/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "CameraServerExifUtils" #define ATRACE_TAG ATRACE_TAG_CAMERA //#define LOG_NDEBUG 0 #include #include #include #include #include #include #include "ExifUtils.h" extern "C" { #include } namespace std { template <> struct default_delete { inline void operator()(ExifEntry* entry) const { exif_entry_unref(entry); } }; } // namespace std namespace android { namespace camera3 { class ExifUtilsImpl : public ExifUtils { public: ExifUtilsImpl(); virtual ~ExifUtilsImpl(); // Initialize() can be called multiple times. The setting of Exif tags will be // cleared. virtual bool initialize(const unsigned char *app1Segment, size_t app1SegmentSize); virtual bool initializeEmpty(); // set all known fields from a metadata structure virtual bool setFromMetadata(const CameraMetadata& metadata, const CameraMetadata& staticInfo, const size_t imageWidth, const size_t imageHeight); // sets the len aperture. // Returns false if memory allocation fails. virtual bool setAperture(float aperture); // sets the color space. // Returns false if memory allocation fails. virtual bool setColorSpace(uint16_t color_space); // sets the date and time of image last modified. It takes local time. The // name of the tag is DateTime in IFD0. // Returns false if memory allocation fails. virtual bool setDateTime(const struct tm& t); // sets the digital zoom ratio. If the numerator is 0, it means digital zoom // was not used. // Returns false if memory allocation fails. virtual bool setDigitalZoomRatio( uint32_t crop_width, uint32_t crop_height, uint32_t sensor_width, uint32_t sensor_height); // Sets the exposure bias. // Returns false if memory allocation fails. virtual bool setExposureBias(int32_t ev, uint32_t ev_step_numerator, uint32_t ev_step_denominator); // sets the exposure mode set when the image was shot. // Returns false if memory allocation fails. virtual bool setExposureMode(uint8_t exposure_mode); // sets the exposure time, given in seconds. // Returns false if memory allocation fails. virtual bool setExposureTime(float exposure_time); // sets the status of flash. // Returns false if memory allocation fails. virtual bool setFlash(uint8_t flash_available, uint8_t flash_state, uint8_t ae_mode); // sets the F number. // Returns false if memory allocation fails. virtual bool setFNumber(float f_number); // sets the focal length of lens used to take the image in millimeters. // Returns false if memory allocation fails. virtual bool setFocalLength(float focal_length); // sets the focal length of lens for 35mm film used to take the image in millimeters. // Returns false if memory allocation fails. virtual bool setFocalLengthIn35mmFilm(float focal_length, float sensor_size_x, float sensor_size_y); // sets the altitude in meters. // Returns false if memory allocation fails. virtual bool setGpsAltitude(double altitude); // sets the latitude with degrees minutes seconds format. // Returns false if memory allocation fails. virtual bool setGpsLatitude(double latitude); // sets the longitude with degrees minutes seconds format. // Returns false if memory allocation fails. virtual bool setGpsLongitude(double longitude); // sets GPS processing method. // Returns false if memory allocation fails. virtual bool setGpsProcessingMethod(const std::string& method); // sets GPS date stamp and time stamp (atomic clock). It takes UTC time. // Returns false if memory allocation fails. virtual bool setGpsTimestamp(const struct tm& t); // sets the length (number of rows) of main image. // Returns false if memory allocation fails. virtual bool setImageHeight(uint32_t length); // sets the width (number of columes) of main image. // Returns false if memory allocation fails. virtual bool setImageWidth(uint32_t width); // sets the ISO speed. // Returns false if memory allocation fails. virtual bool setIsoSpeedRating(uint16_t iso_speed_ratings); // sets the smallest F number of the lens. // Returns false if memory allocation fails. virtual bool setMaxAperture(float aperture); // sets image orientation. // Returns false if memory allocation fails. virtual bool setOrientation(uint16_t degrees); // sets image orientation. // Returns false if memory allocation fails. virtual bool setOrientationValue(ExifOrientation orientationValue); // sets the shutter speed. // Returns false if memory allocation fails. virtual bool setShutterSpeed(float exposure_time); // sets the distance to the subject, given in meters. // Returns false if memory allocation fails. virtual bool setSubjectDistance(float diopters); // sets the fractions of seconds for the tag. // Returns false if memory allocation fails. virtual bool setSubsecTime(const std::string& subsec_time); // sets the white balance mode set when the image was shot. // Returns false if memory allocation fails. virtual bool setWhiteBalance(uint8_t white_balance); // Generates APP1 segment. // Returns false if generating APP1 segment fails. virtual bool generateApp1(); // Gets buffer of APP1 segment. This method must be called only after calling // GenerateAPP1(). virtual const uint8_t* getApp1Buffer(); // Gets length of APP1 segment. This method must be called only after calling // GenerateAPP1(). virtual unsigned int getApp1Length(); protected: // sets the version of this standard supported. // Returns false if memory allocation fails. virtual bool setExifVersion(const std::string& exif_version); // Resets the pointers and memories. virtual void reset(); // Adds a variable length tag to |exif_data_|. It will remove the original one // if the tag exists. // Returns the entry of the tag. The reference count of returned ExifEntry is // two. virtual std::unique_ptr addVariableLengthEntry(ExifIfd ifd, ExifTag tag, ExifFormat format, uint64_t components, unsigned int size); // Adds a entry of |tag| in |exif_data_|. It won't remove the original one if // the tag exists. // Returns the entry of the tag. It adds one reference count to returned // ExifEntry. virtual std::unique_ptr addEntry(ExifIfd ifd, ExifTag tag); // Helpe functions to add exif data with different types. virtual bool setShort(ExifIfd ifd, ExifTag tag, uint16_t value, const std::string& msg); virtual bool setLong(ExifIfd ifd, ExifTag tag, uint32_t value, const std::string& msg); virtual bool setRational(ExifIfd ifd, ExifTag tag, uint32_t numerator, uint32_t denominator, const std::string& msg); virtual bool setSRational(ExifIfd ifd, ExifTag tag, int32_t numerator, int32_t denominator, const std::string& msg); virtual bool setString(ExifIfd ifd, ExifTag tag, ExifFormat format, const std::string& buffer, const std::string& msg); float convertToApex(float val) { return 2.0f * log2f(val); } // Destroys the buffer of APP1 segment if exists. virtual void destroyApp1(); // The Exif data (APP1). Owned by this class. ExifData* exif_data_; // The raw data of APP1 segment. It's allocated by ExifMem in |exif_data_| but // owned by this class. uint8_t* app1_buffer_; // The length of |app1_buffer_|. unsigned int app1_length_; // How precise the float-to-rational conversion for EXIF tags would be. const static int kRationalPrecision = 10000; }; #define SET_SHORT(ifd, tag, value) \ do { \ if (setShort(ifd, tag, value, #tag) == false) \ return false; \ } while (0); #define SET_LONG(ifd, tag, value) \ do { \ if (setLong(ifd, tag, value, #tag) == false) \ return false; \ } while (0); #define SET_RATIONAL(ifd, tag, numerator, denominator) \ do { \ if (setRational(ifd, tag, numerator, denominator, #tag) == false) \ return false; \ } while (0); #define SET_SRATIONAL(ifd, tag, numerator, denominator) \ do { \ if (setSRational(ifd, tag, numerator, denominator, #tag) == false) \ return false; \ } while (0); #define SET_STRING(ifd, tag, format, buffer) \ do { \ if (setString(ifd, tag, format, buffer, #tag) == false) \ return false; \ } while (0); // This comes from the Exif Version 2.2 standard table 6. const char gExifAsciiPrefix[] = {0x41, 0x53, 0x43, 0x49, 0x49, 0x0, 0x0, 0x0}; static void setLatitudeOrLongitudeData(unsigned char* data, double num) { // Take the integer part of |num|. ExifLong degrees = static_cast(num); ExifLong minutes = static_cast(60 * (num - degrees)); ExifLong microseconds = static_cast(3600000000u * (num - degrees - minutes / 60.0)); exif_set_rational(data, EXIF_BYTE_ORDER_INTEL, {degrees, 1}); exif_set_rational(data + sizeof(ExifRational), EXIF_BYTE_ORDER_INTEL, {minutes, 1}); exif_set_rational(data + 2 * sizeof(ExifRational), EXIF_BYTE_ORDER_INTEL, {microseconds, 1000000}); } ExifUtils *ExifUtils::create() { return new ExifUtilsImpl(); } ExifUtils::~ExifUtils() { } ExifUtilsImpl::ExifUtilsImpl() : exif_data_(nullptr), app1_buffer_(nullptr), app1_length_(0) {} ExifUtilsImpl::~ExifUtilsImpl() { reset(); } bool ExifUtilsImpl::initialize(const unsigned char *app1Segment, size_t app1SegmentSize) { reset(); exif_data_ = exif_data_new_from_data(app1Segment, app1SegmentSize); if (exif_data_ == nullptr) { ALOGE("%s: allocate memory for exif_data_ failed", __FUNCTION__); return false; } // set the image options. exif_data_set_option(exif_data_, EXIF_DATA_OPTION_FOLLOW_SPECIFICATION); exif_data_set_data_type(exif_data_, EXIF_DATA_TYPE_COMPRESSED); exif_data_set_byte_order(exif_data_, EXIF_BYTE_ORDER_INTEL); // set exif version to 2.2. if (!setExifVersion("0220")) { return false; } return true; } bool ExifUtilsImpl::initializeEmpty() { reset(); exif_data_ = exif_data_new(); if (exif_data_ == nullptr) { ALOGE("%s: allocate memory for exif_data_ failed", __FUNCTION__); return false; } // set the image options. exif_data_set_option(exif_data_, EXIF_DATA_OPTION_FOLLOW_SPECIFICATION); exif_data_set_data_type(exif_data_, EXIF_DATA_TYPE_COMPRESSED); exif_data_set_byte_order(exif_data_, EXIF_BYTE_ORDER_INTEL); // set exif version to 2.2. if (!setExifVersion("0220")) { return false; } return true; } bool ExifUtilsImpl::setAperture(float aperture) { float apexValue = convertToApex(aperture); SET_RATIONAL(EXIF_IFD_EXIF, EXIF_TAG_APERTURE_VALUE, static_cast(std::round(apexValue * kRationalPrecision)), kRationalPrecision); return true; } bool ExifUtilsImpl::setColorSpace(uint16_t color_space) { SET_SHORT(EXIF_IFD_EXIF, EXIF_TAG_COLOR_SPACE, color_space); return true; } bool ExifUtilsImpl::setDateTime(const struct tm& t) { // The length is 20 bytes including NULL for termination in Exif standard. char str[20]; int result = snprintf(str, sizeof(str), "%04i:%02i:%02i %02i:%02i:%02i", t.tm_year + 1900, t.tm_mon + 1, t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec); if (result != sizeof(str) - 1) { ALOGW("%s: Input time is invalid", __FUNCTION__); return false; } std::string buffer(str); SET_STRING(EXIF_IFD_0, EXIF_TAG_DATE_TIME, EXIF_FORMAT_ASCII, buffer); SET_STRING(EXIF_IFD_EXIF, EXIF_TAG_DATE_TIME_ORIGINAL, EXIF_FORMAT_ASCII, buffer); SET_STRING(EXIF_IFD_EXIF, EXIF_TAG_DATE_TIME_DIGITIZED, EXIF_FORMAT_ASCII, buffer); return true; } bool ExifUtilsImpl::setDigitalZoomRatio( uint32_t crop_width, uint32_t crop_height, uint32_t sensor_width, uint32_t sensor_height) { float zoomRatioX = (crop_width == 0) ? 1.0 : 1.0 * sensor_width / crop_width; float zoomRatioY = (crop_height == 0) ? 1.0 : 1.0 * sensor_height / crop_height; float zoomRatio = std::max(zoomRatioX, zoomRatioY); const static float noZoomThreshold = 1.02f; if (zoomRatio <= noZoomThreshold) { SET_RATIONAL(EXIF_IFD_EXIF, EXIF_TAG_DIGITAL_ZOOM_RATIO, 0, 1); } else { SET_RATIONAL(EXIF_IFD_EXIF, EXIF_TAG_DIGITAL_ZOOM_RATIO, static_cast(std::round(zoomRatio * kRationalPrecision)), kRationalPrecision); } return true; } bool ExifUtilsImpl::setExposureMode(uint8_t exposure_mode) { uint16_t exposureMode = (exposure_mode == ANDROID_CONTROL_AE_MODE_OFF) ? 1 : 0; SET_SHORT(EXIF_IFD_EXIF, EXIF_TAG_EXPOSURE_MODE, exposureMode); return true; } bool ExifUtilsImpl::setExposureTime(float exposure_time) { SET_RATIONAL(EXIF_IFD_EXIF, EXIF_TAG_EXPOSURE_TIME, static_cast(std::round(exposure_time * kRationalPrecision)), kRationalPrecision); return true; } bool ExifUtilsImpl::setFlash(uint8_t flash_available, uint8_t flash_state, uint8_t ae_mode) { // EXIF_TAG_FLASH bits layout per EXIF standard: // Bit 0: 0 - did not fire // 1 - fired // Bit 1-2: status of return light // Bit 3-4: 0 - unknown // 1 - compulsory flash firing // 2 - compulsory flash suppression // 3 - auto mode // Bit 5: 0 - flash function present // 1 - no flash function // Bit 6: 0 - no red-eye reduction mode or unknown // 1 - red-eye reduction supported uint16_t flash = 0x20; if (flash_available == ANDROID_FLASH_INFO_AVAILABLE_TRUE) { flash = 0x00; if (flash_state == ANDROID_FLASH_STATE_FIRED) { flash |= 0x1; } if (ae_mode == ANDROID_CONTROL_AE_MODE_ON_AUTO_FLASH_REDEYE) { flash |= 0x40; } uint16_t flashMode = 0; switch (ae_mode) { case ANDROID_CONTROL_AE_MODE_ON_AUTO_FLASH: case ANDROID_CONTROL_AE_MODE_ON_AUTO_FLASH_REDEYE: flashMode = 3; // AUTO break; case ANDROID_CONTROL_AE_MODE_ON_ALWAYS_FLASH: case ANDROID_CONTROL_AE_MODE_ON_EXTERNAL_FLASH: flashMode = 1; // ON break; case ANDROID_CONTROL_AE_MODE_OFF: case ANDROID_CONTROL_AE_MODE_ON: flashMode = 2; // OFF break; default: flashMode = 0; // UNKNOWN break; } flash |= (flashMode << 3); } SET_SHORT(EXIF_IFD_EXIF, EXIF_TAG_FLASH, flash); return true; } bool ExifUtilsImpl::setFNumber(float f_number) { SET_RATIONAL(EXIF_IFD_EXIF, EXIF_TAG_FNUMBER, static_cast(std::round(f_number * kRationalPrecision)), kRationalPrecision); return true; } bool ExifUtilsImpl::setFocalLength(float focal_length) { uint32_t numerator = static_cast(std::round(focal_length * kRationalPrecision)); SET_RATIONAL(EXIF_IFD_EXIF, EXIF_TAG_FOCAL_LENGTH, numerator, kRationalPrecision); return true; } bool ExifUtilsImpl::setFocalLengthIn35mmFilm( float focal_length, float sensor_size_x, float sensor_size_y) { static const float filmDiagonal = 43.27; // diagonal of 35mm film static const float minSensorDiagonal = 0.01; float sensorDiagonal = std::sqrt( sensor_size_x * sensor_size_x + sensor_size_y * sensor_size_y); sensorDiagonal = std::max(sensorDiagonal, minSensorDiagonal); float focalLength35mmFilm = std::round(focal_length * filmDiagonal / sensorDiagonal); focalLength35mmFilm = std::min(1.0f * 65535, focalLength35mmFilm); SET_SHORT(EXIF_IFD_EXIF, EXIF_TAG_FOCAL_LENGTH_IN_35MM_FILM, static_cast(focalLength35mmFilm)); return true; } bool ExifUtilsImpl::setGpsAltitude(double altitude) { ExifTag refTag = static_cast(EXIF_TAG_GPS_ALTITUDE_REF); std::unique_ptr refEntry = addVariableLengthEntry(EXIF_IFD_GPS, refTag, EXIF_FORMAT_BYTE, 1, 1); if (!refEntry) { ALOGE("%s: Adding GPSAltitudeRef exif entry failed", __FUNCTION__); return false; } if (altitude >= 0) { *refEntry->data = 0; } else { *refEntry->data = 1; altitude *= -1; } ExifTag tag = static_cast(EXIF_TAG_GPS_ALTITUDE); std::unique_ptr entry = addVariableLengthEntry( EXIF_IFD_GPS, tag, EXIF_FORMAT_RATIONAL, 1, sizeof(ExifRational)); if (!entry) { exif_content_remove_entry(exif_data_->ifd[EXIF_IFD_GPS], refEntry.get()); ALOGE("%s: Adding GPSAltitude exif entry failed", __FUNCTION__); return false; } exif_set_rational(entry->data, EXIF_BYTE_ORDER_INTEL, {static_cast(altitude * 1000), 1000}); return true; } bool ExifUtilsImpl::setGpsLatitude(double latitude) { const ExifTag refTag = static_cast(EXIF_TAG_GPS_LATITUDE_REF); std::unique_ptr refEntry = addVariableLengthEntry(EXIF_IFD_GPS, refTag, EXIF_FORMAT_ASCII, 2, 2); if (!refEntry) { ALOGE("%s: Adding GPSLatitudeRef exif entry failed", __FUNCTION__); return false; } if (latitude >= 0) { memcpy(refEntry->data, "N", sizeof("N")); } else { memcpy(refEntry->data, "S", sizeof("S")); latitude *= -1; } const ExifTag tag = static_cast(EXIF_TAG_GPS_LATITUDE); std::unique_ptr entry = addVariableLengthEntry( EXIF_IFD_GPS, tag, EXIF_FORMAT_RATIONAL, 3, 3 * sizeof(ExifRational)); if (!entry) { exif_content_remove_entry(exif_data_->ifd[EXIF_IFD_GPS], refEntry.get()); ALOGE("%s: Adding GPSLatitude exif entry failed", __FUNCTION__); return false; } setLatitudeOrLongitudeData(entry->data, latitude); return true; } bool ExifUtilsImpl::setGpsLongitude(double longitude) { ExifTag refTag = static_cast(EXIF_TAG_GPS_LONGITUDE_REF); std::unique_ptr refEntry = addVariableLengthEntry(EXIF_IFD_GPS, refTag, EXIF_FORMAT_ASCII, 2, 2); if (!refEntry) { ALOGE("%s: Adding GPSLongitudeRef exif entry failed", __FUNCTION__); return false; } if (longitude >= 0) { memcpy(refEntry->data, "E", sizeof("E")); } else { memcpy(refEntry->data, "W", sizeof("W")); longitude *= -1; } ExifTag tag = static_cast(EXIF_TAG_GPS_LONGITUDE); std::unique_ptr entry = addVariableLengthEntry( EXIF_IFD_GPS, tag, EXIF_FORMAT_RATIONAL, 3, 3 * sizeof(ExifRational)); if (!entry) { exif_content_remove_entry(exif_data_->ifd[EXIF_IFD_GPS], refEntry.get()); ALOGE("%s: Adding GPSLongitude exif entry failed", __FUNCTION__); return false; } setLatitudeOrLongitudeData(entry->data, longitude); return true; } bool ExifUtilsImpl::setGpsProcessingMethod(const std::string& method) { std::string buffer = std::string(gExifAsciiPrefix, sizeof(gExifAsciiPrefix)) + method; SET_STRING(EXIF_IFD_GPS, static_cast(EXIF_TAG_GPS_PROCESSING_METHOD), EXIF_FORMAT_UNDEFINED, buffer); return true; } bool ExifUtilsImpl::setGpsTimestamp(const struct tm& t) { const ExifTag dateTag = static_cast(EXIF_TAG_GPS_DATE_STAMP); const size_t kGpsDateStampSize = 11; std::unique_ptr entry = addVariableLengthEntry(EXIF_IFD_GPS, dateTag, EXIF_FORMAT_ASCII, kGpsDateStampSize, kGpsDateStampSize); if (!entry) { ALOGE("%s: Adding GPSDateStamp exif entry failed", __FUNCTION__); return false; } int result = snprintf(reinterpret_cast(entry->data), kGpsDateStampSize, "%04i:%02i:%02i", t.tm_year + 1900, t.tm_mon + 1, t.tm_mday); if (result != kGpsDateStampSize - 1) { ALOGW("%s: Input time is invalid", __FUNCTION__); return false; } const ExifTag timeTag = static_cast(EXIF_TAG_GPS_TIME_STAMP); entry = addVariableLengthEntry(EXIF_IFD_GPS, timeTag, EXIF_FORMAT_RATIONAL, 3, 3 * sizeof(ExifRational)); if (!entry) { ALOGE("%s: Adding GPSTimeStamp exif entry failed", __FUNCTION__); return false; } exif_set_rational(entry->data, EXIF_BYTE_ORDER_INTEL, {static_cast(t.tm_hour), 1}); exif_set_rational(entry->data + sizeof(ExifRational), EXIF_BYTE_ORDER_INTEL, {static_cast(t.tm_min), 1}); exif_set_rational(entry->data + 2 * sizeof(ExifRational), EXIF_BYTE_ORDER_INTEL, {static_cast(t.tm_sec), 1}); return true; } bool ExifUtilsImpl::setImageHeight(uint32_t length) { SET_SHORT(EXIF_IFD_0, EXIF_TAG_IMAGE_LENGTH, length); SET_LONG(EXIF_IFD_EXIF, EXIF_TAG_PIXEL_Y_DIMENSION, length); return true; } bool ExifUtilsImpl::setImageWidth(uint32_t width) { SET_SHORT(EXIF_IFD_0, EXIF_TAG_IMAGE_WIDTH, width); SET_LONG(EXIF_IFD_EXIF, EXIF_TAG_PIXEL_X_DIMENSION, width); return true; } bool ExifUtilsImpl::setIsoSpeedRating(uint16_t iso_speed_ratings) { SET_SHORT(EXIF_IFD_EXIF, EXIF_TAG_ISO_SPEED_RATINGS, iso_speed_ratings); return true; } bool ExifUtilsImpl::setMaxAperture(float aperture) { float maxAperture = convertToApex(aperture); SET_RATIONAL(EXIF_IFD_EXIF, EXIF_TAG_MAX_APERTURE_VALUE, static_cast(std::round(maxAperture * kRationalPrecision)), kRationalPrecision); return true; } bool ExifUtilsImpl::setExposureBias(int32_t ev, uint32_t ev_step_numerator, uint32_t ev_step_denominator) { SET_RATIONAL(EXIF_IFD_EXIF, EXIF_TAG_EXPOSURE_BIAS_VALUE, ev * ev_step_numerator, ev_step_denominator); return true; } bool ExifUtilsImpl::setOrientation(uint16_t degrees) { ExifOrientation value = ExifOrientation::ORIENTATION_0_DEGREES; switch (degrees) { case 90: value = ExifOrientation::ORIENTATION_90_DEGREES; break; case 180: value = ExifOrientation::ORIENTATION_180_DEGREES; break; case 270: value = ExifOrientation::ORIENTATION_270_DEGREES; break; default: break; } return setOrientationValue(value); } bool ExifUtilsImpl::setOrientationValue(ExifOrientation orientationValue) { SET_SHORT(EXIF_IFD_0, EXIF_TAG_ORIENTATION, orientationValue); return true; } bool ExifUtilsImpl::setShutterSpeed(float exposure_time) { float shutterSpeed = -log2f(exposure_time); SET_SRATIONAL(EXIF_IFD_EXIF, EXIF_TAG_SHUTTER_SPEED_VALUE, static_cast(shutterSpeed * kRationalPrecision), kRationalPrecision); return true; } bool ExifUtilsImpl::setSubjectDistance(float diopters) { const static float kInfinityDiopters = 1.0e-6; uint32_t numerator, denominator; uint16_t distanceRange; if (diopters > kInfinityDiopters) { float focusDistance = 1.0f / diopters; numerator = static_cast(std::round(focusDistance * kRationalPrecision)); denominator = kRationalPrecision; if (focusDistance < 1.0f) { distanceRange = 1; // Macro } else if (focusDistance < 3.0f) { distanceRange = 2; // Close } else { distanceRange = 3; // Distant } } else { numerator = 0xFFFFFFFF; denominator = 1; distanceRange = 3; // Distant } SET_RATIONAL(EXIF_IFD_EXIF, EXIF_TAG_SUBJECT_DISTANCE, numerator, denominator); SET_SHORT(EXIF_IFD_EXIF, EXIF_TAG_SUBJECT_DISTANCE_RANGE, distanceRange); return true; } bool ExifUtilsImpl::setSubsecTime(const std::string& subsec_time) { SET_STRING(EXIF_IFD_EXIF, EXIF_TAG_SUB_SEC_TIME, EXIF_FORMAT_ASCII, subsec_time); SET_STRING(EXIF_IFD_EXIF, EXIF_TAG_SUB_SEC_TIME_ORIGINAL, EXIF_FORMAT_ASCII, subsec_time); SET_STRING(EXIF_IFD_EXIF, EXIF_TAG_SUB_SEC_TIME_DIGITIZED, EXIF_FORMAT_ASCII, subsec_time); return true; } bool ExifUtilsImpl::setWhiteBalance(uint8_t white_balance) { uint16_t whiteBalance = (white_balance == ANDROID_CONTROL_AWB_MODE_AUTO) ? 0 : 1; SET_SHORT(EXIF_IFD_EXIF, EXIF_TAG_WHITE_BALANCE, whiteBalance); return true; } bool ExifUtilsImpl::generateApp1() { destroyApp1(); // Save the result into |app1_buffer_|. exif_data_save_data(exif_data_, &app1_buffer_, &app1_length_); if (!app1_length_) { ALOGE("%s: Allocate memory for app1_buffer_ failed", __FUNCTION__); return false; } /* * The JPEG segment size is 16 bits in spec. The size of APP1 segment should * be smaller than 65533 because there are two bytes for segment size field. */ if (app1_length_ > 65533) { destroyApp1(); ALOGE("%s: The size of APP1 segment is too large", __FUNCTION__); return false; } return true; } const uint8_t* ExifUtilsImpl::getApp1Buffer() { return app1_buffer_; } unsigned int ExifUtilsImpl::getApp1Length() { return app1_length_; } bool ExifUtilsImpl::setExifVersion(const std::string& exif_version) { SET_STRING(EXIF_IFD_EXIF, EXIF_TAG_EXIF_VERSION, EXIF_FORMAT_UNDEFINED, exif_version); return true; } void ExifUtilsImpl::reset() { destroyApp1(); if (exif_data_) { /* * Since we decided to ignore the original APP1, we are sure that there is * no thumbnail allocated by libexif. |exif_data_->data| is actually * allocated by JpegCompressor. sets |exif_data_->data| to nullptr to * prevent exif_data_unref() destroy it incorrectly. */ exif_data_->data = nullptr; exif_data_->size = 0; exif_data_unref(exif_data_); exif_data_ = nullptr; } } std::unique_ptr ExifUtilsImpl::addVariableLengthEntry(ExifIfd ifd, ExifTag tag, ExifFormat format, uint64_t components, unsigned int size) { // Remove old entry if exists. exif_content_remove_entry(exif_data_->ifd[ifd], exif_content_get_entry(exif_data_->ifd[ifd], tag)); ExifMem* mem = exif_mem_new_default(); if (!mem) { ALOGE("%s: Allocate memory for exif entry failed", __FUNCTION__); return nullptr; } std::unique_ptr entry(exif_entry_new_mem(mem)); if (!entry) { ALOGE("%s: Allocate memory for exif entry failed", __FUNCTION__); exif_mem_unref(mem); return nullptr; } void* tmpBuffer = exif_mem_alloc(mem, size); if (!tmpBuffer) { ALOGE("%s: Allocate memory for exif entry failed", __FUNCTION__); exif_mem_unref(mem); return nullptr; } entry->data = static_cast(tmpBuffer); entry->tag = tag; entry->format = format; entry->components = components; entry->size = size; exif_content_add_entry(exif_data_->ifd[ifd], entry.get()); exif_mem_unref(mem); return entry; } std::unique_ptr ExifUtilsImpl::addEntry(ExifIfd ifd, ExifTag tag) { std::unique_ptr entry(exif_content_get_entry(exif_data_->ifd[ifd], tag)); if (entry) { // exif_content_get_entry() won't ref the entry, so we ref here. exif_entry_ref(entry.get()); return entry; } entry.reset(exif_entry_new()); if (!entry) { ALOGE("%s: Allocate memory for exif entry failed", __FUNCTION__); return nullptr; } entry->tag = tag; exif_content_add_entry(exif_data_->ifd[ifd], entry.get()); exif_entry_initialize(entry.get(), tag); return entry; } bool ExifUtilsImpl::setShort(ExifIfd ifd, ExifTag tag, uint16_t value, const std::string& msg) { std::unique_ptr entry = addEntry(ifd, tag); if (!entry) { ALOGE("%s: Adding '%s' entry failed", __FUNCTION__, msg.c_str()); return false; } exif_set_short(entry->data, EXIF_BYTE_ORDER_INTEL, value); return true; } bool ExifUtilsImpl::setLong(ExifIfd ifd, ExifTag tag, uint32_t value, const std::string& msg) { std::unique_ptr entry = addEntry(ifd, tag); if (!entry) { ALOGE("%s: Adding '%s' entry failed", __FUNCTION__, msg.c_str()); return false; } exif_set_long(entry->data, EXIF_BYTE_ORDER_INTEL, value); return true; } bool ExifUtilsImpl::setRational(ExifIfd ifd, ExifTag tag, uint32_t numerator, uint32_t denominator, const std::string& msg) { std::unique_ptr entry = addEntry(ifd, tag); if (!entry) { ALOGE("%s: Adding '%s' entry failed", __FUNCTION__, msg.c_str()); return false; } exif_set_rational(entry->data, EXIF_BYTE_ORDER_INTEL, {numerator, denominator}); return true; } bool ExifUtilsImpl::setSRational(ExifIfd ifd, ExifTag tag, int32_t numerator, int32_t denominator, const std::string& msg) { std::unique_ptr entry = addEntry(ifd, tag); if (!entry) { ALOGE("%s: Adding '%s' entry failed", __FUNCTION__, msg.c_str()); return false; } exif_set_srational(entry->data, EXIF_BYTE_ORDER_INTEL, {numerator, denominator}); return true; } bool ExifUtilsImpl::setString(ExifIfd ifd, ExifTag tag, ExifFormat format, const std::string& buffer, const std::string& msg) { size_t entry_size = buffer.length(); // Since the exif format is undefined, NULL termination is not necessary. if (format == EXIF_FORMAT_ASCII) { entry_size++; } std::unique_ptr entry = addVariableLengthEntry(ifd, tag, format, entry_size, entry_size); if (!entry) { ALOGE("%s: Adding '%s' entry failed", __FUNCTION__, msg.c_str()); return false; } memcpy(entry->data, buffer.c_str(), entry_size); return true; } void ExifUtilsImpl::destroyApp1() { /* * Since there is no API to access ExifMem in ExifData->priv, we use free * here, which is the default free function in libexif. See * exif_data_save_data() for detail. */ free(app1_buffer_); app1_buffer_ = nullptr; app1_length_ = 0; } bool ExifUtilsImpl::setFromMetadata(const CameraMetadata& metadata, const CameraMetadata& staticInfo, const size_t imageWidth, const size_t imageHeight) { if (!setImageWidth(imageWidth) || !setImageHeight(imageHeight)) { ALOGE("%s: setting image resolution failed.", __FUNCTION__); return false; } struct timespec tp; struct tm time_info; bool time_available = clock_gettime(CLOCK_REALTIME, &tp) != -1; localtime_r(&tp.tv_sec, &time_info); if (!setDateTime(time_info)) { ALOGE("%s: setting data time failed.", __FUNCTION__); return false; } float focal_length; camera_metadata_ro_entry entry = metadata.find(ANDROID_LENS_FOCAL_LENGTH); if (entry.count) { focal_length = entry.data.f[0]; if (!setFocalLength(focal_length)) { ALOGE("%s: setting focal length failed.", __FUNCTION__); return false; } camera_metadata_ro_entry sensorSizeEntry = staticInfo.find(ANDROID_SENSOR_INFO_PHYSICAL_SIZE); if (sensorSizeEntry.count == 2) { if (!setFocalLengthIn35mmFilm( focal_length, sensorSizeEntry.data.f[0], sensorSizeEntry.data.f[1])) { ALOGE("%s: setting focal length in 35mm failed.", __FUNCTION__); return false; } } } else { ALOGV("%s: Cannot find focal length in metadata.", __FUNCTION__); } int32_t sensorPixelMode = ANDROID_SENSOR_PIXEL_MODE_DEFAULT; camera_metadata_ro_entry sensorPixelModeEntry = metadata.find(ANDROID_SENSOR_PIXEL_MODE); if (sensorPixelModeEntry.count != 0) { sensorPixelMode = sensorPixelModeEntry.data.u8[0]; if (sensorPixelMode != ANDROID_SENSOR_PIXEL_MODE_DEFAULT || sensorPixelMode != ANDROID_SENSOR_PIXEL_MODE_MAXIMUM_RESOLUTION) { ALOGE("%s: Request sensor pixel mode is not one of the valid values %d", __FUNCTION__, sensorPixelMode); return false; } } int32_t activeArrayTag = sensorPixelMode == ANDROID_SENSOR_PIXEL_MODE_MAXIMUM_RESOLUTION ? ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE_MAXIMUM_RESOLUTION : ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE; if (metadata.exists(ANDROID_SCALER_CROP_REGION) && staticInfo.exists(activeArrayTag)) { entry = metadata.find(ANDROID_SCALER_CROP_REGION); camera_metadata_ro_entry activeArrayEntry = staticInfo.find(activeArrayTag); if (!setDigitalZoomRatio(entry.data.i32[2], entry.data.i32[3], activeArrayEntry.data.i32[2], activeArrayEntry.data.i32[3])) { ALOGE("%s: setting digital zoom ratio failed.", __FUNCTION__); return false; } } if (metadata.exists(ANDROID_JPEG_GPS_COORDINATES)) { entry = metadata.find(ANDROID_JPEG_GPS_COORDINATES); if (entry.count < 3) { ALOGE("%s: Gps coordinates in metadata is not complete.", __FUNCTION__); return false; } if (!setGpsLatitude(entry.data.d[0])) { ALOGE("%s: setting gps latitude failed.", __FUNCTION__); return false; } if (!setGpsLongitude(entry.data.d[1])) { ALOGE("%s: setting gps longitude failed.", __FUNCTION__); return false; } if (!setGpsAltitude(entry.data.d[2])) { ALOGE("%s: setting gps altitude failed.", __FUNCTION__); return false; } } if (metadata.exists(ANDROID_JPEG_GPS_PROCESSING_METHOD)) { entry = metadata.find(ANDROID_JPEG_GPS_PROCESSING_METHOD); std::string method_str(reinterpret_cast(entry.data.u8)); if (!setGpsProcessingMethod(method_str)) { ALOGE("%s: setting gps processing method failed.", __FUNCTION__); return false; } } if (time_available && metadata.exists(ANDROID_JPEG_GPS_TIMESTAMP)) { entry = metadata.find(ANDROID_JPEG_GPS_TIMESTAMP); time_t timestamp = static_cast(entry.data.i64[0]); if (gmtime_r(×tamp, &time_info)) { if (!setGpsTimestamp(time_info)) { ALOGE("%s: setting gps timestamp failed.", __FUNCTION__); return false; } } else { ALOGE("%s: Time tranformation failed.", __FUNCTION__); return false; } } if (staticInfo.exists(ANDROID_CONTROL_AE_COMPENSATION_STEP) && metadata.exists(ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION)) { entry = metadata.find(ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION); camera_metadata_ro_entry stepEntry = staticInfo.find(ANDROID_CONTROL_AE_COMPENSATION_STEP); if (!setExposureBias(entry.data.i32[0], stepEntry.data.r[0].numerator, stepEntry.data.r[0].denominator)) { ALOGE("%s: setting exposure bias failed.", __FUNCTION__); return false; } } if (metadata.exists(ANDROID_JPEG_ORIENTATION)) { entry = metadata.find(ANDROID_JPEG_ORIENTATION); if (!setOrientation(entry.data.i32[0])) { ALOGE("%s: setting orientation failed.", __FUNCTION__); return false; } } if (metadata.exists(ANDROID_SENSOR_EXPOSURE_TIME)) { entry = metadata.find(ANDROID_SENSOR_EXPOSURE_TIME); float exposure_time = 1.0f * entry.data.i64[0] / 1e9; if (!setExposureTime(exposure_time)) { ALOGE("%s: setting exposure time failed.", __FUNCTION__); return false; } if (!setShutterSpeed(exposure_time)) { ALOGE("%s: setting shutter speed failed.", __FUNCTION__); return false; } } if (metadata.exists(ANDROID_LENS_FOCUS_DISTANCE)) { entry = metadata.find(ANDROID_LENS_FOCUS_DISTANCE); if (!setSubjectDistance(entry.data.f[0])) { ALOGE("%s: setting subject distance failed.", __FUNCTION__); return false; } } if (metadata.exists(ANDROID_SENSOR_SENSITIVITY)) { entry = metadata.find(ANDROID_SENSOR_SENSITIVITY); int32_t iso = entry.data.i32[0]; camera_metadata_ro_entry postRawSensEntry = metadata.find(ANDROID_CONTROL_POST_RAW_SENSITIVITY_BOOST); if (postRawSensEntry.count > 0) { iso = iso * postRawSensEntry.data.i32[0] / 100; } if (!setIsoSpeedRating(static_cast(iso))) { ALOGE("%s: setting iso rating failed.", __FUNCTION__); return false; } } if (metadata.exists(ANDROID_LENS_APERTURE)) { entry = metadata.find(ANDROID_LENS_APERTURE); if (!setFNumber(entry.data.f[0])) { ALOGE("%s: setting F number failed.", __FUNCTION__); return false; } if (!setAperture(entry.data.f[0])) { ALOGE("%s: setting aperture failed.", __FUNCTION__); return false; } } static const uint16_t kSRGBColorSpace = 1; if (!setColorSpace(kSRGBColorSpace)) { ALOGE("%s: setting color space failed.", __FUNCTION__); return false; } if (staticInfo.exists(ANDROID_LENS_INFO_AVAILABLE_APERTURES)) { entry = staticInfo.find(ANDROID_LENS_INFO_AVAILABLE_APERTURES); if (!setMaxAperture(entry.data.f[0])) { ALOGE("%s: setting max aperture failed.", __FUNCTION__); return false; } } if (staticInfo.exists(ANDROID_FLASH_INFO_AVAILABLE)) { entry = staticInfo.find(ANDROID_FLASH_INFO_AVAILABLE); camera_metadata_ro_entry flashStateEntry = metadata.find(ANDROID_FLASH_STATE); camera_metadata_ro_entry aeModeEntry = metadata.find(ANDROID_CONTROL_AE_MODE); uint8_t flashState = flashStateEntry.count > 0 ? flashStateEntry.data.u8[0] : ANDROID_FLASH_STATE_UNAVAILABLE; uint8_t aeMode = aeModeEntry.count > 0 ? aeModeEntry.data.u8[0] : ANDROID_CONTROL_AE_MODE_OFF; if (!setFlash(entry.data.u8[0], flashState, aeMode)) { ALOGE("%s: setting flash failed.", __FUNCTION__); return false; } } if (metadata.exists(ANDROID_CONTROL_AWB_MODE)) { entry = metadata.find(ANDROID_CONTROL_AWB_MODE); if (!setWhiteBalance(entry.data.u8[0])) { ALOGE("%s: setting white balance failed.", __FUNCTION__); return false; } } if (metadata.exists(ANDROID_CONTROL_AE_MODE)) { entry = metadata.find(ANDROID_CONTROL_AE_MODE); if (!setExposureMode(entry.data.u8[0])) { ALOGE("%s: setting exposure mode failed.", __FUNCTION__); return false; } } if (time_available) { char str[4]; if (snprintf(str, sizeof(str), "%03ld", tp.tv_nsec / 1000000) < 0) { ALOGE("%s: Subsec is invalid: %ld", __FUNCTION__, tp.tv_nsec); return false; } if (!setSubsecTime(std::string(str))) { ALOGE("%s: setting subsec time failed.", __FUNCTION__); return false; } } return true; } } // namespace camera3 } // namespace android