/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "EffectVisualizer" //#define LOG_NDEBUG 0 #include #include #include #include #include #include #include // max #include #include #include #include #ifdef BUILD_FLOAT static constexpr audio_format_t kProcessFormat = AUDIO_FORMAT_PCM_FLOAT; #else static constexpr audio_format_t kProcessFormat = AUDIO_FORMAT_PCM_16_BIT; #endif // BUILD_FLOAT extern "C" { // effect_handle_t interface implementation for visualizer effect extern const struct effect_interface_s gVisualizerInterface; // Google Visualizer UUID: d069d9e0-8329-11df-9168-0002a5d5c51b const effect_descriptor_t gVisualizerDescriptor = { {0xe46b26a0, 0xdddd, 0x11db, 0x8afd, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}}, // type {0xd069d9e0, 0x8329, 0x11df, 0x9168, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}}, // uuid EFFECT_CONTROL_API_VERSION, (EFFECT_FLAG_TYPE_INSERT | EFFECT_FLAG_INSERT_FIRST), 0, // TODO 1, "Visualizer", "The Android Open Source Project", }; enum visualizer_state_e { VISUALIZER_STATE_UNINITIALIZED, VISUALIZER_STATE_INITIALIZED, VISUALIZER_STATE_ACTIVE, }; // maximum time since last capture buffer update before resetting capture buffer. This means // that the framework has stopped playing audio and we must start returning silence #define MAX_STALL_TIME_MS 1000 #define CAPTURE_BUF_SIZE 65536 // "64k should be enough for everyone" #define DISCARD_MEASUREMENTS_TIME_MS 2000 // discard measurements older than this number of ms #define MAX_LATENCY_MS 3000 // 3 seconds of latency for audio pipeline // maximum number of buffers for which we keep track of the measurements #define MEASUREMENT_WINDOW_MAX_SIZE_IN_BUFFERS 25 // note: buffer index is stored in uint8_t struct BufferStats { bool mIsValid; uint16_t mPeakU16; // the positive peak of the absolute value of the samples in a buffer float mRmsSquared; // the average square of the samples in a buffer }; struct VisualizerContext { const struct effect_interface_s *mItfe; effect_config_t mConfig; uint32_t mCaptureIdx; uint32_t mCaptureSize; uint32_t mScalingMode; uint8_t mState; uint32_t mLastCaptureIdx; uint32_t mLatency; struct timespec mBufferUpdateTime; uint8_t mCaptureBuf[CAPTURE_BUF_SIZE]; // for measurements uint8_t mChannelCount; // to avoid recomputing it every time a buffer is processed uint32_t mMeasurementMode; uint8_t mMeasurementWindowSizeInBuffers; uint8_t mMeasurementBufferIdx; BufferStats mPastMeasurements[MEASUREMENT_WINDOW_MAX_SIZE_IN_BUFFERS]; }; // //--- Local functions // uint32_t Visualizer_getDeltaTimeMsFromUpdatedTime(VisualizerContext* pContext) { uint32_t deltaMs = 0; if (pContext->mBufferUpdateTime.tv_sec != 0) { struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) { time_t secs = ts.tv_sec - pContext->mBufferUpdateTime.tv_sec; long nsec = ts.tv_nsec - pContext->mBufferUpdateTime.tv_nsec; if (nsec < 0) { --secs; nsec += 1000000000; } deltaMs = secs * 1000 + nsec / 1000000; } } return deltaMs; } void Visualizer_reset(VisualizerContext *pContext) { pContext->mCaptureIdx = 0; pContext->mLastCaptureIdx = 0; pContext->mBufferUpdateTime.tv_sec = 0; pContext->mLatency = 0; memset(pContext->mCaptureBuf, 0x80, CAPTURE_BUF_SIZE); } //---------------------------------------------------------------------------- // Visualizer_setConfig() //---------------------------------------------------------------------------- // Purpose: Set input and output audio configuration. // // Inputs: // pContext: effect engine context // pConfig: pointer to effect_config_t structure holding input and output // configuration parameters // // Outputs: // //---------------------------------------------------------------------------- int Visualizer_setConfig(VisualizerContext *pContext, effect_config_t *pConfig) { ALOGV("Visualizer_setConfig start"); if (pConfig->inputCfg.samplingRate != pConfig->outputCfg.samplingRate) return -EINVAL; if (pConfig->inputCfg.channels != pConfig->outputCfg.channels) return -EINVAL; if (pConfig->inputCfg.format != pConfig->outputCfg.format) return -EINVAL; const uint32_t channelCount = audio_channel_count_from_out_mask(pConfig->inputCfg.channels); #ifdef SUPPORT_MC if (channelCount < 1 || channelCount > FCC_LIMIT) return -EINVAL; #else if (channelCount != FCC_2) return -EINVAL; #endif if (pConfig->outputCfg.accessMode != EFFECT_BUFFER_ACCESS_WRITE && pConfig->outputCfg.accessMode != EFFECT_BUFFER_ACCESS_ACCUMULATE) return -EINVAL; if (pConfig->inputCfg.format != kProcessFormat) return -EINVAL; pContext->mConfig = *pConfig; Visualizer_reset(pContext); return 0; } //---------------------------------------------------------------------------- // Visualizer_getConfig() //---------------------------------------------------------------------------- // Purpose: Get input and output audio configuration. // // Inputs: // pContext: effect engine context // pConfig: pointer to effect_config_t structure holding input and output // configuration parameters // // Outputs: // //---------------------------------------------------------------------------- void Visualizer_getConfig(VisualizerContext *pContext, effect_config_t *pConfig) { *pConfig = pContext->mConfig; } //---------------------------------------------------------------------------- // Visualizer_init() //---------------------------------------------------------------------------- // Purpose: Initialize engine with default configuration. // // Inputs: // pContext: effect engine context // // Outputs: // //---------------------------------------------------------------------------- int Visualizer_init(VisualizerContext *pContext) { pContext->mConfig.inputCfg.accessMode = EFFECT_BUFFER_ACCESS_READ; pContext->mConfig.inputCfg.channels = AUDIO_CHANNEL_OUT_STEREO; pContext->mConfig.inputCfg.format = kProcessFormat; pContext->mConfig.inputCfg.samplingRate = 44100; pContext->mConfig.inputCfg.bufferProvider.getBuffer = NULL; pContext->mConfig.inputCfg.bufferProvider.releaseBuffer = NULL; pContext->mConfig.inputCfg.bufferProvider.cookie = NULL; pContext->mConfig.inputCfg.mask = EFFECT_CONFIG_ALL; pContext->mConfig.outputCfg.accessMode = EFFECT_BUFFER_ACCESS_ACCUMULATE; pContext->mConfig.outputCfg.channels = AUDIO_CHANNEL_OUT_STEREO; pContext->mConfig.outputCfg.format = kProcessFormat; pContext->mConfig.outputCfg.samplingRate = 44100; pContext->mConfig.outputCfg.bufferProvider.getBuffer = NULL; pContext->mConfig.outputCfg.bufferProvider.releaseBuffer = NULL; pContext->mConfig.outputCfg.bufferProvider.cookie = NULL; pContext->mConfig.outputCfg.mask = EFFECT_CONFIG_ALL; // visualization initialization pContext->mCaptureSize = VISUALIZER_CAPTURE_SIZE_MAX; pContext->mScalingMode = VISUALIZER_SCALING_MODE_NORMALIZED; // measurement initialization pContext->mChannelCount = audio_channel_count_from_out_mask(pContext->mConfig.inputCfg.channels); pContext->mMeasurementMode = MEASUREMENT_MODE_NONE; pContext->mMeasurementWindowSizeInBuffers = MEASUREMENT_WINDOW_MAX_SIZE_IN_BUFFERS; pContext->mMeasurementBufferIdx = 0; for (uint32_t i=0 ; imMeasurementWindowSizeInBuffers ; i++) { pContext->mPastMeasurements[i].mIsValid = false; pContext->mPastMeasurements[i].mPeakU16 = 0; pContext->mPastMeasurements[i].mRmsSquared = 0; } Visualizer_setConfig(pContext, &pContext->mConfig); return 0; } // //--- Effect Library Interface Implementation // int VisualizerLib_Create(const effect_uuid_t *uuid, int32_t /*sessionId*/, int32_t /*ioId*/, effect_handle_t *pHandle) { int ret; if (pHandle == NULL || uuid == NULL) { return -EINVAL; } if (memcmp(uuid, &gVisualizerDescriptor.uuid, sizeof(effect_uuid_t)) != 0) { return -EINVAL; } VisualizerContext *pContext = new VisualizerContext; pContext->mItfe = &gVisualizerInterface; pContext->mState = VISUALIZER_STATE_UNINITIALIZED; ret = Visualizer_init(pContext); if (ret < 0) { ALOGW("VisualizerLib_Create() init failed"); delete pContext; return ret; } *pHandle = (effect_handle_t)pContext; pContext->mState = VISUALIZER_STATE_INITIALIZED; ALOGV("VisualizerLib_Create %p", pContext); return 0; } int VisualizerLib_Release(effect_handle_t handle) { VisualizerContext * pContext = (VisualizerContext *)handle; ALOGV("VisualizerLib_Release %p", handle); if (pContext == NULL) { return -EINVAL; } pContext->mState = VISUALIZER_STATE_UNINITIALIZED; delete pContext; return 0; } int VisualizerLib_GetDescriptor(const effect_uuid_t *uuid, effect_descriptor_t *pDescriptor) { if (pDescriptor == NULL || uuid == NULL){ ALOGV("VisualizerLib_GetDescriptor() called with NULL pointer"); return -EINVAL; } if (memcmp(uuid, &gVisualizerDescriptor.uuid, sizeof(effect_uuid_t)) == 0) { *pDescriptor = gVisualizerDescriptor; return 0; } return -EINVAL; } /* end VisualizerLib_GetDescriptor */ // //--- Effect Control Interface Implementation // int Visualizer_process( effect_handle_t self, audio_buffer_t *inBuffer, audio_buffer_t *outBuffer) { VisualizerContext * pContext = (VisualizerContext *)self; if (pContext == NULL) { return -EINVAL; } if (inBuffer == NULL || inBuffer->raw == NULL || outBuffer == NULL || outBuffer->raw == NULL || inBuffer->frameCount != outBuffer->frameCount || inBuffer->frameCount == 0) { return -EINVAL; } const size_t sampleLen = inBuffer->frameCount * pContext->mChannelCount; // perform measurements if needed if (pContext->mMeasurementMode & MEASUREMENT_MODE_PEAK_RMS) { // find the peak and RMS squared for the new buffer float rmsSqAcc = 0; #ifdef BUILD_FLOAT float maxSample = 0.f; for (size_t inIdx = 0; inIdx < sampleLen; ++inIdx) { maxSample = fmax(maxSample, fabs(inBuffer->f32[inIdx])); rmsSqAcc += inBuffer->f32[inIdx] * inBuffer->f32[inIdx]; } maxSample *= 1 << 15; // scale to int16_t, with exactly 1 << 15 representing positive num. rmsSqAcc *= 1 << 30; // scale to int16_t * 2 #else int maxSample = 0; for (size_t inIdx = 0; inIdx < sampleLen; ++inIdx) { maxSample = std::max(maxSample, std::abs(int32_t(inBuffer->s16[inIdx]))); rmsSqAcc += inBuffer->s16[inIdx] * inBuffer->s16[inIdx]; } #endif // store the measurement pContext->mPastMeasurements[pContext->mMeasurementBufferIdx].mPeakU16 = (uint16_t)maxSample; pContext->mPastMeasurements[pContext->mMeasurementBufferIdx].mRmsSquared = rmsSqAcc / sampleLen; pContext->mPastMeasurements[pContext->mMeasurementBufferIdx].mIsValid = true; if (++pContext->mMeasurementBufferIdx >= pContext->mMeasurementWindowSizeInBuffers) { pContext->mMeasurementBufferIdx = 0; } } #ifdef BUILD_FLOAT float fscale; // multiplicative scale #else int32_t shift; #endif // BUILD_FLOAT if (pContext->mScalingMode == VISUALIZER_SCALING_MODE_NORMALIZED) { // derive capture scaling factor from peak value in current buffer // this gives more interesting captures for display. #ifdef BUILD_FLOAT float maxSample = 0.f; for (size_t inIdx = 0; inIdx < sampleLen; ) { // we reconstruct the actual summed value to ensure proper normalization // for multichannel outputs (channels > 2 may often be 0). float smp = 0.f; for (int i = 0; i < pContext->mChannelCount; ++i) { smp += inBuffer->f32[inIdx++]; } maxSample = fmax(maxSample, fabs(smp)); } if (maxSample > 0.f) { fscale = 0.99f / maxSample; int exp; // unused const float significand = frexp(fscale, &exp); if (significand == 0.5f) { fscale *= 255.f / 256.f; // avoid returning unaltered PCM signal } } else { // scale doesn't matter, the values are all 0. fscale = 1.f; } #else int32_t orAccum = 0; for (size_t i = 0; i < sampleLen; ++i) { int32_t smp = inBuffer->s16[i]; if (smp < 0) smp = -smp - 1; // take care to keep the max negative in range orAccum |= smp; } // A maximum amplitude signal will have 17 leading zeros, which we want to // translate to a shift of 8 (for converting 16 bit to 8 bit) shift = 25 - __builtin_clz(orAccum); // Never scale by less than 8 to avoid returning unaltered PCM signal. if (shift < 3) { shift = 3; } // add one to combine the division by 2 needed after summing left and right channels below shift++; #endif // BUILD_FLOAT } else { assert(pContext->mScalingMode == VISUALIZER_SCALING_MODE_AS_PLAYED); #ifdef BUILD_FLOAT // Note: if channels are uncorrelated, 1/sqrt(N) could be used at the risk of clipping. fscale = 1.f / pContext->mChannelCount; // account for summing all the channels together. #else shift = 9; #endif // BUILD_FLOAT } uint32_t captIdx; uint32_t inIdx; uint8_t *buf = pContext->mCaptureBuf; for (inIdx = 0, captIdx = pContext->mCaptureIdx; inIdx < sampleLen; captIdx++) { if (captIdx >= CAPTURE_BUF_SIZE) captIdx = 0; // wrap #ifdef BUILD_FLOAT float smp = 0.f; for (uint32_t i = 0; i < pContext->mChannelCount; ++i) { smp += inBuffer->f32[inIdx++]; } buf[captIdx] = clamp8_from_float(smp * fscale); #else const int32_t smp = (inBuffer->s16[inIdx] + inBuffer->s16[inIdx + 1]) >> shift; inIdx += FCC_2; // integer supports stereo only. buf[captIdx] = ((uint8_t)smp)^0x80; #endif // BUILD_FLOAT } // XXX the following two should really be atomic, though it probably doesn't // matter much for visualization purposes pContext->mCaptureIdx = captIdx; // update last buffer update time stamp if (clock_gettime(CLOCK_MONOTONIC, &pContext->mBufferUpdateTime) < 0) { pContext->mBufferUpdateTime.tv_sec = 0; } if (inBuffer->raw != outBuffer->raw) { #ifdef BUILD_FLOAT if (pContext->mConfig.outputCfg.accessMode == EFFECT_BUFFER_ACCESS_ACCUMULATE) { for (size_t i = 0; i < sampleLen; ++i) { outBuffer->f32[i] += inBuffer->f32[i]; } } else { memcpy(outBuffer->raw, inBuffer->raw, sampleLen * sizeof(float)); } #else if (pContext->mConfig.outputCfg.accessMode == EFFECT_BUFFER_ACCESS_ACCUMULATE) { for (size_t i = 0; i < outBuffer->frameCount*2; i++) { outBuffer->s16[i] = clamp16(outBuffer->s16[i] + inBuffer->s16[i]); } } else { memcpy(outBuffer->raw, inBuffer->raw, outBuffer->frameCount * 2 * sizeof(int16_t)); } #endif // BUILD_FLOAT } if (pContext->mState != VISUALIZER_STATE_ACTIVE) { return -ENODATA; } return 0; } // end Visualizer_process int Visualizer_command(effect_handle_t self, uint32_t cmdCode, uint32_t cmdSize, void *pCmdData, uint32_t *replySize, void *pReplyData) { VisualizerContext * pContext = (VisualizerContext *)self; if (pContext == NULL || pContext->mState == VISUALIZER_STATE_UNINITIALIZED) { return -EINVAL; } // ALOGV("Visualizer_command command %" PRIu32 " cmdSize %" PRIu32, cmdCode, cmdSize); switch (cmdCode) { case EFFECT_CMD_INIT: if (pReplyData == NULL || replySize == NULL || *replySize != sizeof(int)) { return -EINVAL; } *(int *) pReplyData = Visualizer_init(pContext); break; case EFFECT_CMD_SET_CONFIG: if (pCmdData == NULL || cmdSize != sizeof(effect_config_t) || pReplyData == NULL || replySize == NULL || *replySize != sizeof(int)) { return -EINVAL; } *(int *) pReplyData = Visualizer_setConfig(pContext, (effect_config_t *) pCmdData); break; case EFFECT_CMD_GET_CONFIG: if (pReplyData == NULL || replySize == NULL || *replySize != sizeof(effect_config_t)) { return -EINVAL; } Visualizer_getConfig(pContext, (effect_config_t *)pReplyData); break; case EFFECT_CMD_RESET: Visualizer_reset(pContext); break; case EFFECT_CMD_ENABLE: if (pReplyData == NULL || replySize == NULL || *replySize != sizeof(int)) { return -EINVAL; } if (pContext->mState != VISUALIZER_STATE_INITIALIZED) { return -ENOSYS; } pContext->mState = VISUALIZER_STATE_ACTIVE; ALOGV("EFFECT_CMD_ENABLE() OK"); *(int *)pReplyData = 0; break; case EFFECT_CMD_DISABLE: if (pReplyData == NULL || replySize == NULL || *replySize != sizeof(int)) { return -EINVAL; } if (pContext->mState != VISUALIZER_STATE_ACTIVE) { return -ENOSYS; } pContext->mState = VISUALIZER_STATE_INITIALIZED; ALOGV("EFFECT_CMD_DISABLE() OK"); *(int *)pReplyData = 0; break; case EFFECT_CMD_GET_PARAM: { if (pCmdData == NULL || cmdSize != (int)(sizeof(effect_param_t) + sizeof(uint32_t)) || pReplyData == NULL || replySize == NULL || *replySize < (int)(sizeof(effect_param_t) + sizeof(uint32_t) + sizeof(uint32_t))) { return -EINVAL; } memcpy(pReplyData, pCmdData, sizeof(effect_param_t) + sizeof(uint32_t)); effect_param_t *p = (effect_param_t *)pReplyData; p->status = 0; *replySize = sizeof(effect_param_t) + sizeof(uint32_t); if (p->psize != sizeof(uint32_t)) { p->status = -EINVAL; break; } switch (*(uint32_t *)p->data) { case VISUALIZER_PARAM_CAPTURE_SIZE: ALOGV("get mCaptureSize = %" PRIu32, pContext->mCaptureSize); *((uint32_t *)p->data + 1) = pContext->mCaptureSize; p->vsize = sizeof(uint32_t); *replySize += sizeof(uint32_t); break; case VISUALIZER_PARAM_SCALING_MODE: ALOGV("get mScalingMode = %" PRIu32, pContext->mScalingMode); *((uint32_t *)p->data + 1) = pContext->mScalingMode; p->vsize = sizeof(uint32_t); *replySize += sizeof(uint32_t); break; case VISUALIZER_PARAM_MEASUREMENT_MODE: ALOGV("get mMeasurementMode = %" PRIu32, pContext->mMeasurementMode); *((uint32_t *)p->data + 1) = pContext->mMeasurementMode; p->vsize = sizeof(uint32_t); *replySize += sizeof(uint32_t); break; default: p->status = -EINVAL; } } break; case EFFECT_CMD_SET_PARAM: { if (pCmdData == NULL || cmdSize != (int)(sizeof(effect_param_t) + sizeof(uint32_t) + sizeof(uint32_t)) || pReplyData == NULL || replySize == NULL || *replySize != sizeof(int32_t)) { return -EINVAL; } *(int32_t *)pReplyData = 0; effect_param_t *p = (effect_param_t *)pCmdData; if (p->psize != sizeof(uint32_t) || p->vsize != sizeof(uint32_t)) { *(int32_t *)pReplyData = -EINVAL; break; } switch (*(uint32_t *)p->data) { case VISUALIZER_PARAM_CAPTURE_SIZE: { const uint32_t captureSize = *((uint32_t *)p->data + 1); if (captureSize > VISUALIZER_CAPTURE_SIZE_MAX) { android_errorWriteLog(0x534e4554, "31781965"); *(int32_t *)pReplyData = -EINVAL; ALOGW("set mCaptureSize = %u > %u", captureSize, VISUALIZER_CAPTURE_SIZE_MAX); } else { pContext->mCaptureSize = captureSize; ALOGV("set mCaptureSize = %u", captureSize); } } break; case VISUALIZER_PARAM_SCALING_MODE: pContext->mScalingMode = *((uint32_t *)p->data + 1); ALOGV("set mScalingMode = %" PRIu32, pContext->mScalingMode); break; case VISUALIZER_PARAM_LATENCY: { uint32_t latency = *((uint32_t *)p->data + 1); if (latency > MAX_LATENCY_MS) { latency = MAX_LATENCY_MS; // clamp latency b/31781965 } pContext->mLatency = latency; ALOGV("set mLatency = %u", latency); } break; case VISUALIZER_PARAM_MEASUREMENT_MODE: pContext->mMeasurementMode = *((uint32_t *)p->data + 1); ALOGV("set mMeasurementMode = %" PRIu32, pContext->mMeasurementMode); break; default: *(int32_t *)pReplyData = -EINVAL; } } break; case EFFECT_CMD_SET_DEVICE: case EFFECT_CMD_SET_VOLUME: case EFFECT_CMD_SET_AUDIO_MODE: break; case VISUALIZER_CMD_CAPTURE: { uint32_t captureSize = pContext->mCaptureSize; if (pReplyData == NULL || replySize == NULL || *replySize != captureSize) { ALOGV("VISUALIZER_CMD_CAPTURE() error *replySize %" PRIu32 " captureSize %" PRIu32, *replySize, captureSize); return -EINVAL; } if (pContext->mState == VISUALIZER_STATE_ACTIVE) { const uint32_t deltaMs = Visualizer_getDeltaTimeMsFromUpdatedTime(pContext); // if audio framework has stopped playing audio although the effect is still // active we must clear the capture buffer to return silence if ((pContext->mLastCaptureIdx == pContext->mCaptureIdx) && (pContext->mBufferUpdateTime.tv_sec != 0) && (deltaMs > MAX_STALL_TIME_MS)) { ALOGV("capture going to idle"); pContext->mBufferUpdateTime.tv_sec = 0; memset(pReplyData, 0x80, captureSize); } else { int32_t latencyMs = pContext->mLatency; latencyMs -= deltaMs; if (latencyMs < 0) { latencyMs = 0; } uint32_t deltaSmpl = captureSize + pContext->mConfig.inputCfg.samplingRate * latencyMs / 1000; // large sample rate, latency, or capture size, could cause overflow. // do not offset more than the size of buffer. if (deltaSmpl > CAPTURE_BUF_SIZE) { android_errorWriteLog(0x534e4554, "31781965"); deltaSmpl = CAPTURE_BUF_SIZE; } int32_t capturePoint; //capturePoint = (int32_t)pContext->mCaptureIdx - deltaSmpl; __builtin_sub_overflow((int32_t)pContext->mCaptureIdx, deltaSmpl, &capturePoint); // a negative capturePoint means we wrap the buffer. if (capturePoint < 0) { uint32_t size = -capturePoint; if (size > captureSize) { size = captureSize; } memcpy(pReplyData, pContext->mCaptureBuf + CAPTURE_BUF_SIZE + capturePoint, size); pReplyData = (char *)pReplyData + size; captureSize -= size; capturePoint = 0; } memcpy(pReplyData, pContext->mCaptureBuf + capturePoint, captureSize); } pContext->mLastCaptureIdx = pContext->mCaptureIdx; } else { memset(pReplyData, 0x80, captureSize); } } break; case VISUALIZER_CMD_MEASURE: { if (pReplyData == NULL || replySize == NULL || *replySize < (sizeof(int32_t) * MEASUREMENT_COUNT)) { if (replySize == NULL) { ALOGV("VISUALIZER_CMD_MEASURE() error replySize NULL"); } else { ALOGV("VISUALIZER_CMD_MEASURE() error *replySize %" PRIu32 " < (sizeof(int32_t) * MEASUREMENT_COUNT) %" PRIu32, *replySize, uint32_t(sizeof(int32_t)) * MEASUREMENT_COUNT); } android_errorWriteLog(0x534e4554, "30229821"); return -EINVAL; } uint16_t peakU16 = 0; float sumRmsSquared = 0.0f; uint8_t nbValidMeasurements = 0; // reset measurements if last measurement was too long ago (which implies stored // measurements aren't relevant anymore and shouldn't bias the new one) const int32_t delayMs = Visualizer_getDeltaTimeMsFromUpdatedTime(pContext); if (delayMs > DISCARD_MEASUREMENTS_TIME_MS) { ALOGV("Discarding measurements, last measurement is %" PRId32 "ms old", delayMs); for (uint32_t i=0 ; imMeasurementWindowSizeInBuffers ; i++) { pContext->mPastMeasurements[i].mIsValid = false; pContext->mPastMeasurements[i].mPeakU16 = 0; pContext->mPastMeasurements[i].mRmsSquared = 0; } pContext->mMeasurementBufferIdx = 0; } else { // only use actual measurements, otherwise the first RMS measure happening before // MEASUREMENT_WINDOW_MAX_SIZE_IN_BUFFERS have been played will always be artificially // low for (uint32_t i=0 ; i < pContext->mMeasurementWindowSizeInBuffers ; i++) { if (pContext->mPastMeasurements[i].mIsValid) { if (pContext->mPastMeasurements[i].mPeakU16 > peakU16) { peakU16 = pContext->mPastMeasurements[i].mPeakU16; } sumRmsSquared += pContext->mPastMeasurements[i].mRmsSquared; nbValidMeasurements++; } } } float rms = nbValidMeasurements == 0 ? 0.0f : sqrtf(sumRmsSquared / nbValidMeasurements); int32_t* pIntReplyData = (int32_t*)pReplyData; // convert from I16 sample values to mB and write results if (rms < 0.000016f) { pIntReplyData[MEASUREMENT_IDX_RMS] = -9600; //-96dB } else { pIntReplyData[MEASUREMENT_IDX_RMS] = (int32_t) (2000 * log10(rms / 32767.0f)); } if (peakU16 == 0) { pIntReplyData[MEASUREMENT_IDX_PEAK] = -9600; //-96dB } else { pIntReplyData[MEASUREMENT_IDX_PEAK] = (int32_t) (2000 * log10(peakU16 / 32767.0f)); } ALOGV("VISUALIZER_CMD_MEASURE peak=%" PRIu16 " (%" PRId32 "mB), rms=%.1f (%" PRId32 "mB)", peakU16, pIntReplyData[MEASUREMENT_IDX_PEAK], rms, pIntReplyData[MEASUREMENT_IDX_RMS]); } break; default: ALOGW("Visualizer_command invalid command %" PRIu32, cmdCode); return -EINVAL; } return 0; } /* Effect Control Interface Implementation: get_descriptor */ int Visualizer_getDescriptor(effect_handle_t self, effect_descriptor_t *pDescriptor) { VisualizerContext * pContext = (VisualizerContext *) self; if (pContext == NULL || pDescriptor == NULL) { ALOGV("Visualizer_getDescriptor() invalid param"); return -EINVAL; } *pDescriptor = gVisualizerDescriptor; return 0; } /* end Visualizer_getDescriptor */ // effect_handle_t interface implementation for visualizer effect const struct effect_interface_s gVisualizerInterface = { Visualizer_process, Visualizer_command, Visualizer_getDescriptor, NULL, }; // This is the only symbol that needs to be exported __attribute__ ((visibility ("default"))) audio_effect_library_t AUDIO_EFFECT_LIBRARY_INFO_SYM = { .tag = AUDIO_EFFECT_LIBRARY_TAG, .version = EFFECT_LIBRARY_API_VERSION, .name = "Visualizer Library", .implementor = "The Android Open Source Project", .create_effect = VisualizerLib_Create, .release_effect = VisualizerLib_Release, .get_descriptor = VisualizerLib_GetDescriptor, }; }; // extern "C"