; RUN: opt %loadPolly -polly-detect -polly-allow-nonaffine-branches \ ; RUN: -polly-allow-nonaffine-loops=false \ ; RUN: -analyze < %s | FileCheck %s --check-prefix=REJECTNONAFFINELOOPS ; RUN: opt %loadPolly -polly-detect -polly-allow-nonaffine-branches \ ; RUN: -polly-allow-nonaffine-loops=true \ ; RUN: -analyze < %s | FileCheck %s --check-prefix=ALLOWNONAFFINELOOPS ; RUN: opt %loadPolly -polly-detect -polly-allow-nonaffine \ ; RUN: -polly-allow-nonaffine-branches -polly-allow-nonaffine-loops=true \ ; RUN: -analyze < %s | FileCheck %s \ ; RUN: --check-prefix=ALLOWNONAFFINELOOPSANDACCESSES ; ; Here we have a non-affine loop (in the context of the loop nest) ; and also a non-affine access (A[k]). While we can always detect the ; innermost loop as a SCoP of depth 1, we have to reject the loop nest if not ; both, non-affine loops as well as non-affine accesses are allowed. ; ; REJECTNONAFFINELOOPS: Valid Region for Scop: bb15 => bb13 ; REJECTNONAFFINELOOPS-NOT: Valid ; ALLOWNONAFFINELOOPS: Valid Region for Scop: bb15 => bb13 ; ALLOWNONAFFINELOOPS-NOT: Valid ; ALLOWNONAFFINELOOPSANDACCESSES: Valid Region for Scop: bb11 => bb29 ; ; void f(int *A) { ; for (int i = 0; i < 1024; i++) ; for (int j = 0; j < 1024; j++) ; for (int k = 0; k < i * j; k++) ; A[k] += A[i] + A[j]; ; } ; target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128" define void @f(i32* %A) { bb: br label %bb11 bb11: ; preds = %bb28, %bb %indvars.iv8 = phi i64 [ %indvars.iv.next9, %bb28 ], [ 0, %bb ] %indvars.iv1 = phi i32 [ %indvars.iv.next2, %bb28 ], [ 0, %bb ] %exitcond10 = icmp ne i64 %indvars.iv8, 1024 br i1 %exitcond10, label %bb12, label %bb29 bb12: ; preds = %bb11 br label %bb13 bb13: ; preds = %bb26, %bb12 %indvars.iv5 = phi i64 [ %indvars.iv.next6, %bb26 ], [ 0, %bb12 ] %indvars.iv3 = phi i32 [ %indvars.iv.next4, %bb26 ], [ 0, %bb12 ] %exitcond7 = icmp ne i64 %indvars.iv5, 1024 br i1 %exitcond7, label %bb14, label %bb27 bb14: ; preds = %bb13 br label %bb15 bb15: ; preds = %bb24, %bb14 %indvars.iv = phi i64 [ %indvars.iv.next, %bb24 ], [ 0, %bb14 ] %lftr.wideiv = trunc i64 %indvars.iv to i32 %exitcond = icmp ne i32 %lftr.wideiv, %indvars.iv3 br i1 %exitcond, label %bb16, label %bb25 bb16: ; preds = %bb15 %tmp = getelementptr inbounds i32, i32* %A, i64 %indvars.iv8 %tmp17 = load i32, i32* %tmp, align 4 %tmp18 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv5 %tmp19 = load i32, i32* %tmp18, align 4 %tmp20 = add nsw i32 %tmp17, %tmp19 %tmp21 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv %tmp22 = load i32, i32* %tmp21, align 4 %tmp23 = add nsw i32 %tmp22, %tmp20 store i32 %tmp23, i32* %tmp21, align 4 br label %bb24 bb24: ; preds = %bb16 %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 br label %bb15 bb25: ; preds = %bb15 br label %bb26 bb26: ; preds = %bb25 %indvars.iv.next6 = add nuw nsw i64 %indvars.iv5, 1 %indvars.iv.next4 = add nuw nsw i32 %indvars.iv3, %indvars.iv1 br label %bb13 bb27: ; preds = %bb13 br label %bb28 bb28: ; preds = %bb27 %indvars.iv.next9 = add nuw nsw i64 %indvars.iv8, 1 %indvars.iv.next2 = add nuw nsw i32 %indvars.iv1, 1 br label %bb11 bb29: ; preds = %bb11 ret void }