//===- CodeEmitterGen.cpp - Code Emitter Generator ------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // CodeEmitterGen uses the descriptions of instructions and their fields to // construct an automated code emitter: a function that, given a MachineInstr, // returns the (currently, 32-bit unsigned) value of the instruction. // //===----------------------------------------------------------------------===// #include "CodeGenInstruction.h" #include "CodeGenTarget.h" #include "SubtargetFeatureInfo.h" #include "Types.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Casting.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" #include #include #include #include #include #include #include using namespace llvm; namespace { class CodeEmitterGen { RecordKeeper &Records; public: CodeEmitterGen(RecordKeeper &R) : Records(R) {} void run(raw_ostream &o); private: int getVariableBit(const std::string &VarName, BitsInit *BI, int bit); std::string getInstructionCase(Record *R, CodeGenTarget &Target); std::string getInstructionCaseForEncoding(Record *R, Record *EncodingDef, CodeGenTarget &Target); void AddCodeToMergeInOperand(Record *R, BitsInit *BI, const std::string &VarName, unsigned &NumberedOp, std::set &NamedOpIndices, std::string &Case, CodeGenTarget &Target); void emitInstructionBaseValues( raw_ostream &o, ArrayRef NumberedInstructions, CodeGenTarget &Target, int HwMode = -1); unsigned BitWidth; bool UseAPInt; }; // If the VarBitInit at position 'bit' matches the specified variable then // return the variable bit position. Otherwise return -1. int CodeEmitterGen::getVariableBit(const std::string &VarName, BitsInit *BI, int bit) { if (VarBitInit *VBI = dyn_cast(BI->getBit(bit))) { if (VarInit *VI = dyn_cast(VBI->getBitVar())) if (VI->getName() == VarName) return VBI->getBitNum(); } else if (VarInit *VI = dyn_cast(BI->getBit(bit))) { if (VI->getName() == VarName) return 0; } return -1; } void CodeEmitterGen:: AddCodeToMergeInOperand(Record *R, BitsInit *BI, const std::string &VarName, unsigned &NumberedOp, std::set &NamedOpIndices, std::string &Case, CodeGenTarget &Target) { CodeGenInstruction &CGI = Target.getInstruction(R); // Determine if VarName actually contributes to the Inst encoding. int bit = BI->getNumBits()-1; // Scan for a bit that this contributed to. for (; bit >= 0; ) { if (getVariableBit(VarName, BI, bit) != -1) break; --bit; } // If we found no bits, ignore this value, otherwise emit the call to get the // operand encoding. if (bit < 0) return; // If the operand matches by name, reference according to that // operand number. Non-matching operands are assumed to be in // order. unsigned OpIdx; if (CGI.Operands.hasOperandNamed(VarName, OpIdx)) { // Get the machine operand number for the indicated operand. OpIdx = CGI.Operands[OpIdx].MIOperandNo; assert(!CGI.Operands.isFlatOperandNotEmitted(OpIdx) && "Explicitly used operand also marked as not emitted!"); } else { unsigned NumberOps = CGI.Operands.size(); /// If this operand is not supposed to be emitted by the /// generated emitter, skip it. while (NumberedOp < NumberOps && (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) || (!NamedOpIndices.empty() && NamedOpIndices.count( CGI.Operands.getSubOperandNumber(NumberedOp).first)))) { ++NumberedOp; if (NumberedOp >= CGI.Operands.back().MIOperandNo + CGI.Operands.back().MINumOperands) { errs() << "Too few operands in record " << R->getName() << " (no match for variable " << VarName << "):\n"; errs() << *R; errs() << '\n'; return; } } OpIdx = NumberedOp++; } std::pair SO = CGI.Operands.getSubOperandNumber(OpIdx); std::string &EncoderMethodName = CGI.Operands[SO.first].EncoderMethodName; if (UseAPInt) Case += " op.clearAllBits();\n"; // If the source operand has a custom encoder, use it. This will // get the encoding for all of the suboperands. if (!EncoderMethodName.empty()) { // A custom encoder has all of the information for the // sub-operands, if there are more than one, so only // query the encoder once per source operand. if (SO.second == 0) { Case += " // op: " + VarName + "\n"; if (UseAPInt) { Case += " " + EncoderMethodName + "(MI, " + utostr(OpIdx); Case += ", op"; } else { Case += " op = " + EncoderMethodName + "(MI, " + utostr(OpIdx); } Case += ", Fixups, STI);\n"; } } else { Case += " // op: " + VarName + "\n"; if (UseAPInt) { Case += " getMachineOpValue(MI, MI.getOperand(" + utostr(OpIdx) + ")"; Case += ", op, Fixups, STI"; } else { Case += " op = getMachineOpValue(MI, MI.getOperand(" + utostr(OpIdx) + ")"; Case += ", Fixups, STI"; } Case += ");\n"; } // Precalculate the number of lits this variable contributes to in the // operand. If there is a single lit (consecutive range of bits) we can use a // destructive sequence on APInt that reduces memory allocations. int numOperandLits = 0; for (int tmpBit = bit; tmpBit >= 0;) { int varBit = getVariableBit(VarName, BI, tmpBit); // If this bit isn't from a variable, skip it. if (varBit == -1) { --tmpBit; continue; } // Figure out the consecutive range of bits covered by this operand, in // order to generate better encoding code. int beginVarBit = varBit; int N = 1; for (--tmpBit; tmpBit >= 0;) { varBit = getVariableBit(VarName, BI, tmpBit); if (varBit == -1 || varBit != (beginVarBit - N)) break; ++N; --tmpBit; } ++numOperandLits; } for (; bit >= 0; ) { int varBit = getVariableBit(VarName, BI, bit); // If this bit isn't from a variable, skip it. if (varBit == -1) { --bit; continue; } // Figure out the consecutive range of bits covered by this operand, in // order to generate better encoding code. int beginInstBit = bit; int beginVarBit = varBit; int N = 1; for (--bit; bit >= 0;) { varBit = getVariableBit(VarName, BI, bit); if (varBit == -1 || varBit != (beginVarBit - N)) break; ++N; --bit; } std::string maskStr; int opShift; unsigned loBit = beginVarBit - N + 1; unsigned hiBit = loBit + N; unsigned loInstBit = beginInstBit - N + 1; if (UseAPInt) { std::string extractStr; if (N >= 64) { extractStr = "op.extractBits(" + itostr(hiBit - loBit) + ", " + itostr(loBit) + ")"; Case += " Value.insertBits(" + extractStr + ", " + itostr(loInstBit) + ");\n"; } else { extractStr = "op.extractBitsAsZExtValue(" + itostr(hiBit - loBit) + ", " + itostr(loBit) + ")"; Case += " Value.insertBits(" + extractStr + ", " + itostr(loInstBit) + ", " + itostr(hiBit - loBit) + ");\n"; } } else { uint64_t opMask = ~(uint64_t)0 >> (64 - N); opShift = beginVarBit - N + 1; opMask <<= opShift; maskStr = "UINT64_C(" + utostr(opMask) + ")"; opShift = beginInstBit - beginVarBit; if (numOperandLits == 1) { Case += " op &= " + maskStr + ";\n"; if (opShift > 0) { Case += " op <<= " + itostr(opShift) + ";\n"; } else if (opShift < 0) { Case += " op >>= " + itostr(-opShift) + ";\n"; } Case += " Value |= op;\n"; } else { if (opShift > 0) { Case += " Value |= (op & " + maskStr + ") << " + itostr(opShift) + ";\n"; } else if (opShift < 0) { Case += " Value |= (op & " + maskStr + ") >> " + itostr(-opShift) + ";\n"; } else { Case += " Value |= (op & " + maskStr + ");\n"; } } } } } std::string CodeEmitterGen::getInstructionCase(Record *R, CodeGenTarget &Target) { std::string Case; if (const RecordVal *RV = R->getValue("EncodingInfos")) { if (auto *DI = dyn_cast_or_null(RV->getValue())) { const CodeGenHwModes &HWM = Target.getHwModes(); EncodingInfoByHwMode EBM(DI->getDef(), HWM); Case += " switch (HwMode) {\n"; Case += " default: llvm_unreachable(\"Unhandled HwMode\");\n"; for (auto &KV : EBM.Map) { Case += " case " + itostr(KV.first) + ": {\n"; Case += getInstructionCaseForEncoding(R, KV.second, Target); Case += " break;\n"; Case += " }\n"; } Case += " }\n"; return Case; } } return getInstructionCaseForEncoding(R, R, Target); } std::string CodeEmitterGen::getInstructionCaseForEncoding(Record *R, Record *EncodingDef, CodeGenTarget &Target) { std::string Case; BitsInit *BI = EncodingDef->getValueAsBitsInit("Inst"); unsigned NumberedOp = 0; std::set NamedOpIndices; // Collect the set of operand indices that might correspond to named // operand, and skip these when assigning operands based on position. if (Target.getInstructionSet()-> getValueAsBit("noNamedPositionallyEncodedOperands")) { CodeGenInstruction &CGI = Target.getInstruction(R); for (const RecordVal &RV : R->getValues()) { unsigned OpIdx; if (!CGI.Operands.hasOperandNamed(RV.getName(), OpIdx)) continue; NamedOpIndices.insert(OpIdx); } } // Loop over all of the fields in the instruction, determining which are the // operands to the instruction. for (const RecordVal &RV : EncodingDef->getValues()) { // Ignore fixed fields in the record, we're looking for values like: // bits<5> RST = { ?, ?, ?, ?, ? }; if (RV.getPrefix() || RV.getValue()->isComplete()) continue; AddCodeToMergeInOperand(R, BI, std::string(RV.getName()), NumberedOp, NamedOpIndices, Case, Target); } StringRef PostEmitter = R->getValueAsString("PostEncoderMethod"); if (!PostEmitter.empty()) { Case += " Value = "; Case += PostEmitter; Case += "(MI, Value"; Case += ", STI"; Case += ");\n"; } return Case; } static std::string getNameForFeatureBitset(const std::vector &FeatureBitset) { std::string Name = "CEFBS"; for (const auto &Feature : FeatureBitset) Name += ("_" + Feature->getName()).str(); return Name; } static void emitInstBits(raw_ostream &OS, const APInt &Bits) { for (unsigned I = 0; I < Bits.getNumWords(); ++I) OS << ((I > 0) ? ", " : "") << "UINT64_C(" << utostr(Bits.getRawData()[I]) << ")"; } void CodeEmitterGen::emitInstructionBaseValues( raw_ostream &o, ArrayRef NumberedInstructions, CodeGenTarget &Target, int HwMode) { const CodeGenHwModes &HWM = Target.getHwModes(); if (HwMode == -1) o << " static const uint64_t InstBits[] = {\n"; else o << " static const uint64_t InstBits_" << HWM.getMode(HwMode).Name << "[] = {\n"; for (const CodeGenInstruction *CGI : NumberedInstructions) { Record *R = CGI->TheDef; if (R->getValueAsString("Namespace") == "TargetOpcode" || R->getValueAsBit("isPseudo")) { o << " "; emitInstBits(o, APInt(BitWidth, 0)); o << ",\n"; continue; } Record *EncodingDef = R; if (const RecordVal *RV = R->getValue("EncodingInfos")) { if (auto *DI = dyn_cast_or_null(RV->getValue())) { EncodingInfoByHwMode EBM(DI->getDef(), HWM); if (EBM.hasMode(HwMode)) EncodingDef = EBM.get(HwMode); } } BitsInit *BI = EncodingDef->getValueAsBitsInit("Inst"); // Start by filling in fixed values. APInt Value(BitWidth, 0); for (unsigned i = 0, e = BI->getNumBits(); i != e; ++i) { if (BitInit *B = dyn_cast(BI->getBit(e - i - 1))) Value |= APInt(BitWidth, (uint64_t)B->getValue()) << (e - i - 1); } o << " "; emitInstBits(o, Value); o << "," << '\t' << "// " << R->getName() << "\n"; } o << " UINT64_C(0)\n };\n"; } void CodeEmitterGen::run(raw_ostream &o) { CodeGenTarget Target(Records); std::vector Insts = Records.getAllDerivedDefinitions("Instruction"); // For little-endian instruction bit encodings, reverse the bit order Target.reverseBitsForLittleEndianEncoding(); ArrayRef NumberedInstructions = Target.getInstructionsByEnumValue(); const CodeGenHwModes &HWM = Target.getHwModes(); // The set of HwModes used by instruction encodings. std::set HwModes; BitWidth = 0; for (const CodeGenInstruction *CGI : NumberedInstructions) { Record *R = CGI->TheDef; if (R->getValueAsString("Namespace") == "TargetOpcode" || R->getValueAsBit("isPseudo")) continue; if (const RecordVal *RV = R->getValue("EncodingInfos")) { if (DefInit *DI = dyn_cast_or_null(RV->getValue())) { EncodingInfoByHwMode EBM(DI->getDef(), HWM); for (auto &KV : EBM.Map) { BitsInit *BI = KV.second->getValueAsBitsInit("Inst"); BitWidth = std::max(BitWidth, BI->getNumBits()); HwModes.insert(KV.first); } continue; } } BitsInit *BI = R->getValueAsBitsInit("Inst"); BitWidth = std::max(BitWidth, BI->getNumBits()); } UseAPInt = BitWidth > 64; // Emit function declaration if (UseAPInt) { o << "void " << Target.getName() << "MCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,\n" << " SmallVectorImpl &Fixups,\n" << " APInt &Inst,\n" << " APInt &Scratch,\n" << " const MCSubtargetInfo &STI) const {\n"; } else { o << "uint64_t " << Target.getName(); o << "MCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,\n" << " SmallVectorImpl &Fixups,\n" << " const MCSubtargetInfo &STI) const {\n"; } // Emit instruction base values if (HwModes.empty()) { emitInstructionBaseValues(o, NumberedInstructions, Target, -1); } else { for (unsigned HwMode : HwModes) emitInstructionBaseValues(o, NumberedInstructions, Target, (int)HwMode); } if (!HwModes.empty()) { o << " const uint64_t *InstBits;\n"; o << " unsigned HwMode = STI.getHwMode();\n"; o << " switch (HwMode) {\n"; o << " default: llvm_unreachable(\"Unknown hardware mode!\"); break;\n"; for (unsigned I : HwModes) { o << " case " << I << ": InstBits = InstBits_" << HWM.getMode(I).Name << "; break;\n"; } o << " };\n"; } // Map to accumulate all the cases. std::map> CaseMap; // Construct all cases statement for each opcode for (std::vector::iterator IC = Insts.begin(), EC = Insts.end(); IC != EC; ++IC) { Record *R = *IC; if (R->getValueAsString("Namespace") == "TargetOpcode" || R->getValueAsBit("isPseudo")) continue; std::string InstName = (R->getValueAsString("Namespace") + "::" + R->getName()).str(); std::string Case = getInstructionCase(R, Target); CaseMap[Case].push_back(std::move(InstName)); } // Emit initial function code if (UseAPInt) { int NumWords = APInt::getNumWords(BitWidth); int NumBytes = (BitWidth + 7) / 8; o << " const unsigned opcode = MI.getOpcode();\n" << " if (Inst.getBitWidth() != " << BitWidth << ")\n" << " Inst = Inst.zext(" << BitWidth << ");\n" << " if (Scratch.getBitWidth() != " << BitWidth << ")\n" << " Scratch = Scratch.zext(" << BitWidth << ");\n" << " LoadIntFromMemory(Inst, (uint8_t *)&InstBits[opcode * " << NumWords << "], " << NumBytes << ");\n" << " APInt &Value = Inst;\n" << " APInt &op = Scratch;\n" << " switch (opcode) {\n"; } else { o << " const unsigned opcode = MI.getOpcode();\n" << " uint64_t Value = InstBits[opcode];\n" << " uint64_t op = 0;\n" << " (void)op; // suppress warning\n" << " switch (opcode) {\n"; } // Emit each case statement std::map>::iterator IE, EE; for (IE = CaseMap.begin(), EE = CaseMap.end(); IE != EE; ++IE) { const std::string &Case = IE->first; std::vector &InstList = IE->second; for (int i = 0, N = InstList.size(); i < N; i++) { if (i) o << "\n"; o << " case " << InstList[i] << ":"; } o << " {\n"; o << Case; o << " break;\n" << " }\n"; } // Default case: unhandled opcode o << " default:\n" << " std::string msg;\n" << " raw_string_ostream Msg(msg);\n" << " Msg << \"Not supported instr: \" << MI;\n" << " report_fatal_error(Msg.str());\n" << " }\n"; if (UseAPInt) o << " Inst = Value;\n"; else o << " return Value;\n"; o << "}\n\n"; const auto &All = SubtargetFeatureInfo::getAll(Records); std::map SubtargetFeatures; SubtargetFeatures.insert(All.begin(), All.end()); o << "#ifdef ENABLE_INSTR_PREDICATE_VERIFIER\n" << "#undef ENABLE_INSTR_PREDICATE_VERIFIER\n" << "#include \n\n"; // Emit the subtarget feature enumeration. SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures, o); // Emit the name table for error messages. o << "#ifndef NDEBUG\n"; SubtargetFeatureInfo::emitNameTable(SubtargetFeatures, o); o << "#endif // NDEBUG\n"; // Emit the available features compute function. SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures( Target.getName(), "MCCodeEmitter", "computeAvailableFeatures", SubtargetFeatures, o); std::vector> FeatureBitsets; for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { FeatureBitsets.emplace_back(); for (Record *Predicate : Inst->TheDef->getValueAsListOfDefs("Predicates")) { const auto &I = SubtargetFeatures.find(Predicate); if (I != SubtargetFeatures.end()) FeatureBitsets.back().push_back(I->second.TheDef); } } llvm::sort(FeatureBitsets, [&](const std::vector &A, const std::vector &B) { if (A.size() < B.size()) return true; if (A.size() > B.size()) return false; for (auto Pair : zip(A, B)) { if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName()) return true; if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName()) return false; } return false; }); FeatureBitsets.erase( std::unique(FeatureBitsets.begin(), FeatureBitsets.end()), FeatureBitsets.end()); o << "#ifndef NDEBUG\n" << "// Feature bitsets.\n" << "enum : " << getMinimalTypeForRange(FeatureBitsets.size()) << " {\n" << " CEFBS_None,\n"; for (const auto &FeatureBitset : FeatureBitsets) { if (FeatureBitset.empty()) continue; o << " " << getNameForFeatureBitset(FeatureBitset) << ",\n"; } o << "};\n\n" << "static constexpr FeatureBitset FeatureBitsets[] = {\n" << " {}, // CEFBS_None\n"; for (const auto &FeatureBitset : FeatureBitsets) { if (FeatureBitset.empty()) continue; o << " {"; for (const auto &Feature : FeatureBitset) { const auto &I = SubtargetFeatures.find(Feature); assert(I != SubtargetFeatures.end() && "Didn't import predicate?"); o << I->second.getEnumBitName() << ", "; } o << "},\n"; } o << "};\n" << "#endif // NDEBUG\n\n"; // Emit the predicate verifier. o << "void " << Target.getName() << "MCCodeEmitter::verifyInstructionPredicates(\n" << " const MCInst &Inst, const FeatureBitset &AvailableFeatures) const {\n" << "#ifndef NDEBUG\n" << " static " << getMinimalTypeForRange(FeatureBitsets.size()) << " RequiredFeaturesRefs[] = {\n"; unsigned InstIdx = 0; for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { o << " CEFBS"; unsigned NumPredicates = 0; for (Record *Predicate : Inst->TheDef->getValueAsListOfDefs("Predicates")) { const auto &I = SubtargetFeatures.find(Predicate); if (I != SubtargetFeatures.end()) { o << '_' << I->second.TheDef->getName(); NumPredicates++; } } if (!NumPredicates) o << "_None"; o << ", // " << Inst->TheDef->getName() << " = " << InstIdx << "\n"; InstIdx++; } o << " };\n\n"; o << " assert(Inst.getOpcode() < " << InstIdx << ");\n"; o << " const FeatureBitset &RequiredFeatures = " "FeatureBitsets[RequiredFeaturesRefs[Inst.getOpcode()]];\n"; o << " FeatureBitset MissingFeatures =\n" << " (AvailableFeatures & RequiredFeatures) ^\n" << " RequiredFeatures;\n" << " if (MissingFeatures.any()) {\n" << " std::ostringstream Msg;\n" << " Msg << \"Attempting to emit \" << " "MCII.getName(Inst.getOpcode()).str()\n" << " << \" instruction but the \";\n" << " for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i)\n" << " if (MissingFeatures.test(i))\n" << " Msg << SubtargetFeatureNames[i] << \" \";\n" << " Msg << \"predicate(s) are not met\";\n" << " report_fatal_error(Msg.str());\n" << " }\n" << "#else\n" << " // Silence unused variable warning on targets that don't use MCII for " "other purposes (e.g. BPF).\n" << " (void)MCII;\n" << "#endif // NDEBUG\n"; o << "}\n"; o << "#endif\n"; } } // end anonymous namespace namespace llvm { void EmitCodeEmitter(RecordKeeper &RK, raw_ostream &OS) { emitSourceFileHeader("Machine Code Emitter", OS); CodeEmitterGen(RK).run(OS); } } // end namespace llvm