv8($pop0){{$}} @gv8 = global i8 0 define i32 @load_i8_i32_s_from_global_address() { %t = load i8, i8* @gv8 %u = sext i8 %t to i32 ret i32 %u } ;===---------------------------------------------------------------------------- ; Zero-extending loads ;===---------------------------------------------------------------------------- ; Fold an offset into a zero-extending load. ; CHECK-LABEL: load_i8_i32_z_with_folded_offset: ; CHECK: i32.load8_u $push0=, 24($0){{$}} define i32 @load_i8_i32_z_with_folded_offset(i8* %p) { %q = ptrtoint i8* %p to i32 %r = add nuw i32 %q, 24 %s = inttoptr i32 %r to i8* %t = load i8, i8* %s %u = zext i8 %t to i32 ret i32 %u } ; CHECK-LABEL: load_i32_i64_z_with_folded_offset: ; CHECK: i64.load32_u $push0=, 24($0){{$}} define i64 @load_i32_i64_z_with_folded_offset(i32* %p) { %q = ptrtoint i32* %p to i32 %r = add nuw i32 %q, 24 %s = inttoptr i32 %r to i32* %t = load i32, i32* %s %u = zext i32 %t to i64 ret i64 %u } ; Fold a gep offset into a zero-extending load. ; CHECK-LABEL: load_i8_i32_z_with_folded_gep_offset: ; CHECK: i32.load8_u $push0=, 24($0){{$}} define i32 @load_i8_i32_z_with_folded_gep_offset(i8* %p) { %s = getelementptr inbounds i8, i8* %p, i32 24 %t = load i8, i8* %s %u = zext i8 %t to i32 ret i32 %u } ; CHECK-LABEL: load_i16_i32_z_with_folded_gep_offset: ; CHECK: i32.load16_u $push0=, 48($0){{$}} define i32 @load_i16_i32_z_with_folded_gep_offset(i16* %p) { %s = getelementptr inbounds i16, i16* %p, i32 24 %t = load i16, i16* %s %u = zext i16 %t to i32 ret i32 %u } ; CHECK-LABEL: load_i16_i64_z_with_folded_gep_offset: ; CHECK: i64.load16_u $push0=, 48($0){{$}} define i64 @load_i16_i64_z_with_folded_gep_offset(i16* %p) { %s = getelementptr inbounds i16, i16* %p, i64 24 %t = load i16, i16* %s %u = zext i16 %t to i64 ret i64 %u } ; When loading from a fixed address, materialize a zero. ; CHECK-LABEL: load_i16_i32_z_from_numeric_address ; CHECK: i32.const $push0=, 0{{$}} ; CHECK: i32.load16_u $push1=, 42($pop0){{$}} define i32 @load_i16_i32_z_from_numeric_address() { %s = inttoptr i32 42 to i16* %t = load i16, i16* %s %u = zext i16 %t to i32 ret i32 %u } ; CHECK-LABEL: load_i8_i32_z_from_global_address ; CHECK: i32.const $push0=, 0{{$}} ; CHECK: i32.load8_u $push1=, gv8($pop0){{$}} define i32 @load_i8_i32_z_from_global_address() { %t = load i8, i8* @gv8 %u = zext i8 %t to i32 ret i32 %u } ; i8 return value should test anyext loads ; CHECK-LABEL: load_i8_i32_retvalue: ; CHECK: i32.load8_u $push[[NUM:[0-9]+]]=, 0($0){{$}} ; CHECK-NEXT: return $pop[[NUM]]{{$}} define i8 @load_i8_i32_retvalue(i8 *%p) { %v = load i8, i8* %p ret i8 %v } ;===---------------------------------------------------------------------------- ; Truncating stores ;===---------------------------------------------------------------------------- ; Fold an offset into a truncating store. ; CHECK-LABEL: store_i8_i32_with_folded_offset: ; CHECK: i32.store8 24($0), $1{{$}} define void @store_i8_i32_with_folded_offset(i8* %p, i32 %v) { %q = ptrtoint i8* %p to i32 %r = add nuw i32 %q, 24 %s = inttoptr i32 %r to i8* %t = trunc i32 %v to i8 store i8 %t, i8* %s ret void } ; CHECK-LABEL: store_i32_i64_with_folded_offset: ; CHECK: i64.store32 24($0), $1{{$}} define void @store_i32_i64_with_folded_offset(i32* %p, i64 %v) { %q = ptrtoint i32* %p to i32 %r = add nuw i32 %q, 24 %s = inttoptr i32 %r to i32* %t = trunc i64 %v to i32 store i32 %t, i32* %s ret void } ; Fold a gep offset into a truncating store. ; CHECK-LABEL: store_i8_i32_with_folded_gep_offset: ; CHECK: i32.store8 24($0), $1{{$}} define void @store_i8_i32_with_folded_gep_offset(i8* %p, i32 %v) { %s = getelementptr inbounds i8, i8* %p, i32 24 %t = trunc i32 %v to i8 store i8 %t, i8* %s ret void } ; CHECK-LABEL: store_i16_i32_with_folded_gep_offset: ; CHECK: i32.store16 48($0), $1{{$}} define void @store_i16_i32_with_folded_gep_offset(i16* %p, i32 %v) { %s = getelementptr inbounds i16, i16* %p, i32 24 %t = trunc i32 %v to i16 store i16 %t, i16* %s ret void } ; CHECK-LABEL: store_i16_i64_with_folded_gep_offset: ; CHECK: i64.store16 48($0), $1{{$}} define void @store_i16_i64_with_folded_gep_offset(i16* %p, i64 %v) { %s = getelementptr inbounds i16, i16* %p, i64 24 %t = trunc i64 %v to i16 store i16 %t, i16* %s ret void } ; 'add' in this code becomes 'or' after DAG optimization. Treat an 'or' node as ; an 'add' if the or'ed bits are known to be zero. ; CHECK-LABEL: store_i8_i32_with_folded_or_offset: ; CHECK: i32.store8 2($pop{{[0-9]+}}), $1{{$}} define void @store_i8_i32_with_folded_or_offset(i32 %x, i32 %v) { %and = and i32 %x, -4 %p = inttoptr i32 %and to i8* %arrayidx = getelementptr inbounds i8, i8* %p, i32 2 %t = trunc i32 %v to i8 store i8 %t, i8* %arrayidx ret void } ; CHECK-LABEL: store_i8_i64_with_folded_or_offset: ; CHECK: i64.store8 2($pop{{[0-9]+}}), $1{{$}} define void @store_i8_i64_with_folded_or_offset(i32 %x, i64 %v) { %and = and i32 %x, -4 %p = inttoptr i32 %and to i8* %arrayidx = getelementptr inbounds i8, i8* %p, i32 2 %t = trunc i64 %v to i8 store i8 %t, i8* %arrayidx ret void } ;===---------------------------------------------------------------------------- ; Aggregate values ;===---------------------------------------------------------------------------- ; Fold the offsets when lowering aggregate loads and stores. ; CHECK-LABEL: aggregate_load_store: ; CHECK: i32.load $2=, 0($0){{$}} ; CHECK: i32.load $3=, 4($0){{$}} ; CHECK: i32.load $4=, 8($0){{$}} ; CHECK: i32.load $push0=, 12($0){{$}} ; CHECK: i32.store 12($1), $pop0{{$}} ; CHECK: i32.store 8($1), $4{{$}} ; CHECK: i32.store 4($1), $3{{$}} ; CHECK: i32.store 0($1), $2{{$}} define void @aggregate_load_store({i32,i32,i32,i32}* %p, {i32,i32,i32,i32}* %q) { ; volatile so that things stay in order for the tests above %t = load volatile {i32,i32,i32,i32}, {i32, i32,i32,i32}* %p store volatile {i32,i32,i32,i32} %t, {i32, i32,i32,i32}* %q ret void } ; Fold the offsets when lowering aggregate return values. The stores get ; merged into i64 stores. ; CHECK-LABEL: aggregate_return: ; CHECK: i64.const $push[[L0:[0-9]+]]=, 0{{$}} ; CHECK: i64.store 8($0), $pop[[L0]]{{$}} ; CHECK: i64.const $push[[L1:[0-9]+]]=, 0{{$}} ; CHECK: i64.store 0($0), $pop[[L1]]{{$}} define {i32,i32,i32,i32} @aggregate_return() { ret {i32,i32,i32,i32} zeroinitializer } ; Fold the offsets when lowering aggregate return values. The stores are not ; merged. ; CHECK-LABEL: aggregate_return_without_merge: ; CHECK: i32.const $push[[L0:[0-9]+]]=, 0{{$}} ; CHECK: i32.store8 14($0), $pop[[L0]]{{$}} ; CHECK: i32.const $push[[L1:[0-9]+]]=, 0{{$}} ; CHECK: i32.store16 12($0), $pop[[L1]]{{$}} ; CHECK: i32.const $push[[L2:[0-9]+]]=, 0{{$}} ; CHECK: i32.store 8($0), $pop[[L2]]{{$}} ; CHECK: i64.const $push[[L3:[0-9]+]]=, 0{{$}} ; CHECK: i64.store 0($0), $pop[[L3]]{{$}} define {i64,i32,i16,i8} @aggregate_return_without_merge() { ret {i64,i32,i16,i8} zeroinitializer }