//===- Builders.cpp - Helpers for constructing MLIR Classes ---------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/IR/Builders.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/BlockAndValueMapping.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Dialect.h" #include "mlir/IR/IntegerSet.h" #include "mlir/IR/Matchers.h" #include "mlir/IR/SymbolTable.h" #include "llvm/Support/raw_ostream.h" using namespace mlir; Identifier Builder::getIdentifier(StringRef str) { return Identifier::get(str, context); } //===----------------------------------------------------------------------===// // Locations. //===----------------------------------------------------------------------===// Location Builder::getUnknownLoc() { return UnknownLoc::get(context); } Location Builder::getFileLineColLoc(Identifier filename, unsigned line, unsigned column) { return FileLineColLoc::get(filename, line, column, context); } Location Builder::getFusedLoc(ArrayRef locs, Attribute metadata) { return FusedLoc::get(locs, metadata, context); } //===----------------------------------------------------------------------===// // Types. //===----------------------------------------------------------------------===// FloatType Builder::getBF16Type() { return FloatType::getBF16(context); } FloatType Builder::getF16Type() { return FloatType::getF16(context); } FloatType Builder::getF32Type() { return FloatType::getF32(context); } FloatType Builder::getF64Type() { return FloatType::getF64(context); } IndexType Builder::getIndexType() { return IndexType::get(context); } IntegerType Builder::getI1Type() { return IntegerType::get(1, context); } IntegerType Builder::getI32Type() { return IntegerType::get(32, context); } IntegerType Builder::getI64Type() { return IntegerType::get(64, context); } IntegerType Builder::getIntegerType(unsigned width) { return IntegerType::get(width, context); } IntegerType Builder::getIntegerType(unsigned width, bool isSigned) { return IntegerType::get( width, isSigned ? IntegerType::Signed : IntegerType::Unsigned, context); } FunctionType Builder::getFunctionType(TypeRange inputs, TypeRange results) { return FunctionType::get(inputs, results, context); } TupleType Builder::getTupleType(TypeRange elementTypes) { return TupleType::get(elementTypes, context); } NoneType Builder::getNoneType() { return NoneType::get(context); } //===----------------------------------------------------------------------===// // Attributes. //===----------------------------------------------------------------------===// NamedAttribute Builder::getNamedAttr(StringRef name, Attribute val) { return NamedAttribute(getIdentifier(name), val); } UnitAttr Builder::getUnitAttr() { return UnitAttr::get(context); } BoolAttr Builder::getBoolAttr(bool value) { return BoolAttr::get(value, context); } DictionaryAttr Builder::getDictionaryAttr(ArrayRef value) { return DictionaryAttr::get(value, context); } IntegerAttr Builder::getIndexAttr(int64_t value) { return IntegerAttr::get(getIndexType(), APInt(64, value)); } IntegerAttr Builder::getI64IntegerAttr(int64_t value) { return IntegerAttr::get(getIntegerType(64), APInt(64, value)); } DenseIntElementsAttr Builder::getBoolVectorAttr(ArrayRef values) { return DenseIntElementsAttr::get( VectorType::get(static_cast(values.size()), getI1Type()), values); } DenseIntElementsAttr Builder::getI32VectorAttr(ArrayRef values) { return DenseIntElementsAttr::get( VectorType::get(static_cast(values.size()), getIntegerType(32)), values); } DenseIntElementsAttr Builder::getI64VectorAttr(ArrayRef values) { return DenseIntElementsAttr::get( VectorType::get(static_cast(values.size()), getIntegerType(64)), values); } DenseIntElementsAttr Builder::getI32TensorAttr(ArrayRef values) { return DenseIntElementsAttr::get( RankedTensorType::get(static_cast(values.size()), getIntegerType(32)), values); } DenseIntElementsAttr Builder::getI64TensorAttr(ArrayRef values) { return DenseIntElementsAttr::get( RankedTensorType::get(static_cast(values.size()), getIntegerType(64)), values); } DenseIntElementsAttr Builder::getIndexTensorAttr(ArrayRef values) { return DenseIntElementsAttr::get( RankedTensorType::get(static_cast(values.size()), getIndexType()), values); } IntegerAttr Builder::getI32IntegerAttr(int32_t value) { return IntegerAttr::get(getIntegerType(32), APInt(32, value)); } IntegerAttr Builder::getSI32IntegerAttr(int32_t value) { return IntegerAttr::get(getIntegerType(32, /*isSigned=*/true), APInt(32, value, /*isSigned=*/true)); } IntegerAttr Builder::getUI32IntegerAttr(uint32_t value) { return IntegerAttr::get(getIntegerType(32, /*isSigned=*/false), APInt(32, (uint64_t)value, /*isSigned=*/false)); } IntegerAttr Builder::getI16IntegerAttr(int16_t value) { return IntegerAttr::get(getIntegerType(16), APInt(16, value)); } IntegerAttr Builder::getI8IntegerAttr(int8_t value) { return IntegerAttr::get(getIntegerType(8), APInt(8, value)); } IntegerAttr Builder::getIntegerAttr(Type type, int64_t value) { if (type.isIndex()) return IntegerAttr::get(type, APInt(64, value)); return IntegerAttr::get( type, APInt(type.getIntOrFloatBitWidth(), value, type.isSignedInteger())); } IntegerAttr Builder::getIntegerAttr(Type type, const APInt &value) { return IntegerAttr::get(type, value); } FloatAttr Builder::getF64FloatAttr(double value) { return FloatAttr::get(getF64Type(), APFloat(value)); } FloatAttr Builder::getF32FloatAttr(float value) { return FloatAttr::get(getF32Type(), APFloat(value)); } FloatAttr Builder::getF16FloatAttr(float value) { return FloatAttr::get(getF16Type(), value); } FloatAttr Builder::getFloatAttr(Type type, double value) { return FloatAttr::get(type, value); } FloatAttr Builder::getFloatAttr(Type type, const APFloat &value) { return FloatAttr::get(type, value); } StringAttr Builder::getStringAttr(StringRef bytes) { return StringAttr::get(bytes, context); } ArrayAttr Builder::getArrayAttr(ArrayRef value) { return ArrayAttr::get(value, context); } FlatSymbolRefAttr Builder::getSymbolRefAttr(Operation *value) { auto symName = value->getAttrOfType(SymbolTable::getSymbolAttrName()); assert(symName && "value does not have a valid symbol name"); return getSymbolRefAttr(symName.getValue()); } FlatSymbolRefAttr Builder::getSymbolRefAttr(StringRef value) { return SymbolRefAttr::get(value, getContext()); } SymbolRefAttr Builder::getSymbolRefAttr(StringRef value, ArrayRef nestedReferences) { return SymbolRefAttr::get(value, nestedReferences, getContext()); } ArrayAttr Builder::getBoolArrayAttr(ArrayRef values) { auto attrs = llvm::to_vector<8>(llvm::map_range( values, [this](bool v) -> Attribute { return getBoolAttr(v); })); return getArrayAttr(attrs); } ArrayAttr Builder::getI32ArrayAttr(ArrayRef values) { auto attrs = llvm::to_vector<8>(llvm::map_range( values, [this](int32_t v) -> Attribute { return getI32IntegerAttr(v); })); return getArrayAttr(attrs); } ArrayAttr Builder::getI64ArrayAttr(ArrayRef values) { auto attrs = llvm::to_vector<8>(llvm::map_range( values, [this](int64_t v) -> Attribute { return getI64IntegerAttr(v); })); return getArrayAttr(attrs); } ArrayAttr Builder::getIndexArrayAttr(ArrayRef values) { auto attrs = llvm::to_vector<8>( llvm::map_range(values, [this](int64_t v) -> Attribute { return getIntegerAttr(IndexType::get(getContext()), v); })); return getArrayAttr(attrs); } ArrayAttr Builder::getF32ArrayAttr(ArrayRef values) { auto attrs = llvm::to_vector<8>(llvm::map_range( values, [this](float v) -> Attribute { return getF32FloatAttr(v); })); return getArrayAttr(attrs); } ArrayAttr Builder::getF64ArrayAttr(ArrayRef values) { auto attrs = llvm::to_vector<8>(llvm::map_range( values, [this](double v) -> Attribute { return getF64FloatAttr(v); })); return getArrayAttr(attrs); } ArrayAttr Builder::getStrArrayAttr(ArrayRef values) { auto attrs = llvm::to_vector<8>(llvm::map_range( values, [this](StringRef v) -> Attribute { return getStringAttr(v); })); return getArrayAttr(attrs); } ArrayAttr Builder::getTypeArrayAttr(TypeRange values) { auto attrs = llvm::to_vector<8>(llvm::map_range( values, [](Type v) -> Attribute { return TypeAttr::get(v); })); return getArrayAttr(attrs); } ArrayAttr Builder::getAffineMapArrayAttr(ArrayRef values) { auto attrs = llvm::to_vector<8>(llvm::map_range( values, [](AffineMap v) -> Attribute { return AffineMapAttr::get(v); })); return getArrayAttr(attrs); } Attribute Builder::getZeroAttr(Type type) { if (type.isa()) return getFloatAttr(type, 0.0); if (type.isa()) return getIndexAttr(0); if (auto integerType = type.dyn_cast()) return getIntegerAttr(type, APInt(type.cast().getWidth(), 0)); if (type.isa()) { auto vtType = type.cast(); auto element = getZeroAttr(vtType.getElementType()); if (!element) return {}; return DenseElementsAttr::get(vtType, element); } return {}; } //===----------------------------------------------------------------------===// // Affine Expressions, Affine Maps, and Integer Sets. //===----------------------------------------------------------------------===// AffineExpr Builder::getAffineDimExpr(unsigned position) { return mlir::getAffineDimExpr(position, context); } AffineExpr Builder::getAffineSymbolExpr(unsigned position) { return mlir::getAffineSymbolExpr(position, context); } AffineExpr Builder::getAffineConstantExpr(int64_t constant) { return mlir::getAffineConstantExpr(constant, context); } AffineMap Builder::getEmptyAffineMap() { return AffineMap::get(context); } AffineMap Builder::getConstantAffineMap(int64_t val) { return AffineMap::get(/*dimCount=*/0, /*symbolCount=*/0, getAffineConstantExpr(val)); } AffineMap Builder::getDimIdentityMap() { return AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0, getAffineDimExpr(0)); } AffineMap Builder::getMultiDimIdentityMap(unsigned rank) { SmallVector dimExprs; dimExprs.reserve(rank); for (unsigned i = 0; i < rank; ++i) dimExprs.push_back(getAffineDimExpr(i)); return AffineMap::get(/*dimCount=*/rank, /*symbolCount=*/0, dimExprs, context); } AffineMap Builder::getSymbolIdentityMap() { return AffineMap::get(/*dimCount=*/0, /*symbolCount=*/1, getAffineSymbolExpr(0)); } AffineMap Builder::getSingleDimShiftAffineMap(int64_t shift) { // expr = d0 + shift. auto expr = getAffineDimExpr(0) + shift; return AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0, expr); } AffineMap Builder::getShiftedAffineMap(AffineMap map, int64_t shift) { SmallVector shiftedResults; shiftedResults.reserve(map.getNumResults()); for (auto resultExpr : map.getResults()) shiftedResults.push_back(resultExpr + shift); return AffineMap::get(map.getNumDims(), map.getNumSymbols(), shiftedResults, context); } //===----------------------------------------------------------------------===// // OpBuilder //===----------------------------------------------------------------------===// OpBuilder::Listener::~Listener() {} /// Insert the given operation at the current insertion point and return it. Operation *OpBuilder::insert(Operation *op) { if (block) block->getOperations().insert(insertPoint, op); if (listener) listener->notifyOperationInserted(op); return op; } /// Add new block with 'argTypes' arguments and set the insertion point to the /// end of it. The block is inserted at the provided insertion point of /// 'parent'. Block *OpBuilder::createBlock(Region *parent, Region::iterator insertPt, TypeRange argTypes) { assert(parent && "expected valid parent region"); if (insertPt == Region::iterator()) insertPt = parent->end(); Block *b = new Block(); b->addArguments(argTypes); parent->getBlocks().insert(insertPt, b); setInsertionPointToEnd(b); if (listener) listener->notifyBlockCreated(b); return b; } /// Add new block with 'argTypes' arguments and set the insertion point to the /// end of it. The block is placed before 'insertBefore'. Block *OpBuilder::createBlock(Block *insertBefore, TypeRange argTypes) { assert(insertBefore && "expected valid insertion block"); return createBlock(insertBefore->getParent(), Region::iterator(insertBefore), argTypes); } /// Create an operation given the fields represented as an OperationState. Operation *OpBuilder::createOperation(const OperationState &state) { return insert(Operation::create(state)); } /// Attempts to fold the given operation and places new results within /// 'results'. Returns success if the operation was folded, failure otherwise. /// Note: This function does not erase the operation on a successful fold. LogicalResult OpBuilder::tryFold(Operation *op, SmallVectorImpl &results) { results.reserve(op->getNumResults()); auto cleanupFailure = [&] { results.assign(op->result_begin(), op->result_end()); return failure(); }; // If this operation is already a constant, there is nothing to do. if (matchPattern(op, m_Constant())) return cleanupFailure(); // Check to see if any operands to the operation is constant and whether // the operation knows how to constant fold itself. SmallVector constOperands(op->getNumOperands()); for (unsigned i = 0, e = op->getNumOperands(); i != e; ++i) matchPattern(op->getOperand(i), m_Constant(&constOperands[i])); // Try to fold the operation. SmallVector foldResults; if (failed(op->fold(constOperands, foldResults)) || foldResults.empty()) return cleanupFailure(); // A temporary builder used for creating constants during folding. OpBuilder cstBuilder(context); SmallVector generatedConstants; // Populate the results with the folded results. Dialect *dialect = op->getDialect(); for (auto &it : llvm::enumerate(foldResults)) { // Normal values get pushed back directly. if (auto value = it.value().dyn_cast()) { results.push_back(value); continue; } // Otherwise, try to materialize a constant operation. if (!dialect) return cleanupFailure(); // Ask the dialect to materialize a constant operation for this value. Attribute attr = it.value().get(); auto *constOp = dialect->materializeConstant( cstBuilder, attr, op->getResult(it.index()).getType(), op->getLoc()); if (!constOp) { // Erase any generated constants. for (Operation *cst : generatedConstants) cst->erase(); return cleanupFailure(); } assert(matchPattern(constOp, m_Constant())); generatedConstants.push_back(constOp); results.push_back(constOp->getResult(0)); } // If we were successful, insert any generated constants. for (Operation *cst : generatedConstants) insert(cst); return success(); } Operation *OpBuilder::clone(Operation &op, BlockAndValueMapping &mapper) { Operation *newOp = op.clone(mapper); // The `insert` call below handles the notification for inserting `newOp` // itself. But if `newOp` has any regions, we need to notify the listener // about any ops that got inserted inside those regions as part of cloning. if (listener) { auto walkFn = [&](Operation *walkedOp) { listener->notifyOperationInserted(walkedOp); }; for (Region ®ion : newOp->getRegions()) region.walk(walkFn); } return insert(newOp); } Operation *OpBuilder::clone(Operation &op) { BlockAndValueMapping mapper; return clone(op, mapper); }