//===-- ProfileGenerator.cpp - Profile Generator ---------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "ProfileGenerator.h" static cl::opt OutputFilename("output", cl::value_desc("output"), cl::Required, cl::desc("Output profile file")); static cl::opt OutputFormat( "format", cl::desc("Format of output profile"), cl::init(SPF_Text), cl::values( clEnumValN(SPF_Binary, "binary", "Binary encoding (default)"), clEnumValN(SPF_Compact_Binary, "compbinary", "Compact binary encoding"), clEnumValN(SPF_Ext_Binary, "extbinary", "Extensible binary encoding"), clEnumValN(SPF_Text, "text", "Text encoding"), clEnumValN(SPF_GCC, "gcc", "GCC encoding (only meaningful for -sample)"))); using namespace llvm; using namespace sampleprof; namespace llvm { namespace sampleprof { std::unique_ptr ProfileGenerator::create(const BinarySampleCounterMap &BinarySampleCounters, enum PerfScriptType SampleType) { std::unique_ptr ProfileGenerator; if (SampleType == PERF_LBR_STACK) { ProfileGenerator.reset(new CSProfileGenerator(BinarySampleCounters)); } else { // TODO: llvm_unreachable("Unsupported perfscript!"); } return ProfileGenerator; } void ProfileGenerator::write() { auto WriterOrErr = SampleProfileWriter::create(OutputFilename, OutputFormat); if (std::error_code EC = WriterOrErr.getError()) exitWithError(EC, OutputFilename); auto Writer = std::move(WriterOrErr.get()); Writer->write(ProfileMap); } void ProfileGenerator::findDisjointRanges(RangeSample &DisjointRanges, const RangeSample &Ranges) { /* Regions may overlap with each other. Using the boundary info, find all disjoint ranges and their sample count. BoundaryPoint contains the count mutiple samples begin/end at this points. |<--100-->| Sample1 |<------200------>| Sample2 A B C In the example above, Sample1 begins at A, ends at B, its value is 100. Sample2 beings at A, ends at C, its value is 200. For A, BeginCount is the sum of sample begins at A, which is 300 and no samples ends at A, so EndCount is 0. Then boundary points A, B, and C with begin/end counts are: A: (300, 0) B: (0, 100) C: (0, 200) */ struct BoundaryPoint { // Sum of sample counts beginning at this point uint64_t BeginCount; // Sum of sample counts ending at this point uint64_t EndCount; BoundaryPoint() : BeginCount(0), EndCount(0){}; void addBeginCount(uint64_t Count) { BeginCount += Count; } void addEndCount(uint64_t Count) { EndCount += Count; } }; /* For the above example. With boundary points, follwing logic finds two disjoint region of [A,B]: 300 [B+1,C]: 200 If there is a boundary point that both begin and end, the point itself becomes a separate disjoint region. For example, if we have original ranges of |<--- 100 --->| |<--- 200 --->| A B C there are three boundary points with their begin/end counts of A: (100, 0) B: (200, 100) C: (0, 200) the disjoint ranges would be [A, B-1]: 100 [B, B]: 300 [B+1, C]: 200. */ std::map Boundaries; for (auto Item : Ranges) { uint64_t Begin = Item.first.first; uint64_t End = Item.first.second; uint64_t Count = Item.second; if (Boundaries.find(Begin) == Boundaries.end()) Boundaries[Begin] = BoundaryPoint(); Boundaries[Begin].addBeginCount(Count); if (Boundaries.find(End) == Boundaries.end()) Boundaries[End] = BoundaryPoint(); Boundaries[End].addEndCount(Count); } uint64_t BeginAddress = 0; int Count = 0; for (auto Item : Boundaries) { uint64_t Address = Item.first; BoundaryPoint &Point = Item.second; if (Point.BeginCount) { if (BeginAddress) DisjointRanges[{BeginAddress, Address - 1}] = Count; Count += Point.BeginCount; BeginAddress = Address; } if (Point.EndCount) { assert(BeginAddress && "First boundary point cannot be 'end' point"); DisjointRanges[{BeginAddress, Address}] = Count; Count -= Point.EndCount; BeginAddress = Address + 1; } } } FunctionSamples & CSProfileGenerator::getFunctionProfileForContext(StringRef ContextStr) { auto Ret = ProfileMap.try_emplace(ContextStr, FunctionSamples()); if (Ret.second) { SampleContext FContext(Ret.first->first(), RawContext); FunctionSamples &FProfile = Ret.first->second; FProfile.setName(FContext.getName()); FProfile.setContext(FContext); } return Ret.first->second; } void CSProfileGenerator::updateBodySamplesforFunctionProfile( FunctionSamples &FunctionProfile, const FrameLocation &LeafLoc, uint64_t Count) { // Filter out invalid negative(int type) lineOffset if (LeafLoc.second.LineOffset & 0x80000000) return; // Use the maximum count of samples with same line location ErrorOr R = FunctionProfile.findSamplesAt( LeafLoc.second.LineOffset, LeafLoc.second.Discriminator); uint64_t PreviousCount = R ? R.get() : 0; if (PreviousCount < Count) { FunctionProfile.addBodySamples(LeafLoc.second.LineOffset, LeafLoc.second.Discriminator, Count - PreviousCount); FunctionProfile.addTotalSamples(Count - PreviousCount); } } void CSProfileGenerator::populateFunctionBodySamples() { for (const auto &BI : BinarySampleCounters) { ProfiledBinary *Binary = BI.first; for (const auto &CI : BI.second.RangeCounter) { StringRef ContextId(CI.first); // Get or create function profile for the range FunctionSamples &FunctionProfile = getFunctionProfileForContext(ContextId); // Compute disjoint ranges first, so we can use MAX // for calculating count for each location. RangeSample Ranges; findDisjointRanges(Ranges, CI.second); for (auto Range : Ranges) { uint64_t RangeBegin = Binary->offsetToVirtualAddr(Range.first.first); uint64_t RangeEnd = Binary->offsetToVirtualAddr(Range.first.second); uint64_t Count = Range.second; // Disjoint ranges have introduce zero-filled gap that // doesn't belong to current context, filter them out. if (Count == 0) continue; InstructionPointer IP(Binary, RangeBegin, true); // Disjoint ranges may have range in the middle of two instr, // e.g. If Instr1 at Addr1, and Instr2 at Addr2, disjoint range // can be Addr1+1 to Addr2-1. We should ignore such range. if (IP.Address > RangeEnd) continue; while (IP.Address <= RangeEnd) { uint64_t Offset = Binary->virtualAddrToOffset(IP.Address); const FrameLocation &LeafLoc = Binary->getInlineLeafFrameLoc(Offset); // Recording body sample for this specific context updateBodySamplesforFunctionProfile(FunctionProfile, LeafLoc, Count); // Move to next IP within the range IP.advance(); } } } } } void CSProfileGenerator::populateFunctionBoundarySamples() { for (const auto &BI : BinarySampleCounters) { ProfiledBinary *Binary = BI.first; for (const auto &CI : BI.second.BranchCounter) { StringRef ContextId(CI.first); // Get or create function profile for branch Source FunctionSamples &FunctionProfile = getFunctionProfileForContext(ContextId); for (auto Entry : CI.second) { uint64_t SourceOffset = Entry.first.first; uint64_t TargetOffset = Entry.first.second; uint64_t Count = Entry.second; // Get the callee name by branch target if it's a call branch StringRef CalleeName = FunctionSamples::getCanonicalFnName( Binary->getFuncFromStartOffset(TargetOffset)); if (CalleeName.size() == 0) continue; // Record called target sample and its count const FrameLocation &LeafLoc = Binary->getInlineLeafFrameLoc(SourceOffset); FunctionProfile.addCalledTargetSamples(LeafLoc.second.LineOffset, LeafLoc.second.Discriminator, CalleeName, Count); FunctionProfile.addTotalSamples(Count); // Record head sample for called target(callee) // TODO: Cleanup ' @ ' std::string CalleeContextId = getCallSite(LeafLoc) + " @ " + CalleeName.str(); if (ContextId.find(" @ ") != StringRef::npos) { CalleeContextId = ContextId.rsplit(" @ ").first.str() + " @ " + CalleeContextId; } if (ProfileMap.find(CalleeContextId) != ProfileMap.end()) { FunctionSamples &CalleeProfile = ProfileMap[CalleeContextId]; assert(Count != 0 && "Unexpected zero weight branch"); if (CalleeProfile.getName().size()) { CalleeProfile.addHeadSamples(Count); } } } } } } static FrameLocation getCallerContext(StringRef CalleeContext, StringRef &CallerNameWithContext) { StringRef CallerContext = CalleeContext.rsplit(" @ ").first; CallerNameWithContext = CallerContext.rsplit(':').first; auto ContextSplit = CallerContext.rsplit(" @ "); FrameLocation LeafFrameLoc = {"", {0, 0}}; StringRef Funcname; SampleContext::decodeContextString(ContextSplit.second, Funcname, LeafFrameLoc.second); LeafFrameLoc.first = Funcname.str(); return LeafFrameLoc; } void CSProfileGenerator::populateInferredFunctionSamples() { for (const auto &Item : ProfileMap) { const StringRef CalleeContext = Item.first(); const FunctionSamples &CalleeProfile = Item.second; // If we already have head sample counts, we must have value profile // for call sites added already. Skip to avoid double counting. if (CalleeProfile.getHeadSamples()) continue; // If we don't have context, nothing to do for caller's call site. // This could happen for entry point function. if (CalleeContext.find(" @ ") == StringRef::npos) continue; // Infer Caller's frame loc and context ID through string splitting StringRef CallerContextId; FrameLocation &&CallerLeafFrameLoc = getCallerContext(CalleeContext, CallerContextId); // It's possible that we haven't seen any sample directly in the caller, // in which case CallerProfile will not exist. But we can't modify // ProfileMap while iterating it. // TODO: created function profile for those callers too if (ProfileMap.find(CallerContextId) == ProfileMap.end()) continue; FunctionSamples &CallerProfile = ProfileMap[CallerContextId]; // Since we don't have call count for inlined functions, we // estimate it from inlinee's profile using entry body sample. uint64_t EstimatedCallCount = CalleeProfile.getEntrySamples(); // If we don't have samples with location, use 1 to indicate live. if (!EstimatedCallCount && !CalleeProfile.getBodySamples().size()) EstimatedCallCount = 1; CallerProfile.addCalledTargetSamples( CallerLeafFrameLoc.second.LineOffset, CallerLeafFrameLoc.second.Discriminator, CalleeProfile.getName(), EstimatedCallCount); updateBodySamplesforFunctionProfile(CallerProfile, CallerLeafFrameLoc, EstimatedCallCount); } } } // end namespace sampleprof } // end namespace llvm