//===- SimplexTest.cpp - Tests for Simplex --------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/Analysis/Presburger/Simplex.h" #include #include namespace mlir { /// Take a snapshot, add constraints making the set empty, and rollback. /// The set should not be empty after rolling back. TEST(SimplexTest, emptyRollback) { Simplex simplex(2); // (u - v) >= 0 simplex.addInequality({1, -1, 0}); EXPECT_FALSE(simplex.isEmpty()); unsigned snapshot = simplex.getSnapshot(); // (u - v) <= -1 simplex.addInequality({-1, 1, -1}); EXPECT_TRUE(simplex.isEmpty()); simplex.rollback(snapshot); EXPECT_FALSE(simplex.isEmpty()); } /// Check that the set gets marked as empty when we add contradictory /// constraints. TEST(SimplexTest, addEquality_separate) { Simplex simplex(1); simplex.addInequality({1, -1}); // x >= 1. ASSERT_FALSE(simplex.isEmpty()); simplex.addEquality({1, 0}); // x == 0. EXPECT_TRUE(simplex.isEmpty()); } void expectInequalityMakesSetEmpty(Simplex &simplex, ArrayRef coeffs, bool expect) { ASSERT_FALSE(simplex.isEmpty()); unsigned snapshot = simplex.getSnapshot(); simplex.addInequality(coeffs); EXPECT_EQ(simplex.isEmpty(), expect); simplex.rollback(snapshot); } TEST(SimplexTest, addInequality_rollback) { Simplex simplex(3); SmallVector coeffs[]{{1, 0, 0, 0}, // u >= 0. {-1, 0, 0, 0}, // u <= 0. {1, -1, 1, 0}, // u - v + w >= 0. {1, 1, -1, 0}}; // u + v - w >= 0. // The above constraints force u = 0 and v = w. // The constraints below violate v = w. SmallVector checkCoeffs[]{{0, 1, -1, -1}, // v - w >= 1. {0, -1, 1, -1}}; // v - w <= -1. for (int run = 0; run < 4; run++) { unsigned snapshot = simplex.getSnapshot(); expectInequalityMakesSetEmpty(simplex, checkCoeffs[0], false); expectInequalityMakesSetEmpty(simplex, checkCoeffs[1], false); for (int i = 0; i < 4; i++) simplex.addInequality(coeffs[(run + i) % 4]); expectInequalityMakesSetEmpty(simplex, checkCoeffs[0], true); expectInequalityMakesSetEmpty(simplex, checkCoeffs[1], true); simplex.rollback(snapshot); EXPECT_EQ(simplex.numConstraints(), 0u); expectInequalityMakesSetEmpty(simplex, checkCoeffs[0], false); expectInequalityMakesSetEmpty(simplex, checkCoeffs[1], false); } } Simplex simplexFromConstraints(unsigned nDim, SmallVector, 8> ineqs, SmallVector, 8> eqs) { Simplex simplex(nDim); for (const auto &ineq : ineqs) simplex.addInequality(ineq); for (const auto &eq : eqs) simplex.addEquality(eq); return simplex; } TEST(SimplexTest, isUnbounded) { EXPECT_FALSE(simplexFromConstraints( 2, {{1, 1, 0}, {-1, -1, 0}, {1, -1, 5}, {-1, 1, -5}}, {}) .isUnbounded()); EXPECT_TRUE( simplexFromConstraints(2, {{1, 1, 0}, {1, -1, 5}, {-1, 1, -5}}, {}) .isUnbounded()); EXPECT_TRUE( simplexFromConstraints(2, {{-1, -1, 0}, {1, -1, 5}, {-1, 1, -5}}, {}) .isUnbounded()); EXPECT_TRUE(simplexFromConstraints(2, {}, {}).isUnbounded()); EXPECT_FALSE(simplexFromConstraints(3, { {2, 0, 0, -1}, {-2, 0, 0, 1}, {0, 2, 0, -1}, {0, -2, 0, 1}, {0, 0, 2, -1}, {0, 0, -2, 1}, }, {}) .isUnbounded()); EXPECT_TRUE(simplexFromConstraints(3, { {2, 0, 0, -1}, {-2, 0, 0, 1}, {0, 2, 0, -1}, {0, -2, 0, 1}, {0, 0, -2, 1}, }, {}) .isUnbounded()); EXPECT_TRUE(simplexFromConstraints(3, { {2, 0, 0, -1}, {-2, 0, 0, 1}, {0, 2, 0, -1}, {0, -2, 0, 1}, {0, 0, 2, -1}, }, {}) .isUnbounded()); // Bounded set with equalities. EXPECT_FALSE(simplexFromConstraints(2, {{1, 1, 1}, // x + y >= -1. {-1, -1, 1}}, // x + y <= 1. {{1, -1, 0}} // x = y. ) .isUnbounded()); // Unbounded set with equalities. EXPECT_TRUE(simplexFromConstraints(3, {{1, 1, 1, 1}, // x + y + z >= -1. {-1, -1, -1, 1}}, // x + y + z <= 1. {{1, -1, -1, 0}} // x = y + z. ) .isUnbounded()); // Rational empty set. EXPECT_FALSE(simplexFromConstraints(3, { {2, 0, 0, -1}, {-2, 0, 0, 1}, {0, 2, 2, -1}, {0, -2, -2, 1}, {3, 3, 3, -4}, }, {}) .isUnbounded()); } TEST(SimplexTest, getSamplePointIfIntegral) { // Empty set. EXPECT_FALSE(simplexFromConstraints(3, { {2, 0, 0, -1}, {-2, 0, 0, 1}, {0, 2, 2, -1}, {0, -2, -2, 1}, {3, 3, 3, -4}, }, {}) .getSamplePointIfIntegral() .hasValue()); auto maybeSample = simplexFromConstraints(2, {// x = y - 2. {1, -1, 2}, {-1, 1, -2}, // x + y = 2. {1, 1, -2}, {-1, -1, 2}}, {}) .getSamplePointIfIntegral(); EXPECT_TRUE(maybeSample.hasValue()); EXPECT_THAT(*maybeSample, testing::ElementsAre(0, 2)); auto maybeSample2 = simplexFromConstraints(2, { {1, 0, 0}, // x >= 0. {-1, 0, 0}, // x <= 0. }, { {0, 1, -2} // y = 2. }) .getSamplePointIfIntegral(); EXPECT_TRUE(maybeSample2.hasValue()); EXPECT_THAT(*maybeSample2, testing::ElementsAre(0, 2)); EXPECT_FALSE(simplexFromConstraints(1, {// 2x = 1. (no integer solutions) {2, -1}, {-2, +1}}, {}) .getSamplePointIfIntegral() .hasValue()); } /// Some basic sanity checks involving zero or one variables. TEST(SimplexTest, isMarkedRedundant_no_var_ge_zero) { Simplex simplex(0); simplex.addInequality({0}); // 0 >= 0. simplex.detectRedundant(); ASSERT_FALSE(simplex.isEmpty()); EXPECT_TRUE(simplex.isMarkedRedundant(0)); } TEST(SimplexTest, isMarkedRedundant_no_var_eq) { Simplex simplex(0); simplex.addEquality({0}); // 0 == 0. simplex.detectRedundant(); ASSERT_FALSE(simplex.isEmpty()); EXPECT_TRUE(simplex.isMarkedRedundant(0)); } TEST(SimplexTest, isMarkedRedundant_pos_var_eq) { Simplex simplex(1); simplex.addEquality({1, 0}); // x == 0. simplex.detectRedundant(); ASSERT_FALSE(simplex.isEmpty()); EXPECT_FALSE(simplex.isMarkedRedundant(0)); } TEST(SimplexTest, isMarkedRedundant_zero_var_eq) { Simplex simplex(1); simplex.addEquality({0, 0}); // 0x == 0. simplex.detectRedundant(); ASSERT_FALSE(simplex.isEmpty()); EXPECT_TRUE(simplex.isMarkedRedundant(0)); } TEST(SimplexTest, isMarkedRedundant_neg_var_eq) { Simplex simplex(1); simplex.addEquality({-1, 0}); // -x == 0. simplex.detectRedundant(); ASSERT_FALSE(simplex.isEmpty()); EXPECT_FALSE(simplex.isMarkedRedundant(0)); } TEST(SimplexTest, isMarkedRedundant_pos_var_ge) { Simplex simplex(1); simplex.addInequality({1, 0}); // x >= 0. simplex.detectRedundant(); ASSERT_FALSE(simplex.isEmpty()); EXPECT_FALSE(simplex.isMarkedRedundant(0)); } TEST(SimplexTest, isMarkedRedundant_zero_var_ge) { Simplex simplex(1); simplex.addInequality({0, 0}); // 0x >= 0. simplex.detectRedundant(); ASSERT_FALSE(simplex.isEmpty()); EXPECT_TRUE(simplex.isMarkedRedundant(0)); } TEST(SimplexTest, isMarkedRedundant_neg_var_ge) { Simplex simplex(1); simplex.addInequality({-1, 0}); // x <= 0. simplex.detectRedundant(); ASSERT_FALSE(simplex.isEmpty()); EXPECT_FALSE(simplex.isMarkedRedundant(0)); } /// None of the constraints are redundant. Slightly more complicated test /// involving an equality. TEST(SimplexTest, isMarkedRedundant_no_redundant) { Simplex simplex(3); simplex.addEquality({-1, 0, 1, 0}); // u = w. simplex.addInequality({-1, 16, 0, 15}); // 15 - (u - 16v) >= 0. simplex.addInequality({1, -16, 0, 0}); // (u - 16v) >= 0. simplex.detectRedundant(); ASSERT_FALSE(simplex.isEmpty()); for (unsigned i = 0; i < simplex.numConstraints(); ++i) EXPECT_FALSE(simplex.isMarkedRedundant(i)) << "i = " << i << "\n"; } TEST(SimplexTest, isMarkedRedundant_repeated_constraints) { Simplex simplex(3); // [4] to [7] are repeats of [0] to [3]. simplex.addInequality({0, -1, 0, 1}); // [0]: y <= 1. simplex.addInequality({-1, 0, 8, 7}); // [1]: 8z >= x - 7. simplex.addInequality({1, 0, -8, 0}); // [2]: 8z <= x. simplex.addInequality({0, 1, 0, 0}); // [3]: y >= 0. simplex.addInequality({-1, 0, 8, 7}); // [4]: 8z >= 7 - x. simplex.addInequality({1, 0, -8, 0}); // [5]: 8z <= x. simplex.addInequality({0, 1, 0, 0}); // [6]: y >= 0. simplex.addInequality({0, -1, 0, 1}); // [7]: y <= 1. simplex.detectRedundant(); ASSERT_FALSE(simplex.isEmpty()); EXPECT_EQ(simplex.isMarkedRedundant(0), true); EXPECT_EQ(simplex.isMarkedRedundant(1), true); EXPECT_EQ(simplex.isMarkedRedundant(2), true); EXPECT_EQ(simplex.isMarkedRedundant(3), true); EXPECT_EQ(simplex.isMarkedRedundant(4), false); EXPECT_EQ(simplex.isMarkedRedundant(5), false); EXPECT_EQ(simplex.isMarkedRedundant(6), false); EXPECT_EQ(simplex.isMarkedRedundant(7), false); } TEST(SimplexTest, isMarkedRedundant) { Simplex simplex(3); simplex.addInequality({0, -1, 0, 1}); // [0]: y <= 1. simplex.addInequality({1, 0, 0, -1}); // [1]: x >= 1. simplex.addInequality({-1, 0, 0, 2}); // [2]: x <= 2. simplex.addInequality({-1, 0, 2, 7}); // [3]: 2z >= x - 7. simplex.addInequality({1, 0, -2, 0}); // [4]: 2z <= x. simplex.addInequality({0, 1, 0, 0}); // [5]: y >= 0. simplex.addInequality({0, 1, -2, 1}); // [6]: y >= 2z - 1. simplex.addInequality({-1, 1, 0, 1}); // [7]: y >= x - 1. simplex.detectRedundant(); ASSERT_FALSE(simplex.isEmpty()); // [0], [1], [3], [4], [7] together imply [2], [5], [6] must hold. // // From [7], [0]: x <= y + 1 <= 2, so we have [2]. // From [7], [1]: y >= x - 1 >= 0, so we have [5]. // From [4], [7]: 2z - 1 <= x - 1 <= y, so we have [6]. EXPECT_FALSE(simplex.isMarkedRedundant(0)); EXPECT_FALSE(simplex.isMarkedRedundant(1)); EXPECT_TRUE(simplex.isMarkedRedundant(2)); EXPECT_FALSE(simplex.isMarkedRedundant(3)); EXPECT_FALSE(simplex.isMarkedRedundant(4)); EXPECT_TRUE(simplex.isMarkedRedundant(5)); EXPECT_TRUE(simplex.isMarkedRedundant(6)); EXPECT_FALSE(simplex.isMarkedRedundant(7)); } TEST(SimplexTest, isMarkedRedundantTiledLoopNestConstraints) { Simplex simplex(3); // Variables are x, y, N. simplex.addInequality({1, 0, 0, 0}); // [0]: x >= 0. simplex.addInequality({-32, 0, 1, -1}); // [1]: 32x <= N - 1. simplex.addInequality({0, 1, 0, 0}); // [2]: y >= 0. simplex.addInequality({-32, 1, 0, 0}); // [3]: y >= 32x. simplex.addInequality({32, -1, 0, 31}); // [4]: y <= 32x + 31. simplex.addInequality({0, -1, 1, -1}); // [5]: y <= N - 1. // [3] and [0] imply [2], as we have y >= 32x >= 0. // [3] and [5] imply [1], as we have 32x <= y <= N - 1. simplex.detectRedundant(); EXPECT_FALSE(simplex.isMarkedRedundant(0)); EXPECT_TRUE(simplex.isMarkedRedundant(1)); EXPECT_TRUE(simplex.isMarkedRedundant(2)); EXPECT_FALSE(simplex.isMarkedRedundant(3)); EXPECT_FALSE(simplex.isMarkedRedundant(4)); EXPECT_FALSE(simplex.isMarkedRedundant(5)); } TEST(SimplexTest, addInequality_already_redundant) { Simplex simplex(1); simplex.addInequality({1, -1}); // x >= 1. simplex.addInequality({1, 0}); // x >= 0. simplex.detectRedundant(); ASSERT_FALSE(simplex.isEmpty()); EXPECT_FALSE(simplex.isMarkedRedundant(0)); EXPECT_TRUE(simplex.isMarkedRedundant(1)); } } // namespace mlir