; RUN: opt %loadPolly -polly-opt-isl -polly-pattern-matching-based-opts=true \ ; RUN: -polly-target-throughput-vector-fma=1 \ ; RUN: -polly-target-latency-vector-fma=8 \ ; RUN: -analyze -polly-ast -polly-target-1st-cache-level-associativity=8 \ ; RUN: -polly-target-2nd-cache-level-associativity=8 \ ; RUN: -polly-target-1st-cache-level-size=32768 \ ; RUN: -polly-target-vector-register-bitwidth=256 \ ; RUN: -polly-target-2nd-cache-level-size=262144 < %s \ ; RUN: | FileCheck %s ; ; /* C := A * B + C */ ; /* Elements of the matrices A, B, C have the float type. */ ; /* The type size of elements of the matrix multiplication operands is used ; to determine the parameters of the code produced by the optimization ; of the matrix multiplication (e.g. bounds of the loops of the loop ; nest, the innermost loop body). This test checks the form of ; the generated loop nest. See getMicroKernelParams and ; getMacroKernelParams from lib/Transform/ScheduleOptimizer.cpp ; for details. */ ; for (i = 0; i < _PB_NI; i++) ; for (j = 0; j < _PB_NJ; j++) ; for (k = 0; k < _PB_NK; ++k) ; C[i][j] += A[i][k] * B[k][j]; ; ; CHECK: // 1st level tiling - Tiles ; CHECK-NEXT: for (int c1 = 0; c1 <= 2; c1 += 1) { ; CHECK-NEXT: for (int c3 = 0; c3 <= 1023; c3 += 1) ; CHECK-NEXT: for (int c4 = 384 * c1; c4 <= min(1023, 384 * c1 + 383); c4 += 1) ; CHECK-NEXT: CopyStmt_0(0, c3, c4); ; CHECK-NEXT: for (int c2 = 0; c2 <= 7; c2 += 1) { ; CHECK-NEXT: for (int c3 = 128 * c2; c3 <= 128 * c2 + 127; c3 += 1) ; CHECK-NEXT: for (int c5 = 384 * c1; c5 <= min(1023, 384 * c1 + 383); c5 += 1) ; CHECK-NEXT: CopyStmt_1(c3, 0, c5); ; CHECK-NEXT: // 1st level tiling - Points ; CHECK-NEXT: // Register tiling - Tiles ; CHECK-NEXT: for (int c3 = 0; c3 <= 127; c3 += 1) ; CHECK-NEXT: for (int c4 = 0; c4 <= 15; c4 += 1) ; CHECK-NEXT: for (int c5 = 0; c5 <= min(383, -384 * c1 + 1023); c5 += 1) { ; CHECK-NEXT: // Loop Vectorizer Disabled ; CHECK-NEXT: // Register tiling - Points ; CHECK-NEXT: { ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4, 8 * c3, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4, 8 * c3 + 1, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4, 8 * c3 + 2, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4, 8 * c3 + 3, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4, 8 * c3 + 4, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4, 8 * c3 + 5, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4, 8 * c3 + 6, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4, 8 * c3 + 7, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 1, 8 * c3, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 1, 8 * c3 + 1, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 1, 8 * c3 + 2, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 1, 8 * c3 + 3, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 1, 8 * c3 + 4, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 1, 8 * c3 + 5, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 1, 8 * c3 + 6, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 1, 8 * c3 + 7, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 2, 8 * c3, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 2, 8 * c3 + 1, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 2, 8 * c3 + 2, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 2, 8 * c3 + 3, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 2, 8 * c3 + 4, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 2, 8 * c3 + 5, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 2, 8 * c3 + 6, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 2, 8 * c3 + 7, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 3, 8 * c3, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 3, 8 * c3 + 1, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 3, 8 * c3 + 2, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 3, 8 * c3 + 3, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 3, 8 * c3 + 4, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 3, 8 * c3 + 5, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 3, 8 * c3 + 6, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 3, 8 * c3 + 7, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 4, 8 * c3, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 4, 8 * c3 + 1, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 4, 8 * c3 + 2, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 4, 8 * c3 + 3, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 4, 8 * c3 + 4, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 4, 8 * c3 + 5, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 4, 8 * c3 + 6, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 4, 8 * c3 + 7, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 5, 8 * c3, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 5, 8 * c3 + 1, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 5, 8 * c3 + 2, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 5, 8 * c3 + 3, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 5, 8 * c3 + 4, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 5, 8 * c3 + 5, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 5, 8 * c3 + 6, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 5, 8 * c3 + 7, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 6, 8 * c3, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 6, 8 * c3 + 1, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 6, 8 * c3 + 2, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 6, 8 * c3 + 3, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 6, 8 * c3 + 4, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 6, 8 * c3 + 5, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 6, 8 * c3 + 6, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 6, 8 * c3 + 7, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 7, 8 * c3, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 7, 8 * c3 + 1, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 7, 8 * c3 + 2, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 7, 8 * c3 + 3, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 7, 8 * c3 + 4, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 7, 8 * c3 + 5, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 7, 8 * c3 + 6, 384 * c1 + c5); ; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 7, 8 * c3 + 7, 384 * c1 + c5); ; CHECK-NEXT: } ; CHECK-NEXT: } ; CHECK-NEXT: } ; CHECK-NEXT: } ; target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128" target triple = "x86_64-unknown-unknown" ; Function Attrs: noinline nounwind uwtable define internal void @kernel_gemm(i32 %ni, i32 %nj, i32 %nk, float %alpha, float %beta, [1024 x float]* %C, [1024 x float]* %A, [1024 x float]* %B) #0 { entry: br label %entry.split entry.split: ; preds = %entry br label %for.cond1.preheader for.cond1.preheader: ; preds = %for.inc20, %entry.split %indvars.iv41 = phi i64 [ 0, %entry.split ], [ %indvars.iv.next42, %for.inc20 ] br label %for.cond4.preheader for.cond4.preheader: ; preds = %for.inc17, %for.cond1.preheader %indvars.iv38 = phi i64 [ 0, %for.cond1.preheader ], [ %indvars.iv.next39, %for.inc17 ] br label %for.body6 for.body6: ; preds = %for.body6, %for.cond4.preheader %indvars.iv = phi i64 [ 0, %for.cond4.preheader ], [ %indvars.iv.next, %for.body6 ] %arrayidx8 = getelementptr inbounds [1024 x float], [1024 x float]* %A, i64 %indvars.iv41, i64 %indvars.iv %tmp = load float, float* %arrayidx8, align 4 %arrayidx12 = getelementptr inbounds [1024 x float], [1024 x float]* %B, i64 %indvars.iv, i64 %indvars.iv38 %tmp1 = load float, float* %arrayidx12, align 4 %mul = fmul float %tmp, %tmp1 %arrayidx16 = getelementptr inbounds [1024 x float], [1024 x float]* %C, i64 %indvars.iv41, i64 %indvars.iv38 %tmp2 = load float, float* %arrayidx16, align 4 %add = fadd float %tmp2, %mul store float %add, float* %arrayidx16, align 4 %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 %exitcond = icmp ne i64 %indvars.iv.next, 1024 br i1 %exitcond, label %for.body6, label %for.inc17 for.inc17: ; preds = %for.body6 %indvars.iv.next39 = add nuw nsw i64 %indvars.iv38, 1 %exitcond40 = icmp ne i64 %indvars.iv.next39, 1024 br i1 %exitcond40, label %for.cond4.preheader, label %for.inc20 for.inc20: ; preds = %for.inc17 %indvars.iv.next42 = add nuw nsw i64 %indvars.iv41, 1 %exitcond43 = icmp ne i64 %indvars.iv.next42, 1024 br i1 %exitcond43, label %for.cond1.preheader, label %for.end22 for.end22: ; preds = %for.inc20 ret void }