; "PLAIN" - No optimizations. This tests the default target layout ; constant folder. ; RUN: opt -S -o - < %s | FileCheck --check-prefix=PLAIN %s ; "OPT" - Optimizations but no targetdata. This tests default target layout ; folding in the optimizers. ; RUN: opt -S -o - -instcombine -globalopt < %s | FileCheck --check-prefix=OPT %s ; "TO" - Optimizations and targetdata. This tests target-dependent ; folding in the optimizers. ; RUN: opt -S -o - -instcombine -globalopt -data-layout="e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64" < %s | FileCheck --check-prefix=TO %s ; "SCEV" - ScalarEvolution with default target layout ; RUN: opt -analyze -scalar-evolution < %s -enable-new-pm=0 | FileCheck --check-prefix=SCEV %s ; RUN: opt -passes='print' < %s -disable-output 2>&1 | FileCheck --check-prefix=SCEV %s ; The automatic constant folder in opt does not have targetdata access, so ; it can't fold gep arithmetic, in general. However, the constant folder run ; from instcombine and global opt can use targetdata. ; PLAIN: @G8 = global i8* getelementptr (i8, i8* inttoptr (i32 1 to i8*), i32 -1) ; PLAIN: @G1 = global i1* getelementptr (i1, i1* inttoptr (i32 1 to i1*), i32 -1) ; PLAIN: @F8 = global i8* getelementptr (i8, i8* inttoptr (i32 1 to i8*), i32 -2) ; PLAIN: @F1 = global i1* getelementptr (i1, i1* inttoptr (i32 1 to i1*), i32 -2) ; PLAIN: @H8 = global i8* getelementptr (i8, i8* null, i32 -1) ; PLAIN: @H1 = global i1* getelementptr (i1, i1* null, i32 -1) ; OPT: @G8 = local_unnamed_addr global i8* null ; OPT: @G1 = local_unnamed_addr global i1* null ; OPT: @F8 = local_unnamed_addr global i8* inttoptr (i64 -1 to i8*) ; OPT: @F1 = local_unnamed_addr global i1* inttoptr (i64 -1 to i1*) ; OPT: @H8 = local_unnamed_addr global i8* inttoptr (i64 -1 to i8*) ; OPT: @H1 = local_unnamed_addr global i1* inttoptr (i64 -1 to i1*) ; TO: @G8 = local_unnamed_addr global i8* null ; TO: @G1 = local_unnamed_addr global i1* null ; TO: @F8 = local_unnamed_addr global i8* inttoptr (i64 -1 to i8*) ; TO: @F1 = local_unnamed_addr global i1* inttoptr (i64 -1 to i1*) ; TO: @H8 = local_unnamed_addr global i8* inttoptr (i64 -1 to i8*) ; TO: @H1 = local_unnamed_addr global i1* inttoptr (i64 -1 to i1*) @G8 = global i8* getelementptr (i8, i8* inttoptr (i32 1 to i8*), i32 -1) @G1 = global i1* getelementptr (i1, i1* inttoptr (i32 1 to i1*), i32 -1) @F8 = global i8* getelementptr (i8, i8* inttoptr (i32 1 to i8*), i32 -2) @F1 = global i1* getelementptr (i1, i1* inttoptr (i32 1 to i1*), i32 -2) @H8 = global i8* getelementptr (i8, i8* inttoptr (i32 0 to i8*), i32 -1) @H1 = global i1* getelementptr (i1, i1* inttoptr (i32 0 to i1*), i32 -1) ; The target-independent folder should be able to do some clever ; simplifications on sizeof, alignof, and offsetof expressions. The ; target-dependent folder should fold these down to constants. ; PLAIN: @a = constant i64 mul (i64 ptrtoint (double* getelementptr (double, double* null, i32 1) to i64), i64 2310) ; PLAIN: @b = constant i64 ptrtoint (double* getelementptr ({ i1, double }, { i1, double }* null, i64 0, i32 1) to i64) ; PLAIN: @c = constant i64 mul nuw (i64 ptrtoint (double* getelementptr (double, double* null, i32 1) to i64), i64 2) ; PLAIN: @d = constant i64 mul nuw (i64 ptrtoint (double* getelementptr (double, double* null, i32 1) to i64), i64 11) ; PLAIN: @e = constant i64 ptrtoint (double* getelementptr ({ double, float, double, double }, { double, float, double, double }* null, i64 0, i32 2) to i64) ; PLAIN: @f = constant i64 1 ; PLAIN: @g = constant i64 ptrtoint (double* getelementptr ({ i1, double }, { i1, double }* null, i64 0, i32 1) to i64) ; PLAIN: @h = constant i64 ptrtoint (i1** getelementptr (i1*, i1** null, i32 1) to i64) ; PLAIN: @i = constant i64 ptrtoint (i1** getelementptr ({ i1, i1* }, { i1, i1* }* null, i64 0, i32 1) to i64) ; OPT: @a = local_unnamed_addr constant i64 18480 ; OPT: @b = local_unnamed_addr constant i64 8 ; OPT: @c = local_unnamed_addr constant i64 16 ; OPT: @d = local_unnamed_addr constant i64 88 ; OPT: @e = local_unnamed_addr constant i64 16 ; OPT: @f = local_unnamed_addr constant i64 1 ; OPT: @g = local_unnamed_addr constant i64 8 ; OPT: @h = local_unnamed_addr constant i64 8 ; OPT: @i = local_unnamed_addr constant i64 8 ; TO: @a = local_unnamed_addr constant i64 18480 ; TO: @b = local_unnamed_addr constant i64 8 ; TO: @c = local_unnamed_addr constant i64 16 ; TO: @d = local_unnamed_addr constant i64 88 ; TO: @e = local_unnamed_addr constant i64 16 ; TO: @f = local_unnamed_addr constant i64 1 ; TO: @g = local_unnamed_addr constant i64 8 ; TO: @h = local_unnamed_addr constant i64 8 ; TO: @i = local_unnamed_addr constant i64 8 @a = constant i64 mul (i64 3, i64 mul (i64 ptrtoint ({[7 x double], [7 x double]}* getelementptr ({[7 x double], [7 x double]}, {[7 x double], [7 x double]}* null, i64 11) to i64), i64 5)) @b = constant i64 ptrtoint ([13 x double]* getelementptr ({i1, [13 x double]}, {i1, [13 x double]}* null, i64 0, i32 1) to i64) @c = constant i64 ptrtoint (double* getelementptr ({double, double, double, double}, {double, double, double, double}* null, i64 0, i32 2) to i64) @d = constant i64 ptrtoint (double* getelementptr ([13 x double], [13 x double]* null, i64 0, i32 11) to i64) @e = constant i64 ptrtoint (double* getelementptr ({double, float, double, double}, {double, float, double, double}* null, i64 0, i32 2) to i64) @f = constant i64 ptrtoint (<{ i16, i128 }>* getelementptr ({i1, <{ i16, i128 }>}, {i1, <{ i16, i128 }>}* null, i64 0, i32 1) to i64) @g = constant i64 ptrtoint ({double, double}* getelementptr ({i1, {double, double}}, {i1, {double, double}}* null, i64 0, i32 1) to i64) @h = constant i64 ptrtoint (double** getelementptr (double*, double** null, i64 1) to i64) @i = constant i64 ptrtoint (double** getelementptr ({i1, double*}, {i1, double*}* null, i64 0, i32 1) to i64) ; The target-dependent folder should cast GEP indices to integer-sized pointers. ; PLAIN: @M = constant i64* getelementptr (i64, i64* null, i32 1) ; PLAIN: @N = constant i64* getelementptr ({ i64, i64 }, { i64, i64 }* null, i32 0, i32 1) ; PLAIN: @O = constant i64* getelementptr ([2 x i64], [2 x i64]* null, i32 0, i32 1) ; OPT: @M = local_unnamed_addr constant i64* inttoptr (i64 8 to i64*) ; OPT: @N = local_unnamed_addr constant i64* inttoptr (i64 8 to i64*) ; OPT: @O = local_unnamed_addr constant i64* inttoptr (i64 8 to i64*) ; TO: @M = local_unnamed_addr constant i64* inttoptr (i64 8 to i64*) ; TO: @N = local_unnamed_addr constant i64* inttoptr (i64 8 to i64*) ; TO: @O = local_unnamed_addr constant i64* inttoptr (i64 8 to i64*) @M = constant i64* getelementptr (i64, i64* null, i32 1) @N = constant i64* getelementptr ({ i64, i64 }, { i64, i64 }* null, i32 0, i32 1) @O = constant i64* getelementptr ([2 x i64], [2 x i64]* null, i32 0, i32 1) ; Fold GEP of a GEP. Very simple cases are folded without targetdata. ; PLAIN: @Y = global [3 x { i32, i32 }]* getelementptr inbounds ([3 x { i32, i32 }], [3 x { i32, i32 }]* @ext, i64 2) ; PLAIN: @Z = global i32* getelementptr inbounds (i32, i32* getelementptr inbounds ([3 x { i32, i32 }], [3 x { i32, i32 }]* @ext, i64 0, i64 1, i32 0), i64 1) ; OPT: @Y = local_unnamed_addr global [3 x { i32, i32 }]* getelementptr inbounds ([3 x { i32, i32 }], [3 x { i32, i32 }]* @ext, i64 2) ; OPT: @Z = local_unnamed_addr global i32* getelementptr inbounds ([3 x { i32, i32 }], [3 x { i32, i32 }]* @ext, i64 0, i64 1, i32 1) ; TO: @Y = local_unnamed_addr global [3 x { i32, i32 }]* getelementptr inbounds ([3 x { i32, i32 }], [3 x { i32, i32 }]* @ext, i64 2) ; TO: @Z = local_unnamed_addr global i32* getelementptr inbounds ([3 x { i32, i32 }], [3 x { i32, i32 }]* @ext, i64 0, i64 1, i32 1) @ext = external global [3 x { i32, i32 }] @Y = global [3 x { i32, i32 }]* getelementptr inbounds ([3 x { i32, i32 }], [3 x { i32, i32 }]* getelementptr inbounds ([3 x { i32, i32 }], [3 x { i32, i32 }]* @ext, i64 1), i64 1) @Z = global i32* getelementptr inbounds (i32, i32* getelementptr inbounds ([3 x { i32, i32 }], [3 x { i32, i32 }]* @ext, i64 0, i64 1, i32 0), i64 1) ; Duplicate all of the above as function return values rather than ; global initializers. ; PLAIN: define i8* @goo8() #0 { ; PLAIN: %t = bitcast i8* getelementptr (i8, i8* inttoptr (i32 1 to i8*), i32 -1) to i8* ; PLAIN: ret i8* %t ; PLAIN: } ; PLAIN: define i1* @goo1() #0 { ; PLAIN: %t = bitcast i1* getelementptr (i1, i1* inttoptr (i32 1 to i1*), i32 -1) to i1* ; PLAIN: ret i1* %t ; PLAIN: } ; PLAIN: define i8* @foo8() #0 { ; PLAIN: %t = bitcast i8* getelementptr (i8, i8* inttoptr (i32 1 to i8*), i32 -2) to i8* ; PLAIN: ret i8* %t ; PLAIN: } ; PLAIN: define i1* @foo1() #0 { ; PLAIN: %t = bitcast i1* getelementptr (i1, i1* inttoptr (i32 1 to i1*), i32 -2) to i1* ; PLAIN: ret i1* %t ; PLAIN: } ; PLAIN: define i8* @hoo8() #0 { ; PLAIN: %t = bitcast i8* getelementptr (i8, i8* null, i32 -1) to i8* ; PLAIN: ret i8* %t ; PLAIN: } ; PLAIN: define i1* @hoo1() #0 { ; PLAIN: %t = bitcast i1* getelementptr (i1, i1* null, i32 -1) to i1* ; PLAIN: ret i1* %t ; PLAIN: } ; OPT: define i8* @goo8() local_unnamed_addr #0 { ; OPT: ret i8* null ; OPT: } ; OPT: define i1* @goo1() local_unnamed_addr #0 { ; OPT: ret i1* null ; OPT: } ; OPT: define i8* @foo8() local_unnamed_addr #0 { ; OPT: ret i8* inttoptr (i64 -1 to i8*) ; OPT: } ; OPT: define i1* @foo1() local_unnamed_addr #0 { ; OPT: ret i1* inttoptr (i64 -1 to i1*) ; OPT: } ; OPT: define i8* @hoo8() local_unnamed_addr #0 { ; OPT: ret i8* inttoptr (i64 -1 to i8*) ; OPT: } ; OPT: define i1* @hoo1() local_unnamed_addr #0 { ; OPT: ret i1* inttoptr (i64 -1 to i1*) ; OPT: } ; TO: define i8* @goo8() local_unnamed_addr #0 { ; TO: ret i8* null ; TO: } ; TO: define i1* @goo1() local_unnamed_addr #0 { ; TO: ret i1* null ; TO: } ; TO: define i8* @foo8() local_unnamed_addr #0 { ; TO: ret i8* inttoptr (i64 -1 to i8*) ; TO: } ; TO: define i1* @foo1() local_unnamed_addr #0 { ; TO: ret i1* inttoptr (i64 -1 to i1*) ; TO: } ; TO: define i8* @hoo8() local_unnamed_addr #0 { ; TO: ret i8* inttoptr (i64 -1 to i8*) ; TO: } ; TO: define i1* @hoo1() local_unnamed_addr #0 { ; TO: ret i1* inttoptr (i64 -1 to i1*) ; TO: } ; SCEV: Classifying expressions for: @goo8 ; SCEV: %t = bitcast i8* getelementptr (i8, i8* inttoptr (i32 1 to i8*), i32 -1) to i8* ; SCEV: --> (-1 + inttoptr (i32 1 to i8*)) ; SCEV: Classifying expressions for: @goo1 ; SCEV: %t = bitcast i1* getelementptr (i1, i1* inttoptr (i32 1 to i1*), i32 -1) to i1* ; SCEV: --> (-1 + inttoptr (i32 1 to i1*)) ; SCEV: Classifying expressions for: @foo8 ; SCEV: %t = bitcast i8* getelementptr (i8, i8* inttoptr (i32 1 to i8*), i32 -2) to i8* ; SCEV: --> (-2 + inttoptr (i32 1 to i8*)) ; SCEV: Classifying expressions for: @foo1 ; SCEV: %t = bitcast i1* getelementptr (i1, i1* inttoptr (i32 1 to i1*), i32 -2) to i1* ; SCEV: --> (-2 + inttoptr (i32 1 to i1*)) ; SCEV: Classifying expressions for: @hoo8 ; SCEV: --> -1 ; SCEV: Classifying expressions for: @hoo1 ; SCEV: --> -1 define i8* @goo8() nounwind { %t = bitcast i8* getelementptr (i8, i8* inttoptr (i32 1 to i8*), i32 -1) to i8* ret i8* %t } define i1* @goo1() nounwind { %t = bitcast i1* getelementptr (i1, i1* inttoptr (i32 1 to i1*), i32 -1) to i1* ret i1* %t } define i8* @foo8() nounwind { %t = bitcast i8* getelementptr (i8, i8* inttoptr (i32 1 to i8*), i32 -2) to i8* ret i8* %t } define i1* @foo1() nounwind { %t = bitcast i1* getelementptr (i1, i1* inttoptr (i32 1 to i1*), i32 -2) to i1* ret i1* %t } define i8* @hoo8() nounwind { %t = bitcast i8* getelementptr (i8, i8* inttoptr (i32 0 to i8*), i32 -1) to i8* ret i8* %t } define i1* @hoo1() nounwind { %t = bitcast i1* getelementptr (i1, i1* inttoptr (i32 0 to i1*), i32 -1) to i1* ret i1* %t } ; PLAIN: define i64 @fa() #0 { ; PLAIN: %t = bitcast i64 mul (i64 ptrtoint (double* getelementptr (double, double* null, i32 1) to i64), i64 2310) to i64 ; PLAIN: ret i64 %t ; PLAIN: } ; PLAIN: define i64 @fb() #0 { ; PLAIN: %t = bitcast i64 ptrtoint (double* getelementptr ({ i1, double }, { i1, double }* null, i64 0, i32 1) to i64) to i64 ; PLAIN: ret i64 %t ; PLAIN: } ; PLAIN: define i64 @fc() #0 { ; PLAIN: %t = bitcast i64 mul nuw (i64 ptrtoint (double* getelementptr (double, double* null, i32 1) to i64), i64 2) to i64 ; PLAIN: ret i64 %t ; PLAIN: } ; PLAIN: define i64 @fd() #0 { ; PLAIN: %t = bitcast i64 mul nuw (i64 ptrtoint (double* getelementptr (double, double* null, i32 1) to i64), i64 11) to i64 ; PLAIN: ret i64 %t ; PLAIN: } ; PLAIN: define i64 @fe() #0 { ; PLAIN: %t = bitcast i64 ptrtoint (double* getelementptr ({ double, float, double, double }, { double, float, double, double }* null, i64 0, i32 2) to i64) to i64 ; PLAIN: ret i64 %t ; PLAIN: } ; PLAIN: define i64 @ff() #0 { ; PLAIN: %t = bitcast i64 1 to i64 ; PLAIN: ret i64 %t ; PLAIN: } ; PLAIN: define i64 @fg() #0 { ; PLAIN: %t = bitcast i64 ptrtoint (double* getelementptr ({ i1, double }, { i1, double }* null, i64 0, i32 1) to i64) to i64 ; PLAIN: ret i64 %t ; PLAIN: } ; PLAIN: define i64 @fh() #0 { ; PLAIN: %t = bitcast i64 ptrtoint (i1** getelementptr (i1*, i1** null, i32 1) to i64) to i64 ; PLAIN: ret i64 %t ; PLAIN: } ; PLAIN: define i64 @fi() #0 { ; PLAIN: %t = bitcast i64 ptrtoint (i1** getelementptr ({ i1, i1* }, { i1, i1* }* null, i64 0, i32 1) to i64) to i64 ; PLAIN: ret i64 %t ; PLAIN: } ; OPT: define i64 @fa() local_unnamed_addr #0 { ; OPT: ret i64 18480 ; OPT: } ; OPT: define i64 @fb() local_unnamed_addr #0 { ; OPT: ret i64 8 ; OPT: } ; OPT: define i64 @fc() local_unnamed_addr #0 { ; OPT: ret i64 16 ; OPT: } ; OPT: define i64 @fd() local_unnamed_addr #0 { ; OPT: ret i64 88 ; OPT: } ; OPT: define i64 @fe() local_unnamed_addr #0 { ; OPT: ret i64 16 ; OPT: } ; OPT: define i64 @ff() local_unnamed_addr #0 { ; OPT: ret i64 1 ; OPT: } ; OPT: define i64 @fg() local_unnamed_addr #0 { ; OPT: ret i64 8 ; OPT: } ; OPT: define i64 @fh() local_unnamed_addr #0 { ; OPT: ret i64 8 ; OPT: } ; OPT: define i64 @fi() local_unnamed_addr #0 { ; OPT: ret i64 8 ; OPT: } ; TO: define i64 @fa() local_unnamed_addr #0 { ; TO: ret i64 18480 ; TO: } ; TO: define i64 @fb() local_unnamed_addr #0 { ; TO: ret i64 8 ; TO: } ; TO: define i64 @fc() local_unnamed_addr #0 { ; TO: ret i64 16 ; TO: } ; TO: define i64 @fd() local_unnamed_addr #0 { ; TO: ret i64 88 ; TO: } ; TO: define i64 @fe() local_unnamed_addr #0 { ; TO: ret i64 16 ; TO: } ; TO: define i64 @ff() local_unnamed_addr #0 { ; TO: ret i64 1 ; TO: } ; TO: define i64 @fg() local_unnamed_addr #0 { ; TO: ret i64 8 ; TO: } ; TO: define i64 @fh() local_unnamed_addr #0 { ; TO: ret i64 8 ; TO: } ; TO: define i64 @fi() local_unnamed_addr #0 { ; TO: ret i64 8 ; TO: } ; SCEV: Classifying expressions for: @fa ; SCEV: %t = bitcast i64 mul (i64 ptrtoint (double* getelementptr (double, double* null, i32 1) to i64), i64 2310) to i64 ; SCEV: --> 18480 ; SCEV: Classifying expressions for: @fb ; SCEV: %t = bitcast i64 ptrtoint (double* getelementptr ({ i1, double }, { i1, double }* null, i64 0, i32 1) to i64) to i64 ; SCEV: --> 8 ; SCEV: Classifying expressions for: @fc ; SCEV: %t = bitcast i64 mul nuw (i64 ptrtoint (double* getelementptr (double, double* null, i32 1) to i64), i64 2) to i64 ; SCEV: --> 16 ; SCEV: Classifying expressions for: @fd ; SCEV: %t = bitcast i64 mul nuw (i64 ptrtoint (double* getelementptr (double, double* null, i32 1) to i64), i64 11) to i64 ; SCEV: --> 88 ; SCEV: Classifying expressions for: @fe ; SCEV: %t = bitcast i64 ptrtoint (double* getelementptr ({ double, float, double, double }, { double, float, double, double }* null, i64 0, i32 2) to i64) to i64 ; SCEV: --> 16 ; SCEV: Classifying expressions for: @ff ; SCEV: %t = bitcast i64 1 to i64 ; SCEV: --> 1 ; SCEV: Classifying expressions for: @fg ; SCEV: %t = bitcast i64 ptrtoint (double* getelementptr ({ i1, double }, { i1, double }* null, i64 0, i32 1) to i64) to i64 ; SCEV: --> 8 ; SCEV: Classifying expressions for: @fh ; SCEV: %t = bitcast i64 ptrtoint (i1** getelementptr (i1*, i1** null, i32 1) to i64) to i64 ; SCEV: --> 8 ; SCEV: Classifying expressions for: @fi ; SCEV: %t = bitcast i64 ptrtoint (i1** getelementptr ({ i1, i1* }, { i1, i1* }* null, i64 0, i32 1) to i64) to i64 ; SCEV: --> 8 define i64 @fa() nounwind { %t = bitcast i64 mul (i64 3, i64 mul (i64 ptrtoint ({[7 x double], [7 x double]}* getelementptr ({[7 x double], [7 x double]}, {[7 x double], [7 x double]}* null, i64 11) to i64), i64 5)) to i64 ret i64 %t } define i64 @fb() nounwind { %t = bitcast i64 ptrtoint ([13 x double]* getelementptr ({i1, [13 x double]}, {i1, [13 x double]}* null, i64 0, i32 1) to i64) to i64 ret i64 %t } define i64 @fc() nounwind { %t = bitcast i64 ptrtoint (double* getelementptr ({double, double, double, double}, {double, double, double, double}* null, i64 0, i32 2) to i64) to i64 ret i64 %t } define i64 @fd() nounwind { %t = bitcast i64 ptrtoint (double* getelementptr ([13 x double], [13 x double]* null, i64 0, i32 11) to i64) to i64 ret i64 %t } define i64 @fe() nounwind { %t = bitcast i64 ptrtoint (double* getelementptr ({double, float, double, double}, {double, float, double, double}* null, i64 0, i32 2) to i64) to i64 ret i64 %t } define i64 @ff() nounwind { %t = bitcast i64 ptrtoint (<{ i16, i128 }>* getelementptr ({i1, <{ i16, i128 }>}, {i1, <{ i16, i128 }>}* null, i64 0, i32 1) to i64) to i64 ret i64 %t } define i64 @fg() nounwind { %t = bitcast i64 ptrtoint ({double, double}* getelementptr ({i1, {double, double}}, {i1, {double, double}}* null, i64 0, i32 1) to i64) to i64 ret i64 %t } define i64 @fh() nounwind { %t = bitcast i64 ptrtoint (double** getelementptr (double*, double** null, i32 1) to i64) to i64 ret i64 %t } define i64 @fi() nounwind { %t = bitcast i64 ptrtoint (double** getelementptr ({i1, double*}, {i1, double*}* null, i64 0, i32 1) to i64) to i64 ret i64 %t } ; PLAIN: define i64* @fM() #0 { ; PLAIN: %t = bitcast i64* getelementptr (i64, i64* null, i32 1) to i64* ; PLAIN: ret i64* %t ; PLAIN: } ; PLAIN: define i64* @fN() #0 { ; PLAIN: %t = bitcast i64* getelementptr ({ i64, i64 }, { i64, i64 }* null, i32 0, i32 1) to i64* ; PLAIN: ret i64* %t ; PLAIN: } ; PLAIN: define i64* @fO() #0 { ; PLAIN: %t = bitcast i64* getelementptr ([2 x i64], [2 x i64]* null, i32 0, i32 1) to i64* ; PLAIN: ret i64* %t ; PLAIN: } ; OPT: define i64* @fM() local_unnamed_addr #0 { ; OPT: ret i64* inttoptr (i64 8 to i64*) ; OPT: } ; OPT: define i64* @fN() local_unnamed_addr #0 { ; OPT: ret i64* inttoptr (i64 8 to i64*) ; OPT: } ; OPT: define i64* @fO() local_unnamed_addr #0 { ; OPT: ret i64* inttoptr (i64 8 to i64*) ; OPT: } ; TO: define i64* @fM() local_unnamed_addr #0 { ; TO: ret i64* inttoptr (i64 8 to i64*) ; TO: } ; TO: define i64* @fN() local_unnamed_addr #0 { ; TO: ret i64* inttoptr (i64 8 to i64*) ; TO: } ; TO: define i64* @fO() local_unnamed_addr #0 { ; TO: ret i64* inttoptr (i64 8 to i64*) ; TO: } ; SCEV: Classifying expressions for: @fM ; SCEV: %t = bitcast i64* getelementptr (i64, i64* null, i32 1) to i64* ; SCEV: --> 8 ; SCEV: Classifying expressions for: @fN ; SCEV: %t = bitcast i64* getelementptr ({ i64, i64 }, { i64, i64 }* null, i32 0, i32 1) to i64* ; SCEV: --> 8 ; SCEV: Classifying expressions for: @fO ; SCEV: %t = bitcast i64* getelementptr ([2 x i64], [2 x i64]* null, i32 0, i32 1) to i64* ; SCEV: --> 8 define i64* @fM() nounwind { %t = bitcast i64* getelementptr (i64, i64* null, i32 1) to i64* ret i64* %t } define i64* @fN() nounwind { %t = bitcast i64* getelementptr ({ i64, i64 }, { i64, i64 }* null, i32 0, i32 1) to i64* ret i64* %t } define i64* @fO() nounwind { %t = bitcast i64* getelementptr ([2 x i64], [2 x i64]* null, i32 0, i32 1) to i64* ret i64* %t } ; PLAIN: define i32* @fZ() #0 { ; PLAIN: %t = bitcast i32* getelementptr inbounds (i32, i32* getelementptr inbounds ([3 x { i32, i32 }], [3 x { i32, i32 }]* @ext, i64 0, i64 1, i32 0), i64 1) to i32* ; PLAIN: ret i32* %t ; PLAIN: } ; OPT: define i32* @fZ() local_unnamed_addr #0 { ; OPT: ret i32* getelementptr inbounds ([3 x { i32, i32 }], [3 x { i32, i32 }]* @ext, i64 0, i64 1, i32 1) ; OPT: } ; TO: define i32* @fZ() local_unnamed_addr #0 { ; TO: ret i32* getelementptr inbounds ([3 x { i32, i32 }], [3 x { i32, i32 }]* @ext, i64 0, i64 1, i32 1) ; TO: } ; SCEV: Classifying expressions for: @fZ ; SCEV: %t = bitcast i32* getelementptr inbounds (i32, i32* getelementptr inbounds ([3 x { i32, i32 }], [3 x { i32, i32 }]* @ext, i64 0, i64 1, i32 0), i64 1) to i32* ; SCEV: --> (12 + @ext) define i32* @fZ() nounwind { %t = bitcast i32* getelementptr inbounds (i32, i32* getelementptr inbounds ([3 x { i32, i32 }], [3 x { i32, i32 }]* @ext, i64 0, i64 1, i32 0), i64 1) to i32* ret i32* %t } ; PR15262 - Check GEP folding with casts between address spaces. @p0 = global [4 x i8] zeroinitializer, align 1 @p12 = addrspace(12) global [4 x i8] zeroinitializer, align 1 define i8* @different_addrspace() nounwind noinline { ; OPT: different_addrspace %p = getelementptr inbounds i8, i8* addrspacecast ([4 x i8] addrspace(12)* @p12 to i8*), i32 2 ret i8* %p ; OPT: ret i8* getelementptr ([4 x i8], [4 x i8]* addrspacecast ([4 x i8] addrspace(12)* @p12 to [4 x i8]*), i64 0, i64 2) } define i8* @same_addrspace() nounwind noinline { ; OPT: same_addrspace %p = getelementptr inbounds i8, i8* bitcast ([4 x i8] * @p0 to i8*), i32 2 ret i8* %p ; OPT: ret i8* getelementptr inbounds ([4 x i8], [4 x i8]* @p0, i64 0, i64 2) } @gv1 = internal global i32 1 @gv2 = internal global [1 x i32] [ i32 2 ] @gv3 = internal global [1 x i32] [ i32 2 ] ; Handled by TI-independent constant folder define i1 @gv_gep_vs_gv() { ret i1 icmp eq (i32* getelementptr inbounds ([1 x i32], [1 x i32]* @gv2, i32 0, i32 0), i32* @gv1) } ; PLAIN: gv_gep_vs_gv ; PLAIN: ret i1 false define i1 @gv_gep_vs_gv_gep() { ret i1 icmp eq (i32* getelementptr inbounds ([1 x i32], [1 x i32]* @gv2, i32 0, i32 0), i32* getelementptr inbounds ([1 x i32], [1 x i32]* @gv3, i32 0, i32 0)) } ; PLAIN: gv_gep_vs_gv_gep ; PLAIN: ret i1 false ; CHECK: attributes #0 = { nounwind }