/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wconversion" //#define LOG_NDEBUG 0 #undef LOG_TAG #define LOG_TAG "Layer" #define ATRACE_TAG ATRACE_TAG_GRAPHICS #include "Layer.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "BufferLayer.h" #include "Colorizer.h" #include "DisplayDevice.h" #include "DisplayHardware/HWComposer.h" #include "EffectLayer.h" #include "FrameTimeline.h" #include "FrameTracer/FrameTracer.h" #include "LayerProtoHelper.h" #include "LayerRejecter.h" #include "MonitoredProducer.h" #include "SurfaceFlinger.h" #include "TimeStats/TimeStats.h" #include "TunnelModeEnabledReporter.h" #include "input/InputWindow.h" #define DEBUG_RESIZE 0 namespace android { namespace { constexpr int kDumpTableRowLength = 159; } // namespace using base::StringAppendF; using namespace android::flag_operators; using PresentState = frametimeline::SurfaceFrame::PresentState; std::atomic Layer::sSequence{1}; Layer::Layer(const LayerCreationArgs& args) : mFlinger(args.flinger), mName(args.name), mClientRef(args.client), mWindowType(static_cast( args.metadata.getInt32(METADATA_WINDOW_TYPE, 0))) { uint32_t layerFlags = 0; if (args.flags & ISurfaceComposerClient::eHidden) layerFlags |= layer_state_t::eLayerHidden; if (args.flags & ISurfaceComposerClient::eOpaque) layerFlags |= layer_state_t::eLayerOpaque; if (args.flags & ISurfaceComposerClient::eSecure) layerFlags |= layer_state_t::eLayerSecure; if (args.flags & ISurfaceComposerClient::eSkipScreenshot) layerFlags |= layer_state_t::eLayerSkipScreenshot; mDrawingState.active_legacy.w = args.w; mDrawingState.active_legacy.h = args.h; mDrawingState.flags = layerFlags; mDrawingState.active_legacy.transform.set(0, 0); mDrawingState.crop.makeInvalid(); mDrawingState.requestedCrop = mDrawingState.crop; mDrawingState.z = 0; mDrawingState.color.a = 1.0f; mDrawingState.layerStack = 0; mDrawingState.sequence = 0; mDrawingState.requested_legacy = mDrawingState.active_legacy; mDrawingState.width = UINT32_MAX; mDrawingState.height = UINT32_MAX; mDrawingState.transform.set(0, 0); mDrawingState.frameNumber = 0; mDrawingState.bufferTransform = 0; mDrawingState.transformToDisplayInverse = false; mDrawingState.crop.makeInvalid(); mDrawingState.acquireFence = sp::make(-1); mDrawingState.acquireFenceTime = std::make_shared(mDrawingState.acquireFence); mDrawingState.dataspace = ui::Dataspace::UNKNOWN; mDrawingState.hdrMetadata.validTypes = 0; mDrawingState.surfaceDamageRegion = Region::INVALID_REGION; mDrawingState.cornerRadius = 0.0f; mDrawingState.backgroundBlurRadius = 0; mDrawingState.api = -1; mDrawingState.hasColorTransform = false; mDrawingState.colorSpaceAgnostic = false; mDrawingState.frameRateSelectionPriority = PRIORITY_UNSET; mDrawingState.metadata = args.metadata; mDrawingState.shadowRadius = 0.f; mDrawingState.fixedTransformHint = ui::Transform::ROT_INVALID; mDrawingState.frameTimelineInfo = {}; mDrawingState.postTime = -1; mDrawingState.dropInputMode = gui::DropInputMode::NONE; mDrawingState.destinationFrame.makeInvalid(); if (args.flags & ISurfaceComposerClient::eNoColorFill) { // Set an invalid color so there is no color fill. mDrawingState.color.r = -1.0_hf; mDrawingState.color.g = -1.0_hf; mDrawingState.color.b = -1.0_hf; } CompositorTiming compositorTiming; args.flinger->getCompositorTiming(&compositorTiming); mFrameEventHistory.initializeCompositorTiming(compositorTiming); mFrameTracker.setDisplayRefreshPeriod(compositorTiming.interval); mCallingPid = args.callingPid; mCallingUid = args.callingUid; if (mCallingUid == AID_GRAPHICS || mCallingUid == AID_SYSTEM) { // If the system didn't send an ownerUid, use the callingUid for the ownerUid. mOwnerUid = args.metadata.getInt32(METADATA_OWNER_UID, mCallingUid); mOwnerPid = args.metadata.getInt32(METADATA_OWNER_PID, mCallingPid); } else { // A create layer request from a non system request cannot specify the owner uid mOwnerUid = mCallingUid; mOwnerPid = mCallingPid; } // HUANGLONG begin mLayerEx = createLayerEx(mFlinger, sequence); // HUANGLONG end } void Layer::onFirstRef() { mFlinger->onLayerFirstRef(this); } Layer::~Layer() { sp c(mClientRef.promote()); if (c != 0) { c->detachLayer(this); } mFrameTracker.logAndResetStats(mName); mFlinger->onLayerDestroyed(this); if (mDrawingState.sidebandStream != nullptr) { mFlinger->mTunnelModeEnabledReporter->decrementTunnelModeCount(); } if (mHadClonedChild) { mFlinger->mNumClones--; } } LayerCreationArgs::LayerCreationArgs(SurfaceFlinger* flinger, sp client, std::string name, uint32_t w, uint32_t h, uint32_t flags, LayerMetadata metadata) : flinger(flinger), client(std::move(client)), name(std::move(name)), w(w), h(h), flags(flags), metadata(std::move(metadata)) { IPCThreadState* ipc = IPCThreadState::self(); callingPid = ipc->getCallingPid(); callingUid = ipc->getCallingUid(); } // --------------------------------------------------------------------------- // callbacks // --------------------------------------------------------------------------- /* * onLayerDisplayed is only meaningful for BufferLayer, but, is called through * Layer. So, the implementation is done in BufferLayer. When called on a * EffectLayer object, it's essentially a NOP. */ void Layer::onLayerDisplayed(const sp& /*releaseFence*/) {} void Layer::removeRelativeZ(const std::vector& layersInTree) { if (mDrawingState.zOrderRelativeOf == nullptr) { return; } sp strongRelative = mDrawingState.zOrderRelativeOf.promote(); if (strongRelative == nullptr) { setZOrderRelativeOf(nullptr); return; } if (!std::binary_search(layersInTree.begin(), layersInTree.end(), strongRelative.get())) { strongRelative->removeZOrderRelative(this); mFlinger->setTransactionFlags(eTraversalNeeded); setZOrderRelativeOf(nullptr); } } void Layer::removeFromCurrentState() { if (!mRemovedFromDrawingState) { mRemovedFromDrawingState = true; mFlinger->mScheduler->deregisterLayer(this); } mFlinger->markLayerPendingRemovalLocked(this); } sp Layer::getRootLayer() { sp parent = getParent(); if (parent == nullptr) { return this; } return parent->getRootLayer(); } void Layer::onRemovedFromCurrentState() { // Use the root layer since we want to maintain the hierarchy for the entire subtree. auto layersInTree = getRootLayer()->getLayersInTree(LayerVector::StateSet::Current); std::sort(layersInTree.begin(), layersInTree.end()); traverse(LayerVector::StateSet::Current, [&](Layer* layer) { layer->removeFromCurrentState(); layer->removeRelativeZ(layersInTree); }); } void Layer::addToCurrentState() { if (mRemovedFromDrawingState) { mRemovedFromDrawingState = false; mFlinger->mScheduler->registerLayer(this); mFlinger->removeFromOffscreenLayers(this); } for (const auto& child : mCurrentChildren) { child->addToCurrentState(); } } // --------------------------------------------------------------------------- // set-up // --------------------------------------------------------------------------- bool Layer::getPremultipledAlpha() const { return mPremultipliedAlpha; } sp Layer::getHandle() { Mutex::Autolock _l(mLock); if (mGetHandleCalled) { ALOGE("Get handle called twice" ); return nullptr; } mGetHandleCalled = true; return new Handle(mFlinger, this); } // --------------------------------------------------------------------------- // h/w composer set-up // --------------------------------------------------------------------------- static Rect reduce(const Rect& win, const Region& exclude) { if (CC_LIKELY(exclude.isEmpty())) { return win; } if (exclude.isRect()) { return win.reduce(exclude.getBounds()); } return Region(win).subtract(exclude).getBounds(); } static FloatRect reduce(const FloatRect& win, const Region& exclude) { if (CC_LIKELY(exclude.isEmpty())) { return win; } // Convert through Rect (by rounding) for lack of FloatRegion return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect(); } Rect Layer::getScreenBounds(bool reduceTransparentRegion) const { if (!reduceTransparentRegion) { return Rect{mScreenBounds}; } FloatRect bounds = getBounds(); ui::Transform t = getTransform(); // Transform to screen space. bounds = t.transform(bounds); return Rect{bounds}; } FloatRect Layer::getBounds() const { const State& s(getDrawingState()); return getBounds(getActiveTransparentRegion(s)); } FloatRect Layer::getBounds(const Region& activeTransparentRegion) const { // Subtract the transparent region and snap to the bounds. return reduce(mBounds, activeTransparentRegion); } void Layer::computeBounds(FloatRect parentBounds, ui::Transform parentTransform, float parentShadowRadius) { const State& s(getDrawingState()); // Calculate effective layer transform mEffectiveTransform = parentTransform * getActiveTransform(s); // Transform parent bounds to layer space parentBounds = getActiveTransform(s).inverse().transform(parentBounds); // Calculate source bounds mSourceBounds = computeSourceBounds(parentBounds); // Calculate bounds by croping diplay frame with layer crop and parent bounds FloatRect bounds = mSourceBounds; const Rect layerCrop = getCrop(s); if (!layerCrop.isEmpty()) { bounds = mSourceBounds.intersect(layerCrop.toFloatRect()); } bounds = bounds.intersect(parentBounds); mBounds = bounds; mScreenBounds = mEffectiveTransform.transform(mBounds); // Use the layer's own shadow radius if set. Otherwise get the radius from // parent. if (s.shadowRadius > 0.f) { mEffectiveShadowRadius = s.shadowRadius; } else { mEffectiveShadowRadius = parentShadowRadius; } // Shadow radius is passed down to only one layer so if the layer can draw shadows, // don't pass it to its children. const float childShadowRadius = canDrawShadows() ? 0.f : mEffectiveShadowRadius; for (const sp& child : mDrawingChildren) { child->computeBounds(mBounds, mEffectiveTransform, childShadowRadius); } } Rect Layer::getCroppedBufferSize(const State& s) const { Rect size = getBufferSize(s); Rect crop = getCrop(s); if (!crop.isEmpty() && size.isValid()) { size.intersect(crop, &size); } else if (!crop.isEmpty()) { size = crop; } return size; } void Layer::setupRoundedCornersCropCoordinates(Rect win, const FloatRect& roundedCornersCrop) const { // Translate win by the rounded corners rect coordinates, to have all values in // layer coordinate space. win.left -= roundedCornersCrop.left; win.right -= roundedCornersCrop.left; win.top -= roundedCornersCrop.top; win.bottom -= roundedCornersCrop.top; } void Layer::prepareBasicGeometryCompositionState() { const auto& drawingState{getDrawingState()}; const uint32_t layerStack = getLayerStack(); const auto alpha = static_cast(getAlpha()); const bool opaque = isOpaque(drawingState); const bool usesRoundedCorners = getRoundedCornerState().radius != 0.f; auto blendMode = Hwc2::IComposerClient::BlendMode::NONE; if (!opaque || alpha != 1.0f) { blendMode = mPremultipliedAlpha ? Hwc2::IComposerClient::BlendMode::PREMULTIPLIED : Hwc2::IComposerClient::BlendMode::COVERAGE; } auto* compositionState = editCompositionState(); compositionState->layerStackId = (layerStack != ~0u) ? std::make_optional(layerStack) : std::nullopt; compositionState->internalOnly = getPrimaryDisplayOnly(); compositionState->isVisible = isVisible(); compositionState->isOpaque = opaque && !usesRoundedCorners && alpha == 1.f; compositionState->shadowRadius = mEffectiveShadowRadius; compositionState->contentDirty = contentDirty; contentDirty = false; compositionState->geomLayerBounds = mBounds; compositionState->geomLayerTransform = getTransform(); compositionState->geomInverseLayerTransform = compositionState->geomLayerTransform.inverse(); compositionState->transparentRegionHint = getActiveTransparentRegion(drawingState); compositionState->blendMode = static_cast(blendMode); compositionState->alpha = alpha; compositionState->backgroundBlurRadius = drawingState.backgroundBlurRadius; compositionState->blurRegions = drawingState.blurRegions; compositionState->stretchEffect = getStretchEffect(); } void Layer::prepareGeometryCompositionState() { const auto& drawingState{getDrawingState()}; int type = drawingState.metadata.getInt32(METADATA_WINDOW_TYPE, 0); int appId = drawingState.metadata.getInt32(METADATA_OWNER_UID, 0); sp parent = mDrawingParent.promote(); if (parent.get()) { auto& parentState = parent->getDrawingState(); const int parentType = parentState.metadata.getInt32(METADATA_WINDOW_TYPE, 0); const int parentAppId = parentState.metadata.getInt32(METADATA_OWNER_UID, 0); if (parentType > 0 && parentAppId > 0) { type = parentType; appId = parentAppId; } } auto* compositionState = editCompositionState(); compositionState->geomBufferSize = getBufferSize(drawingState); compositionState->geomContentCrop = getBufferCrop(); compositionState->geomCrop = getCrop(drawingState); compositionState->geomBufferTransform = getBufferTransform(); compositionState->geomBufferUsesDisplayInverseTransform = getTransformToDisplayInverse(); compositionState->geomUsesSourceCrop = usesSourceCrop(); compositionState->isSecure = isSecure(); compositionState->metadata.clear(); const auto& supportedMetadata = mFlinger->getHwComposer().getSupportedLayerGenericMetadata(); for (const auto& [key, mandatory] : supportedMetadata) { const auto& genericLayerMetadataCompatibilityMap = mFlinger->getGenericLayerMetadataKeyMap(); auto compatIter = genericLayerMetadataCompatibilityMap.find(key); if (compatIter == std::end(genericLayerMetadataCompatibilityMap)) { continue; } const uint32_t id = compatIter->second; auto it = drawingState.metadata.mMap.find(id); if (it == std::end(drawingState.metadata.mMap)) { continue; } compositionState->metadata .emplace(key, compositionengine::GenericLayerMetadataEntry{mandatory, it->second}); } } void Layer::preparePerFrameCompositionState() { const auto& drawingState{getDrawingState()}; auto* compositionState = editCompositionState(); compositionState->forceClientComposition = false; compositionState->isColorspaceAgnostic = isColorSpaceAgnostic(); compositionState->dataspace = getDataSpace(); compositionState->colorTransform = getColorTransform(); compositionState->colorTransformIsIdentity = !hasColorTransform(); compositionState->surfaceDamage = surfaceDamageRegion; compositionState->hasProtectedContent = isProtected(); const bool usesRoundedCorners = getRoundedCornerState().radius != 0.f; compositionState->isOpaque = isOpaque(drawingState) && !usesRoundedCorners && getAlpha() == 1.0_hf; // Force client composition for special cases known only to the front-end. // Rounded corners no longer force client composition, since we may use a // hole punch so that the layer will appear to have rounded corners. if (isHdrY410() || drawShadows() || drawingState.blurRegions.size() > 0 || compositionState->stretchEffect.hasEffect()) { compositionState->forceClientComposition = true; } } void Layer::prepareCursorCompositionState() { const State& drawingState{getDrawingState()}; auto* compositionState = editCompositionState(); // Apply the layer's transform, followed by the display's global transform // Here we're guaranteed that the layer's transform preserves rects Rect win = getCroppedBufferSize(drawingState); // Subtract the transparent region and snap to the bounds Rect bounds = reduce(win, getActiveTransparentRegion(drawingState)); Rect frame(getTransform().transform(bounds)); compositionState->cursorFrame = frame; } sp Layer::asLayerFE() const { return const_cast( static_cast(this)); } sp Layer::getCompositionEngineLayerFE() const { return nullptr; } compositionengine::LayerFECompositionState* Layer::editCompositionState() { return nullptr; } const compositionengine::LayerFECompositionState* Layer::getCompositionState() const { return nullptr; } bool Layer::onPreComposition(nsecs_t) { return false; } void Layer::prepareCompositionState(compositionengine::LayerFE::StateSubset subset) { using StateSubset = compositionengine::LayerFE::StateSubset; switch (subset) { case StateSubset::BasicGeometry: prepareBasicGeometryCompositionState(); break; case StateSubset::GeometryAndContent: prepareBasicGeometryCompositionState(); prepareGeometryCompositionState(); preparePerFrameCompositionState(); break; case StateSubset::Content: preparePerFrameCompositionState(); break; case StateSubset::Cursor: prepareCursorCompositionState(); break; } } const char* Layer::getDebugName() const { return mName.c_str(); } // --------------------------------------------------------------------------- // drawing... // --------------------------------------------------------------------------- std::optional Layer::prepareClientComposition( compositionengine::LayerFE::ClientCompositionTargetSettings& targetSettings) { if (!getCompositionState()) { return {}; } FloatRect bounds = getBounds(); half alpha = getAlpha(); compositionengine::LayerFE::LayerSettings layerSettings; layerSettings.geometry.boundaries = bounds; layerSettings.geometry.positionTransform = getTransform().asMatrix4(); // skip drawing content if the targetSettings indicate the content will be occluded const bool drawContent = targetSettings.realContentIsVisible || targetSettings.clearContent; layerSettings.skipContentDraw = !drawContent; if (hasColorTransform()) { layerSettings.colorTransform = getColorTransform(); } const auto roundedCornerState = getRoundedCornerState(); layerSettings.geometry.roundedCornersRadius = roundedCornerState.radius; layerSettings.geometry.roundedCornersCrop = roundedCornerState.cropRect; layerSettings.alpha = alpha; layerSettings.sourceDataspace = getDataSpace(); switch (targetSettings.blurSetting) { case LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled: layerSettings.backgroundBlurRadius = getBackgroundBlurRadius(); layerSettings.blurRegions = getBlurRegions(); layerSettings.blurRegionTransform = getActiveTransform(getDrawingState()).inverse().asMatrix4(); break; case LayerFE::ClientCompositionTargetSettings::BlurSetting::BackgroundBlurOnly: layerSettings.backgroundBlurRadius = getBackgroundBlurRadius(); break; case LayerFE::ClientCompositionTargetSettings::BlurSetting::BlurRegionsOnly: layerSettings.blurRegions = getBlurRegions(); layerSettings.blurRegionTransform = getActiveTransform(getDrawingState()).inverse().asMatrix4(); break; case LayerFE::ClientCompositionTargetSettings::BlurSetting::Disabled: default: break; } layerSettings.stretchEffect = getStretchEffect(); // Record the name of the layer for debugging further down the stack. layerSettings.name = getName(); return layerSettings; } void Layer::prepareClearClientComposition(LayerFE::LayerSettings& layerSettings, bool blackout) const { layerSettings.source.buffer.buffer = nullptr; layerSettings.source.solidColor = half3(0.0, 0.0, 0.0); layerSettings.disableBlending = true; layerSettings.bufferId = 0; layerSettings.frameNumber = 0; // If layer is blacked out, force alpha to 1 so that we draw a black color layer. layerSettings.alpha = blackout ? 1.0f : 0.0f; layerSettings.name = getName(); } // TODO(b/188891810): This method now only ever returns 0 or 1 layers so we should return // std::optional instead of a vector. Additionally, we should consider removing // this method entirely in favor of calling prepareClientComposition directly. std::vector Layer::prepareClientCompositionList( compositionengine::LayerFE::ClientCompositionTargetSettings& targetSettings) { std::optional layerSettings = prepareClientComposition(targetSettings); // Nothing to render. if (!layerSettings) { return {}; } // HWC requests to clear this layer. if (targetSettings.clearContent) { prepareClearClientComposition(*layerSettings, false /* blackout */); return {*layerSettings}; } // set the shadow for the layer if needed prepareShadowClientComposition(*layerSettings, targetSettings.viewport); return {*layerSettings}; } Hwc2::IComposerClient::Composition Layer::getCompositionType(const DisplayDevice& display) const { const auto outputLayer = findOutputLayerForDisplay(&display); if (outputLayer == nullptr) { return Hwc2::IComposerClient::Composition::INVALID; } if (outputLayer->getState().hwc) { return (*outputLayer->getState().hwc).hwcCompositionType; } else { return Hwc2::IComposerClient::Composition::CLIENT; } } // ---------------------------------------------------------------------------- // local state // ---------------------------------------------------------------------------- bool Layer::isSecure() const { const State& s(mDrawingState); if (s.flags & layer_state_t::eLayerSecure) { return true; } const auto p = mDrawingParent.promote(); return (p != nullptr) ? p->isSecure() : false; } // ---------------------------------------------------------------------------- // transaction // ---------------------------------------------------------------------------- uint32_t Layer::doTransaction(uint32_t flags) { ATRACE_CALL(); // TODO: This is unfortunate. mDrawingStateModified = mDrawingState.modified; mDrawingState.modified = false; const State& s(getDrawingState()); if (updateGeometry()) { // invalidate and recompute the visible regions if needed flags |= Layer::eVisibleRegion; } if (s.sequence != mLastCommittedTxSequence) { // invalidate and recompute the visible regions if needed mLastCommittedTxSequence = s.sequence; flags |= eVisibleRegion; this->contentDirty = true; // we may use linear filtering, if the matrix scales us mNeedsFiltering = getActiveTransform(s).needsBilinearFiltering(); } commitTransaction(mDrawingState); return flags; } void Layer::commitTransaction(State&) { // Set the present state for all bufferlessSurfaceFramesTX to Presented. The // bufferSurfaceFrameTX will be presented in latchBuffer. for (auto& [token, surfaceFrame] : mDrawingState.bufferlessSurfaceFramesTX) { if (surfaceFrame->getPresentState() != PresentState::Presented) { // With applyPendingStates, we could end up having presented surfaceframes from previous // states surfaceFrame->setPresentState(PresentState::Presented); mFlinger->mFrameTimeline->addSurfaceFrame(surfaceFrame); } } mDrawingState.bufferlessSurfaceFramesTX.clear(); } uint32_t Layer::getTransactionFlags(uint32_t flags) { auto ret = mTransactionFlags & flags; mTransactionFlags &= ~flags; return ret; } uint32_t Layer::setTransactionFlags(uint32_t flags) { return mTransactionFlags |= flags; } bool Layer::setPosition(float x, float y) { if (mDrawingState.transform.tx() == x && mDrawingState.transform.ty() == y) return false; mDrawingState.sequence++; mDrawingState.transform.set(x, y); mDrawingState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setChildLayer(const sp& childLayer, int32_t z) { ssize_t idx = mCurrentChildren.indexOf(childLayer); if (idx < 0) { return false; } if (childLayer->setLayer(z)) { mCurrentChildren.removeAt(idx); mCurrentChildren.add(childLayer); return true; } return false; } bool Layer::setChildRelativeLayer(const sp& childLayer, const sp& relativeToHandle, int32_t relativeZ) { ssize_t idx = mCurrentChildren.indexOf(childLayer); if (idx < 0) { return false; } if (childLayer->setRelativeLayer(relativeToHandle, relativeZ)) { mCurrentChildren.removeAt(idx); mCurrentChildren.add(childLayer); return true; } return false; } bool Layer::setLayer(int32_t z) { if (mDrawingState.z == z && !usingRelativeZ(LayerVector::StateSet::Current)) return false; mDrawingState.sequence++; mDrawingState.z = z; mDrawingState.modified = true; mFlinger->mSomeChildrenChanged = true; // Discard all relative layering. if (mDrawingState.zOrderRelativeOf != nullptr) { sp strongRelative = mDrawingState.zOrderRelativeOf.promote(); if (strongRelative != nullptr) { strongRelative->removeZOrderRelative(this); } setZOrderRelativeOf(nullptr); } setTransactionFlags(eTransactionNeeded); return true; } void Layer::removeZOrderRelative(const wp& relative) { mDrawingState.zOrderRelatives.remove(relative); mDrawingState.sequence++; mDrawingState.modified = true; setTransactionFlags(eTransactionNeeded); } void Layer::addZOrderRelative(const wp& relative) { mDrawingState.zOrderRelatives.add(relative); mDrawingState.modified = true; mDrawingState.sequence++; setTransactionFlags(eTransactionNeeded); } void Layer::setZOrderRelativeOf(const wp& relativeOf) { mDrawingState.zOrderRelativeOf = relativeOf; mDrawingState.sequence++; mDrawingState.modified = true; mDrawingState.isRelativeOf = relativeOf != nullptr; setTransactionFlags(eTransactionNeeded); } bool Layer::setRelativeLayer(const sp& relativeToHandle, int32_t relativeZ) { sp relative = fromHandle(relativeToHandle).promote(); if (relative == nullptr) { return false; } if (mDrawingState.z == relativeZ && usingRelativeZ(LayerVector::StateSet::Current) && mDrawingState.zOrderRelativeOf == relative) { return false; } mFlinger->mSomeChildrenChanged = true; mDrawingState.sequence++; mDrawingState.modified = true; mDrawingState.z = relativeZ; auto oldZOrderRelativeOf = mDrawingState.zOrderRelativeOf.promote(); if (oldZOrderRelativeOf != nullptr) { oldZOrderRelativeOf->removeZOrderRelative(this); } setZOrderRelativeOf(relative); relative->addZOrderRelative(this); setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setTrustedOverlay(bool isTrustedOverlay) { if (mDrawingState.isTrustedOverlay == isTrustedOverlay) return false; mDrawingState.isTrustedOverlay = isTrustedOverlay; mDrawingState.modified = true; mFlinger->mInputInfoChanged = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::isTrustedOverlay() const { if (getDrawingState().isTrustedOverlay) { return true; } const auto& p = mDrawingParent.promote(); return (p != nullptr) && p->isTrustedOverlay(); } bool Layer::setSize(uint32_t w, uint32_t h) { if (mDrawingState.requested_legacy.w == w && mDrawingState.requested_legacy.h == h) return false; mDrawingState.requested_legacy.w = w; mDrawingState.requested_legacy.h = h; mDrawingState.modified = true; setTransactionFlags(eTransactionNeeded); // record the new size, from this point on, when the client request // a buffer, it'll get the new size. setDefaultBufferSize(mDrawingState.requested_legacy.w, mDrawingState.requested_legacy.h); return true; } bool Layer::setAlpha(float alpha) { if (mDrawingState.color.a == alpha) return false; mDrawingState.sequence++; mDrawingState.color.a = alpha; mDrawingState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setBackgroundColor(const half3& color, float alpha, ui::Dataspace dataspace) { if (!mDrawingState.bgColorLayer && alpha == 0) { return false; } mDrawingState.sequence++; mDrawingState.modified = true; setTransactionFlags(eTransactionNeeded); if (!mDrawingState.bgColorLayer && alpha != 0) { // create background color layer if one does not yet exist uint32_t flags = ISurfaceComposerClient::eFXSurfaceEffect; std::string name = mName + "BackgroundColorLayer"; mDrawingState.bgColorLayer = mFlinger->getFactory().createEffectLayer( LayerCreationArgs(mFlinger.get(), nullptr, std::move(name), 0, 0, flags, LayerMetadata())); // add to child list addChild(mDrawingState.bgColorLayer); mFlinger->mLayersAdded = true; // set up SF to handle added color layer if (isRemovedFromCurrentState()) { mDrawingState.bgColorLayer->onRemovedFromCurrentState(); } mFlinger->setTransactionFlags(eTransactionNeeded); } else if (mDrawingState.bgColorLayer && alpha == 0) { mDrawingState.bgColorLayer->reparent(nullptr); mDrawingState.bgColorLayer = nullptr; return true; } mDrawingState.bgColorLayer->setColor(color); mDrawingState.bgColorLayer->setLayer(std::numeric_limits::min()); mDrawingState.bgColorLayer->setAlpha(alpha); mDrawingState.bgColorLayer->setDataspace(dataspace); return true; } bool Layer::setCornerRadius(float cornerRadius) { if (mDrawingState.cornerRadius == cornerRadius) return false; mDrawingState.sequence++; mDrawingState.cornerRadius = cornerRadius; mDrawingState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setBackgroundBlurRadius(int backgroundBlurRadius) { if (mDrawingState.backgroundBlurRadius == backgroundBlurRadius) return false; mDrawingState.sequence++; mDrawingState.backgroundBlurRadius = backgroundBlurRadius; mDrawingState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setMatrix(const layer_state_t::matrix22_t& matrix, bool allowNonRectPreservingTransforms) { ui::Transform t; t.set(matrix.dsdx, matrix.dtdy, matrix.dtdx, matrix.dsdy); if (!allowNonRectPreservingTransforms && !t.preserveRects()) { ALOGW("Attempt to set rotation matrix without permission ACCESS_SURFACE_FLINGER nor " "ROTATE_SURFACE_FLINGER ignored"); return false; } mDrawingState.sequence++; mDrawingState.transform.set(matrix.dsdx, matrix.dtdy, matrix.dtdx, matrix.dsdy); mDrawingState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setTransparentRegionHint(const Region& transparent) { mDrawingState.requestedTransparentRegion_legacy = transparent; mDrawingState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setBlurRegions(const std::vector& blurRegions) { mDrawingState.blurRegions = blurRegions; mDrawingState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setFlags(uint32_t flags, uint32_t mask) { const uint32_t newFlags = (mDrawingState.flags & ~mask) | (flags & mask); if (mDrawingState.flags == newFlags) return false; mDrawingState.sequence++; mDrawingState.flags = newFlags; mDrawingState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setCrop(const Rect& crop) { if (mDrawingState.requestedCrop == crop) return false; mDrawingState.sequence++; mDrawingState.requestedCrop = crop; mDrawingState.crop = crop; mDrawingState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setMetadata(const LayerMetadata& data) { if (!mDrawingState.metadata.merge(data, true /* eraseEmpty */)) return false; mDrawingState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setLayerStack(uint32_t layerStack) { if (mDrawingState.layerStack == layerStack) return false; mDrawingState.sequence++; mDrawingState.layerStack = layerStack; mDrawingState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setColorSpaceAgnostic(const bool agnostic) { if (mDrawingState.colorSpaceAgnostic == agnostic) { return false; } mDrawingState.sequence++; mDrawingState.colorSpaceAgnostic = agnostic; mDrawingState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setFrameRateSelectionPriority(int32_t priority) { if (mDrawingState.frameRateSelectionPriority == priority) return false; mDrawingState.frameRateSelectionPriority = priority; mDrawingState.sequence++; mDrawingState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } int32_t Layer::getFrameRateSelectionPriority() const { // Check if layer has priority set. if (mDrawingState.frameRateSelectionPriority != PRIORITY_UNSET) { return mDrawingState.frameRateSelectionPriority; } // If not, search whether its parents have it set. sp parent = getParent(); if (parent != nullptr) { return parent->getFrameRateSelectionPriority(); } return Layer::PRIORITY_UNSET; } bool Layer::isLayerFocusedBasedOnPriority(int32_t priority) { return priority == PRIORITY_FOCUSED_WITH_MODE || priority == PRIORITY_FOCUSED_WITHOUT_MODE; }; uint32_t Layer::getLayerStack() const { auto p = mDrawingParent.promote(); if (p == nullptr) { return getDrawingState().layerStack; } return p->getLayerStack(); } bool Layer::setShadowRadius(float shadowRadius) { if (mDrawingState.shadowRadius == shadowRadius) { return false; } mDrawingState.sequence++; mDrawingState.shadowRadius = shadowRadius; mDrawingState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setFixedTransformHint(ui::Transform::RotationFlags fixedTransformHint) { if (mDrawingState.fixedTransformHint == fixedTransformHint) { return false; } mDrawingState.sequence++; mDrawingState.fixedTransformHint = fixedTransformHint; mDrawingState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool Layer::setStretchEffect(const StretchEffect& effect) { StretchEffect temp = effect; temp.sanitize(); if (mDrawingState.stretchEffect == temp) { return false; } mDrawingState.sequence++; mDrawingState.stretchEffect = temp; mDrawingState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } StretchEffect Layer::getStretchEffect() const { if (mDrawingState.stretchEffect.hasEffect()) { return mDrawingState.stretchEffect; } sp parent = getParent(); if (parent != nullptr) { auto effect = parent->getStretchEffect(); if (effect.hasEffect()) { // TODO(b/179047472): Map it? Or do we make the effect be in global space? return effect; } } return StretchEffect{}; } bool Layer::propagateFrameRateForLayerTree(FrameRate parentFrameRate, bool* transactionNeeded) { // The frame rate for layer tree is this layer's frame rate if present, or the parent frame rate const auto frameRate = [&] { if (mDrawingState.frameRate.rate.isValid() || mDrawingState.frameRate.type == FrameRateCompatibility::NoVote) { return mDrawingState.frameRate; } return parentFrameRate; }(); *transactionNeeded |= setFrameRateForLayerTree(frameRate); // The frame rate is propagated to the children bool childrenHaveFrameRate = false; for (const sp& child : mCurrentChildren) { childrenHaveFrameRate |= child->propagateFrameRateForLayerTree(frameRate, transactionNeeded); } // If we don't have a valid frame rate, but the children do, we set this // layer as NoVote to allow the children to control the refresh rate if (!frameRate.rate.isValid() && frameRate.type != FrameRateCompatibility::NoVote && childrenHaveFrameRate) { *transactionNeeded |= setFrameRateForLayerTree(FrameRate(Fps(0.0f), FrameRateCompatibility::NoVote)); } // We return whether this layer ot its children has a vote. We ignore ExactOrMultiple votes for // the same reason we are allowing touch boost for those layers. See // RefreshRateConfigs::getBestRefreshRate for more details. const auto layerVotedWithDefaultCompatibility = frameRate.rate.isValid() && frameRate.type == FrameRateCompatibility::Default; const auto layerVotedWithNoVote = frameRate.type == FrameRateCompatibility::NoVote; const auto layerVotedWithExactCompatibility = frameRate.rate.isValid() && frameRate.type == FrameRateCompatibility::Exact; return layerVotedWithDefaultCompatibility || layerVotedWithNoVote || layerVotedWithExactCompatibility || childrenHaveFrameRate; } void Layer::updateTreeHasFrameRateVote() { const auto root = [&]() -> sp { sp layer = this; while (auto parent = layer->getParent()) { layer = parent; } return layer; }(); bool transactionNeeded = false; root->propagateFrameRateForLayerTree({}, &transactionNeeded); // TODO(b/195668952): we probably don't need eTraversalNeeded here if (transactionNeeded) { mFlinger->setTransactionFlags(eTraversalNeeded); } } bool Layer::setFrameRate(FrameRate frameRate) { if (!mFlinger->useFrameRateApi) { return false; } if (mDrawingState.frameRate == frameRate) { return false; } mDrawingState.sequence++; mDrawingState.frameRate = frameRate; mDrawingState.modified = true; updateTreeHasFrameRateVote(); setTransactionFlags(eTransactionNeeded); return true; } void Layer::setFrameTimelineVsyncForBufferTransaction(const FrameTimelineInfo& info, nsecs_t postTime) { mDrawingState.postTime = postTime; // Check if one of the bufferlessSurfaceFramesTX contains the same vsyncId. This can happen if // there are two transactions with the same token, the first one without a buffer and the // second one with a buffer. We promote the bufferlessSurfaceFrame to a bufferSurfaceFrameTX // in that case. auto it = mDrawingState.bufferlessSurfaceFramesTX.find(info.vsyncId); if (it != mDrawingState.bufferlessSurfaceFramesTX.end()) { // Promote the bufferlessSurfaceFrame to a bufferSurfaceFrameTX mDrawingState.bufferSurfaceFrameTX = it->second; mDrawingState.bufferlessSurfaceFramesTX.erase(it); mDrawingState.bufferSurfaceFrameTX->promoteToBuffer(); mDrawingState.bufferSurfaceFrameTX->setActualQueueTime(postTime); } else { mDrawingState.bufferSurfaceFrameTX = createSurfaceFrameForBuffer(info, postTime, mTransactionName); } } void Layer::setFrameTimelineVsyncForBufferlessTransaction(const FrameTimelineInfo& info, nsecs_t postTime) { mDrawingState.frameTimelineInfo = info; mDrawingState.postTime = postTime; mDrawingState.modified = true; setTransactionFlags(eTransactionNeeded); if (const auto& bufferSurfaceFrameTX = mDrawingState.bufferSurfaceFrameTX; bufferSurfaceFrameTX != nullptr) { if (bufferSurfaceFrameTX->getToken() == info.vsyncId) { // BufferSurfaceFrame takes precedence over BufferlessSurfaceFrame. If the same token is // being used for BufferSurfaceFrame, don't create a new one. return; } } // For Transactions without a buffer, we create only one SurfaceFrame per vsyncId. If multiple // transactions use the same vsyncId, we just treat them as one SurfaceFrame (unless they are // targeting different vsyncs). auto it = mDrawingState.bufferlessSurfaceFramesTX.find(info.vsyncId); if (it == mDrawingState.bufferlessSurfaceFramesTX.end()) { auto surfaceFrame = createSurfaceFrameForTransaction(info, postTime); mDrawingState.bufferlessSurfaceFramesTX[info.vsyncId] = surfaceFrame; } else { if (it->second->getPresentState() == PresentState::Presented) { // If the SurfaceFrame was already presented, its safe to overwrite it since it must // have been from previous vsync. it->second = createSurfaceFrameForTransaction(info, postTime); } } } void Layer::addSurfaceFrameDroppedForBuffer( std::shared_ptr& surfaceFrame) { surfaceFrame->setDropTime(systemTime()); surfaceFrame->setPresentState(PresentState::Dropped); mFlinger->mFrameTimeline->addSurfaceFrame(surfaceFrame); } void Layer::addSurfaceFramePresentedForBuffer( std::shared_ptr& surfaceFrame, nsecs_t acquireFenceTime, nsecs_t currentLatchTime) { surfaceFrame->setAcquireFenceTime(acquireFenceTime); surfaceFrame->setPresentState(PresentState::Presented, mLastLatchTime); mFlinger->mFrameTimeline->addSurfaceFrame(surfaceFrame); mLastLatchTime = currentLatchTime; } std::shared_ptr Layer::createSurfaceFrameForTransaction( const FrameTimelineInfo& info, nsecs_t postTime) { auto surfaceFrame = mFlinger->mFrameTimeline->createSurfaceFrameForToken(info, mOwnerPid, mOwnerUid, getSequence(), mName, mTransactionName, /*isBuffer*/ false, getGameMode()); // For Transactions, the post time is considered to be both queue and acquire fence time. surfaceFrame->setActualQueueTime(postTime); surfaceFrame->setAcquireFenceTime(postTime); const auto fps = mFlinger->mScheduler->getFrameRateOverride(getOwnerUid()); if (fps) { surfaceFrame->setRenderRate(*fps); } onSurfaceFrameCreated(surfaceFrame); return surfaceFrame; } std::shared_ptr Layer::createSurfaceFrameForBuffer( const FrameTimelineInfo& info, nsecs_t queueTime, std::string debugName) { auto surfaceFrame = mFlinger->mFrameTimeline->createSurfaceFrameForToken(info, mOwnerPid, mOwnerUid, getSequence(), mName, debugName, /*isBuffer*/ true, getGameMode()); // For buffers, acquire fence time will set during latch. surfaceFrame->setActualQueueTime(queueTime); const auto fps = mFlinger->mScheduler->getFrameRateOverride(getOwnerUid()); if (fps) { surfaceFrame->setRenderRate(*fps); } // TODO(b/178542907): Implement onSurfaceFrameCreated for BQLayer as well. onSurfaceFrameCreated(surfaceFrame); return surfaceFrame; } bool Layer::setFrameRateForLayerTree(FrameRate frameRate) { if (mDrawingState.frameRateForLayerTree == frameRate) { return false; } mDrawingState.frameRateForLayerTree = frameRate; // TODO(b/195668952): we probably don't need to dirty visible regions here // or even store frameRateForLayerTree in mDrawingState mDrawingState.sequence++; mDrawingState.modified = true; setTransactionFlags(eTransactionNeeded); mFlinger->mScheduler->recordLayerHistory(this, systemTime(), LayerHistory::LayerUpdateType::SetFrameRate); return true; } Layer::FrameRate Layer::getFrameRateForLayerTree() const { return getDrawingState().frameRateForLayerTree; } bool Layer::isHiddenByPolicy() const { const State& s(mDrawingState); const auto& parent = mDrawingParent.promote(); if (parent != nullptr && parent->isHiddenByPolicy()) { return true; } if (usingRelativeZ(LayerVector::StateSet::Drawing)) { auto zOrderRelativeOf = mDrawingState.zOrderRelativeOf.promote(); if (zOrderRelativeOf != nullptr) { if (zOrderRelativeOf->isHiddenByPolicy()) { return true; } } } return s.flags & layer_state_t::eLayerHidden; } uint32_t Layer::getEffectiveUsage(uint32_t usage) const { // TODO: should we do something special if mSecure is set? if (mProtectedByApp) { // need a hardware-protected path to external video sink usage |= GraphicBuffer::USAGE_PROTECTED; } if (mPotentialCursor) { usage |= GraphicBuffer::USAGE_CURSOR; } usage |= GraphicBuffer::USAGE_HW_COMPOSER; return usage; } void Layer::updateTransformHint(ui::Transform::RotationFlags transformHint) { if (mFlinger->mDebugDisableTransformHint || transformHint & ui::Transform::ROT_INVALID) { transformHint = ui::Transform::ROT_0; } setTransformHint(transformHint); } // ---------------------------------------------------------------------------- // debugging // ---------------------------------------------------------------------------- // TODO(marissaw): add new layer state info to layer debugging LayerDebugInfo Layer::getLayerDebugInfo(const DisplayDevice* display) const { using namespace std::string_literals; LayerDebugInfo info; const State& ds = getDrawingState(); info.mName = getName(); sp parent = mDrawingParent.promote(); info.mParentName = parent ? parent->getName() : "none"s; info.mType = getType(); info.mTransparentRegion = ds.activeTransparentRegion_legacy; info.mVisibleRegion = getVisibleRegion(display); info.mSurfaceDamageRegion = surfaceDamageRegion; info.mLayerStack = getLayerStack(); info.mX = ds.transform.tx(); info.mY = ds.transform.ty(); info.mZ = ds.z; info.mWidth = ds.width; info.mHeight = ds.height; info.mCrop = ds.crop; info.mColor = ds.color; info.mFlags = ds.flags; info.mPixelFormat = getPixelFormat(); info.mDataSpace = static_cast(getDataSpace()); info.mMatrix[0][0] = ds.transform[0][0]; info.mMatrix[0][1] = ds.transform[0][1]; info.mMatrix[1][0] = ds.transform[1][0]; info.mMatrix[1][1] = ds.transform[1][1]; { sp buffer = getBuffer(); if (buffer != 0) { info.mActiveBufferWidth = buffer->getWidth(); info.mActiveBufferHeight = buffer->getHeight(); info.mActiveBufferStride = buffer->getStride(); info.mActiveBufferFormat = buffer->format; } else { info.mActiveBufferWidth = 0; info.mActiveBufferHeight = 0; info.mActiveBufferStride = 0; info.mActiveBufferFormat = 0; } } info.mNumQueuedFrames = getQueuedFrameCount(); info.mRefreshPending = isBufferLatched(); info.mIsOpaque = isOpaque(ds); info.mContentDirty = contentDirty; info.mStretchEffect = getStretchEffect(); return info; } void Layer::miniDumpHeader(std::string& result) { result.append(kDumpTableRowLength, '-'); result.append("\n"); result.append(" Layer name\n"); result.append(" Z | "); result.append(" Window Type | "); result.append(" Comp Type | "); result.append(" Transform | "); result.append(" Disp Frame (LTRB) | "); result.append(" Source Crop (LTRB) | "); result.append(" Frame Rate (Explicit) (Seamlessness) [Focused]\n"); result.append(kDumpTableRowLength, '-'); result.append("\n"); } std::string Layer::frameRateCompatibilityString(Layer::FrameRateCompatibility compatibility) { switch (compatibility) { case FrameRateCompatibility::Default: return "Default"; case FrameRateCompatibility::ExactOrMultiple: return "ExactOrMultiple"; case FrameRateCompatibility::NoVote: return "NoVote"; case FrameRateCompatibility::Exact: return "Exact"; } } void Layer::miniDump(std::string& result, const DisplayDevice& display) const { const auto outputLayer = findOutputLayerForDisplay(&display); if (!outputLayer) { return; } std::string name; if (mName.length() > 77) { std::string shortened; shortened.append(mName, 0, 36); shortened.append("[...]"); shortened.append(mName, mName.length() - 36); name = std::move(shortened); } else { name = mName; } StringAppendF(&result, " %s\n", name.c_str()); const State& layerState(getDrawingState()); const auto& outputLayerState = outputLayer->getState(); if (layerState.zOrderRelativeOf != nullptr || mDrawingParent != nullptr) { StringAppendF(&result, " rel %6d | ", layerState.z); } else { StringAppendF(&result, " %10d | ", layerState.z); } StringAppendF(&result, " %10d | ", mWindowType); StringAppendF(&result, "%10s | ", toString(getCompositionType(display)).c_str()); StringAppendF(&result, "%10s | ", toString(outputLayerState.bufferTransform).c_str()); const Rect& frame = outputLayerState.displayFrame; StringAppendF(&result, "%4d %4d %4d %4d | ", frame.left, frame.top, frame.right, frame.bottom); const FloatRect& crop = outputLayerState.sourceCrop; StringAppendF(&result, "%6.1f %6.1f %6.1f %6.1f | ", crop.left, crop.top, crop.right, crop.bottom); const auto frameRate = getFrameRateForLayerTree(); if (frameRate.rate.isValid() || frameRate.type != FrameRateCompatibility::Default) { StringAppendF(&result, "%s %15s %17s", to_string(frameRate.rate).c_str(), frameRateCompatibilityString(frameRate.type).c_str(), toString(frameRate.seamlessness).c_str()); } else { result.append(41, ' '); } const auto focused = isLayerFocusedBasedOnPriority(getFrameRateSelectionPriority()); StringAppendF(&result, " [%s]\n", focused ? "*" : " "); result.append(kDumpTableRowLength, '-'); result.append("\n"); } void Layer::dumpFrameStats(std::string& result) const { mFrameTracker.dumpStats(result); } void Layer::clearFrameStats() { mFrameTracker.clearStats(); } void Layer::logFrameStats() { mFrameTracker.logAndResetStats(mName); } void Layer::getFrameStats(FrameStats* outStats) const { mFrameTracker.getStats(outStats); } void Layer::dumpFrameEvents(std::string& result) { StringAppendF(&result, "- Layer %s (%s, %p)\n", getName().c_str(), getType(), this); Mutex::Autolock lock(mFrameEventHistoryMutex); mFrameEventHistory.checkFencesForCompletion(); mFrameEventHistory.dump(result); } void Layer::dumpCallingUidPid(std::string& result) const { StringAppendF(&result, "Layer %s (%s) callingPid:%d callingUid:%d ownerUid:%d\n", getName().c_str(), getType(), mCallingPid, mCallingUid, mOwnerUid); } void Layer::onDisconnect() { // HUANGLONG begin // The scences called 'onOverlayAvaliable - onDisconnect - onOverlayAvaliable' // needs clear overlay fence. if (mLayerEx->isOverlay()) { mFlinger->clearOverlayFence(sequence); } // HUANGLONG end Mutex::Autolock lock(mFrameEventHistoryMutex); mFrameEventHistory.onDisconnect(); const int32_t layerId = getSequence(); mFlinger->mTimeStats->onDestroy(layerId); mFlinger->mFrameTracer->onDestroy(layerId); } void Layer::addAndGetFrameTimestamps(const NewFrameEventsEntry* newTimestamps, FrameEventHistoryDelta* outDelta) { if (newTimestamps) { mFlinger->mTimeStats->setPostTime(getSequence(), newTimestamps->frameNumber, getName().c_str(), mOwnerUid, newTimestamps->postedTime, getGameMode()); mFlinger->mTimeStats->setAcquireFence(getSequence(), newTimestamps->frameNumber, newTimestamps->acquireFence); } Mutex::Autolock lock(mFrameEventHistoryMutex); if (newTimestamps) { // If there are any unsignaled fences in the aquire timeline at this // point, the previously queued frame hasn't been latched yet. Go ahead // and try to get the signal time here so the syscall is taken out of // the main thread's critical path. mAcquireTimeline.updateSignalTimes(); // Push the new fence after updating since it's likely still pending. mAcquireTimeline.push(newTimestamps->acquireFence); mFrameEventHistory.addQueue(*newTimestamps); } if (outDelta) { mFrameEventHistory.getAndResetDelta(outDelta); } } size_t Layer::getChildrenCount() const { size_t count = 0; for (const sp& child : mCurrentChildren) { count += 1 + child->getChildrenCount(); } return count; } void Layer::setGameModeForTree(int parentGameMode) { int gameMode = parentGameMode; auto& currentState = getDrawingState(); if (currentState.metadata.has(METADATA_GAME_MODE)) { gameMode = currentState.metadata.getInt32(METADATA_GAME_MODE, 0); } setGameMode(gameMode); for (const sp& child : mCurrentChildren) { child->setGameModeForTree(gameMode); } } void Layer::addChild(const sp& layer) { mFlinger->mSomeChildrenChanged = true; setTransactionFlags(eTransactionNeeded); mCurrentChildren.add(layer); layer->setParent(this); layer->setGameModeForTree(mGameMode); updateTreeHasFrameRateVote(); } ssize_t Layer::removeChild(const sp& layer) { mFlinger->mSomeChildrenChanged = true; setTransactionFlags(eTransactionNeeded); layer->setParent(nullptr); const auto removeResult = mCurrentChildren.remove(layer); updateTreeHasFrameRateVote(); layer->setGameModeForTree(0); layer->updateTreeHasFrameRateVote(); return removeResult; } void Layer::setChildrenDrawingParent(const sp& newParent) { for (const sp& child : mDrawingChildren) { child->mDrawingParent = newParent; child->computeBounds(newParent->mBounds, newParent->mEffectiveTransform, newParent->mEffectiveShadowRadius); } } bool Layer::reparent(const sp& newParentHandle) { sp newParent; if (newParentHandle != nullptr) { newParent = fromHandle(newParentHandle).promote(); if (newParent == nullptr) { ALOGE("Unable to promote Layer handle"); return false; } if (newParent == this) { ALOGE("Invalid attempt to reparent Layer (%s) to itself", getName().c_str()); return false; } } sp parent = getParent(); if (parent != nullptr) { parent->removeChild(this); } if (newParentHandle != nullptr) { newParent->addChild(this); if (!newParent->isRemovedFromCurrentState()) { addToCurrentState(); } else { onRemovedFromCurrentState(); } } else { onRemovedFromCurrentState(); } return true; } bool Layer::setColorTransform(const mat4& matrix) { static const mat4 identityMatrix = mat4(); if (mDrawingState.colorTransform == matrix) { return false; } ++mDrawingState.sequence; mDrawingState.colorTransform = matrix; mDrawingState.hasColorTransform = matrix != identityMatrix; mDrawingState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } mat4 Layer::getColorTransform() const { mat4 colorTransform = mat4(getDrawingState().colorTransform); if (sp parent = mDrawingParent.promote(); parent != nullptr) { colorTransform = parent->getColorTransform() * colorTransform; } return colorTransform; } bool Layer::hasColorTransform() const { bool hasColorTransform = getDrawingState().hasColorTransform; if (sp parent = mDrawingParent.promote(); parent != nullptr) { hasColorTransform = hasColorTransform || parent->hasColorTransform(); } return hasColorTransform; } bool Layer::isLegacyDataSpace() const { // return true when no higher bits are set return !(getDataSpace() & (ui::Dataspace::STANDARD_MASK | ui::Dataspace::TRANSFER_MASK | ui::Dataspace::RANGE_MASK)); } void Layer::setParent(const sp& layer) { mCurrentParent = layer; } int32_t Layer::getZ(LayerVector::StateSet) const { return mDrawingState.z; } bool Layer::usingRelativeZ(LayerVector::StateSet stateSet) const { const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; const State& state = useDrawing ? mDrawingState : mDrawingState; return state.isRelativeOf; } __attribute__((no_sanitize("unsigned-integer-overflow"))) LayerVector Layer::makeTraversalList( LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers) { LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid, "makeTraversalList received invalid stateSet"); const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren; const State& state = useDrawing ? mDrawingState : mDrawingState; if (state.zOrderRelatives.size() == 0) { *outSkipRelativeZUsers = true; return children; } LayerVector traverse(stateSet); for (const wp& weakRelative : state.zOrderRelatives) { sp strongRelative = weakRelative.promote(); if (strongRelative != nullptr) { traverse.add(strongRelative); } } for (const sp& child : children) { if (child->usingRelativeZ(stateSet)) { continue; } traverse.add(child); } return traverse; } /** * Negatively signed relatives are before 'this' in Z-order. */ void Layer::traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor) { // In the case we have other layers who are using a relative Z to us, makeTraversalList will // produce a new list for traversing, including our relatives, and not including our children // who are relatives of another surface. In the case that there are no relative Z, // makeTraversalList returns our children directly to avoid significant overhead. // However in this case we need to take the responsibility for filtering children which // are relatives of another surface here. bool skipRelativeZUsers = false; const LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers); size_t i = 0; for (; i < list.size(); i++) { const auto& relative = list[i]; if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) { continue; } if (relative->getZ(stateSet) >= 0) { break; } relative->traverseInZOrder(stateSet, visitor); } visitor(this); for (; i < list.size(); i++) { const auto& relative = list[i]; if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) { continue; } relative->traverseInZOrder(stateSet, visitor); } } /** * Positively signed relatives are before 'this' in reverse Z-order. */ void Layer::traverseInReverseZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor) { // See traverseInZOrder for documentation. bool skipRelativeZUsers = false; LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers); int32_t i = 0; for (i = int32_t(list.size()) - 1; i >= 0; i--) { const auto& relative = list[i]; if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) { continue; } if (relative->getZ(stateSet) < 0) { break; } relative->traverseInReverseZOrder(stateSet, visitor); } visitor(this); for (; i >= 0; i--) { const auto& relative = list[i]; if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) { continue; } relative->traverseInReverseZOrder(stateSet, visitor); } } void Layer::traverse(LayerVector::StateSet state, const LayerVector::Visitor& visitor) { visitor(this); const LayerVector& children = state == LayerVector::StateSet::Drawing ? mDrawingChildren : mCurrentChildren; for (const sp& child : children) { child->traverse(state, visitor); } } LayerVector Layer::makeChildrenTraversalList(LayerVector::StateSet stateSet, const std::vector& layersInTree) { LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid, "makeTraversalList received invalid stateSet"); const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren; const State& state = useDrawing ? mDrawingState : mDrawingState; LayerVector traverse(stateSet); for (const wp& weakRelative : state.zOrderRelatives) { sp strongRelative = weakRelative.promote(); // Only add relative layers that are also descendents of the top most parent of the tree. // If a relative layer is not a descendent, then it should be ignored. if (std::binary_search(layersInTree.begin(), layersInTree.end(), strongRelative.get())) { traverse.add(strongRelative); } } for (const sp& child : children) { const State& childState = useDrawing ? child->mDrawingState : child->mDrawingState; // If a layer has a relativeOf layer, only ignore if the layer it's relative to is a // descendent of the top most parent of the tree. If it's not a descendent, then just add // the child here since it won't be added later as a relative. if (std::binary_search(layersInTree.begin(), layersInTree.end(), childState.zOrderRelativeOf.promote().get())) { continue; } traverse.add(child); } return traverse; } void Layer::traverseChildrenInZOrderInner(const std::vector& layersInTree, LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor) { const LayerVector list = makeChildrenTraversalList(stateSet, layersInTree); size_t i = 0; for (; i < list.size(); i++) { const auto& relative = list[i]; if (relative->getZ(stateSet) >= 0) { break; } relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor); } visitor(this); for (; i < list.size(); i++) { const auto& relative = list[i]; relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor); } } std::vector Layer::getLayersInTree(LayerVector::StateSet stateSet) { const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren; std::vector layersInTree = {this}; for (size_t i = 0; i < children.size(); i++) { const auto& child = children[i]; std::vector childLayers = child->getLayersInTree(stateSet); layersInTree.insert(layersInTree.end(), childLayers.cbegin(), childLayers.cend()); } return layersInTree; } void Layer::traverseChildrenInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor) { std::vector layersInTree = getLayersInTree(stateSet); std::sort(layersInTree.begin(), layersInTree.end()); traverseChildrenInZOrderInner(layersInTree, stateSet, visitor); } ui::Transform Layer::getTransform() const { return mEffectiveTransform; } half Layer::getAlpha() const { const auto& p = mDrawingParent.promote(); half parentAlpha = (p != nullptr) ? p->getAlpha() : 1.0_hf; return parentAlpha * getDrawingState().color.a; } ui::Transform::RotationFlags Layer::getFixedTransformHint() const { ui::Transform::RotationFlags fixedTransformHint = mDrawingState.fixedTransformHint; if (fixedTransformHint != ui::Transform::ROT_INVALID) { return fixedTransformHint; } const auto& p = mCurrentParent.promote(); if (!p) return fixedTransformHint; return p->getFixedTransformHint(); } half4 Layer::getColor() const { const half4 color(getDrawingState().color); return half4(color.r, color.g, color.b, getAlpha()); } int32_t Layer::getBackgroundBlurRadius() const { const auto& p = mDrawingParent.promote(); half parentAlpha = (p != nullptr) ? p->getAlpha() : 1.0_hf; return parentAlpha * getDrawingState().backgroundBlurRadius; } const std::vector Layer::getBlurRegions() const { auto regionsCopy(getDrawingState().blurRegions); float layerAlpha = getAlpha(); for (auto& region : regionsCopy) { region.alpha = region.alpha * layerAlpha; } return regionsCopy; } Layer::RoundedCornerState Layer::getRoundedCornerState() const { const auto& p = mDrawingParent.promote(); if (p != nullptr) { RoundedCornerState parentState = p->getRoundedCornerState(); if (parentState.radius > 0) { ui::Transform t = getActiveTransform(getDrawingState()); t = t.inverse(); parentState.cropRect = t.transform(parentState.cropRect); // The rounded corners shader only accepts 1 corner radius for performance reasons, // but a transform matrix can define horizontal and vertical scales. // Let's take the average between both of them and pass into the shader, practically we // never do this type of transformation on windows anyway. auto scaleX = sqrtf(t[0][0] * t[0][0] + t[0][1] * t[0][1]); auto scaleY = sqrtf(t[1][0] * t[1][0] + t[1][1] * t[1][1]); parentState.radius *= (scaleX + scaleY) / 2.0f; return parentState; } } const float radius = getDrawingState().cornerRadius; return radius > 0 && getCroppedBufferSize(getDrawingState()).isValid() ? RoundedCornerState(getCroppedBufferSize(getDrawingState()).toFloatRect(), radius) : RoundedCornerState(); } void Layer::prepareShadowClientComposition(LayerFE::LayerSettings& caster, const Rect& layerStackRect) { renderengine::ShadowSettings state = mFlinger->mDrawingState.globalShadowSettings; // Note: this preserves existing behavior of shadowing the entire layer and not cropping it if // transparent regions are present. This may not be necessary since shadows are only cast by // SurfaceFlinger's EffectLayers, which do not typically use transparent regions. state.boundaries = mBounds; // Shift the spot light x-position to the middle of the display and then // offset it by casting layer's screen pos. state.lightPos.x = (layerStackRect.width() / 2.f) - mScreenBounds.left; state.lightPos.y -= mScreenBounds.top; state.length = mEffectiveShadowRadius; if (state.length > 0.f) { const float casterAlpha = caster.alpha; const bool casterIsOpaque = ((caster.source.buffer.buffer != nullptr) && caster.source.buffer.isOpaque); // If the casting layer is translucent, we need to fill in the shadow underneath the layer. // Otherwise the generated shadow will only be shown around the casting layer. state.casterIsTranslucent = !casterIsOpaque || (casterAlpha < 1.0f); state.ambientColor *= casterAlpha; state.spotColor *= casterAlpha; if (state.ambientColor.a > 0.f && state.spotColor.a > 0.f) { caster.shadow = state; } } } void Layer::commitChildList() { for (size_t i = 0; i < mCurrentChildren.size(); i++) { const auto& child = mCurrentChildren[i]; child->commitChildList(); } mDrawingChildren = mCurrentChildren; mDrawingParent = mCurrentParent; } void Layer::setInputInfo(const InputWindowInfo& info) { mDrawingState.inputInfo = info; mDrawingState.touchableRegionCrop = fromHandle(info.touchableRegionCropHandle.promote()); mDrawingState.modified = true; mFlinger->mInputInfoChanged = true; setTransactionFlags(eTransactionNeeded); } LayerProto* Layer::writeToProto(LayersProto& layersProto, uint32_t traceFlags, const DisplayDevice* display) { LayerProto* layerProto = layersProto.add_layers(); writeToProtoDrawingState(layerProto, traceFlags, display); writeToProtoCommonState(layerProto, LayerVector::StateSet::Drawing, traceFlags); if (traceFlags & SurfaceTracing::TRACE_COMPOSITION) { // Only populate for the primary display. if (display) { const Hwc2::IComposerClient::Composition compositionType = getCompositionType(*display); layerProto->set_hwc_composition_type(static_cast(compositionType)); } } for (const sp& layer : mDrawingChildren) { layer->writeToProto(layersProto, traceFlags, display); } return layerProto; } void Layer::writeToProtoDrawingState(LayerProto* layerInfo, uint32_t traceFlags, const DisplayDevice* display) { const ui::Transform transform = getTransform(); if (traceFlags & SurfaceTracing::TRACE_CRITICAL) { auto buffer = getBuffer(); if (buffer != nullptr) { LayerProtoHelper::writeToProto(buffer, [&]() { return layerInfo->mutable_active_buffer(); }); LayerProtoHelper::writeToProto(ui::Transform(getBufferTransform()), layerInfo->mutable_buffer_transform()); } layerInfo->set_invalidate(contentDirty); layerInfo->set_is_protected(isProtected()); layerInfo->set_dataspace(dataspaceDetails(static_cast(getDataSpace()))); layerInfo->set_queued_frames(getQueuedFrameCount()); layerInfo->set_refresh_pending(isBufferLatched()); layerInfo->set_curr_frame(mCurrentFrameNumber); layerInfo->set_effective_scaling_mode(getEffectiveScalingMode()); layerInfo->set_corner_radius(getRoundedCornerState().radius); layerInfo->set_background_blur_radius(getBackgroundBlurRadius()); layerInfo->set_is_trusted_overlay(isTrustedOverlay()); LayerProtoHelper::writeToProto(transform, layerInfo->mutable_transform()); LayerProtoHelper::writePositionToProto(transform.tx(), transform.ty(), [&]() { return layerInfo->mutable_position(); }); LayerProtoHelper::writeToProto(mBounds, [&]() { return layerInfo->mutable_bounds(); }); if (traceFlags & SurfaceTracing::TRACE_COMPOSITION) { LayerProtoHelper::writeToProto(getVisibleRegion(display), [&]() { return layerInfo->mutable_visible_region(); }); } LayerProtoHelper::writeToProto(surfaceDamageRegion, [&]() { return layerInfo->mutable_damage_region(); }); if (hasColorTransform()) { LayerProtoHelper::writeToProto(getColorTransform(), layerInfo->mutable_color_transform()); } } LayerProtoHelper::writeToProto(mSourceBounds, [&]() { return layerInfo->mutable_source_bounds(); }); LayerProtoHelper::writeToProto(mScreenBounds, [&]() { return layerInfo->mutable_screen_bounds(); }); LayerProtoHelper::writeToProto(getRoundedCornerState().cropRect, [&]() { return layerInfo->mutable_corner_radius_crop(); }); layerInfo->set_shadow_radius(mEffectiveShadowRadius); } void Layer::writeToProtoCommonState(LayerProto* layerInfo, LayerVector::StateSet stateSet, uint32_t traceFlags) { const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren; const State& state = useDrawing ? mDrawingState : mDrawingState; ui::Transform requestedTransform = state.transform; if (traceFlags & SurfaceTracing::TRACE_CRITICAL) { layerInfo->set_id(sequence); layerInfo->set_name(getName().c_str()); layerInfo->set_type(getType()); for (const auto& child : children) { layerInfo->add_children(child->sequence); } for (const wp& weakRelative : state.zOrderRelatives) { sp strongRelative = weakRelative.promote(); if (strongRelative != nullptr) { layerInfo->add_relatives(strongRelative->sequence); } } LayerProtoHelper::writeToProto(state.activeTransparentRegion_legacy, [&]() { return layerInfo->mutable_transparent_region(); }); layerInfo->set_layer_stack(getLayerStack()); layerInfo->set_z(state.z); LayerProtoHelper::writePositionToProto(requestedTransform.tx(), requestedTransform.ty(), [&]() { return layerInfo->mutable_requested_position(); }); LayerProtoHelper::writeSizeToProto(state.width, state.height, [&]() { return layerInfo->mutable_size(); }); LayerProtoHelper::writeToProto(state.crop, [&]() { return layerInfo->mutable_crop(); }); layerInfo->set_is_opaque(isOpaque(state)); layerInfo->set_pixel_format(decodePixelFormat(getPixelFormat())); LayerProtoHelper::writeToProto(getColor(), [&]() { return layerInfo->mutable_color(); }); LayerProtoHelper::writeToProto(state.color, [&]() { return layerInfo->mutable_requested_color(); }); layerInfo->set_flags(state.flags); LayerProtoHelper::writeToProto(requestedTransform, layerInfo->mutable_requested_transform()); auto parent = useDrawing ? mDrawingParent.promote() : mCurrentParent.promote(); if (parent != nullptr) { layerInfo->set_parent(parent->sequence); } else { layerInfo->set_parent(-1); } auto zOrderRelativeOf = state.zOrderRelativeOf.promote(); if (zOrderRelativeOf != nullptr) { layerInfo->set_z_order_relative_of(zOrderRelativeOf->sequence); } else { layerInfo->set_z_order_relative_of(-1); } layerInfo->set_is_relative_of(state.isRelativeOf); layerInfo->set_owner_uid(mOwnerUid); } if (traceFlags & SurfaceTracing::TRACE_INPUT && needsInputInfo()) { InputWindowInfo info; if (useDrawing) { info = fillInputInfo({nullptr}); } else { info = state.inputInfo; } LayerProtoHelper::writeToProto(info, state.touchableRegionCrop, [&]() { return layerInfo->mutable_input_window_info(); }); } if (traceFlags & SurfaceTracing::TRACE_EXTRA) { auto protoMap = layerInfo->mutable_metadata(); for (const auto& entry : state.metadata.mMap) { (*protoMap)[entry.first] = std::string(entry.second.cbegin(), entry.second.cend()); } } } bool Layer::isRemovedFromCurrentState() const { return mRemovedFromDrawingState; } ui::Transform Layer::getInputTransform() const { return getTransform(); } gui::DropInputMode Layer::getDropInputMode() const { gui::DropInputMode mode = mDrawingState.dropInputMode; if (mode == gui::DropInputMode::ALL) { return mode; } sp parent = mDrawingParent.promote(); if (parent) { gui::DropInputMode parentMode = parent->getDropInputMode(); if (parentMode != gui::DropInputMode::NONE) { return parentMode; } } return mode; } void Layer::handleDropInputMode(InputWindowInfo& info) const { if (mDrawingState.inputInfo.inputFeatures.test(InputWindowInfo::Feature::NO_INPUT_CHANNEL)) { return; } // Check if we need to drop input unconditionally gui::DropInputMode dropInputMode = getDropInputMode(); if (dropInputMode == gui::DropInputMode::ALL) { info.inputFeatures |= InputWindowInfo::Feature::DROP_INPUT; ALOGV("Dropping input for %s as requested by policy.", getDebugName()); return; } } Rect Layer::getInputBounds() const { return getCroppedBufferSize(getDrawingState()); } void Layer::fillInputFrameInfo(InputWindowInfo& info, const ui::Transform& toPhysicalDisplay) { // Transform layer size to screen space and inset it by surface insets. // If this is a portal window, set the touchableRegion to the layerBounds. Rect layerBounds = info.portalToDisplayId == ADISPLAY_ID_NONE ? getInputBounds() : info.touchableRegion.getBounds(); if (!layerBounds.isValid()) { layerBounds = getInputBounds(); } if (!layerBounds.isValid()) { // If the layer bounds is empty, set the frame to empty and clear the transform info.frameLeft = 0; info.frameTop = 0; info.frameRight = 0; info.frameBottom = 0; info.transform.reset(); return; } ui::Transform layerToDisplay = getInputTransform(); // Transform that takes window coordinates to unrotated display coordinates ui::Transform t = toPhysicalDisplay * layerToDisplay; int32_t xSurfaceInset = info.surfaceInset; int32_t ySurfaceInset = info.surfaceInset; // Bring screenBounds into unrotated space Rect screenBounds = toPhysicalDisplay.transform(Rect{mScreenBounds}); const float xScale = t.getScaleX(); const float yScale = t.getScaleY(); if (xScale != 1.0f || yScale != 1.0f) { xSurfaceInset = std::round(xSurfaceInset * xScale); ySurfaceInset = std::round(ySurfaceInset * yScale); } // Transform the layer bounds from layer coordinate space to display coordinate space. Rect transformedLayerBounds = t.transform(layerBounds); // clamp inset to layer bounds xSurfaceInset = (xSurfaceInset >= 0) ? std::min(xSurfaceInset, transformedLayerBounds.getWidth() / 2) : 0; ySurfaceInset = (ySurfaceInset >= 0) ? std::min(ySurfaceInset, transformedLayerBounds.getHeight() / 2) : 0; // inset while protecting from overflow TODO(b/161235021): What is going wrong // in the overflow scenario? { int32_t tmp; if (!__builtin_add_overflow(transformedLayerBounds.left, xSurfaceInset, &tmp)) transformedLayerBounds.left = tmp; if (!__builtin_sub_overflow(transformedLayerBounds.right, xSurfaceInset, &tmp)) transformedLayerBounds.right = tmp; if (!__builtin_add_overflow(transformedLayerBounds.top, ySurfaceInset, &tmp)) transformedLayerBounds.top = tmp; if (!__builtin_sub_overflow(transformedLayerBounds.bottom, ySurfaceInset, &tmp)) transformedLayerBounds.bottom = tmp; } // Compute the correct transform to send to input. This will allow it to transform the // input coordinates from display space into window space. Therefore, it needs to use the // final layer frame to create the inverse transform. Since surface insets are added later, // along with the overflow, the best way to ensure we get the correct transform is to use // the final frame calculated. // 1. Take the original transform set on the window and get the inverse transform. This is // used to get the final bounds in display space (ignorning the transform). Apply the // inverse transform on the layerBounds to get the untransformed frame (in layer space) // 2. Take the top and left of the untransformed frame to get the real position on screen. // Apply the layer transform on top/left so it includes any scale or rotation. These will // be the new translation values for the transform. // 3. Update the translation of the original transform to the new translation values. // 4. Send the inverse transform to input so the coordinates can be transformed back into // window space. ui::Transform inverseTransform = t.inverse(); Rect nonTransformedBounds = inverseTransform.transform(transformedLayerBounds); vec2 translation = t.transform(nonTransformedBounds.left, nonTransformedBounds.top); ui::Transform inputTransform(t); inputTransform.set(translation.x, translation.y); info.transform = inputTransform.inverse(); // We need to send the layer bounds cropped to the screenbounds since the layer can be cropped. // The frame should be the area the user sees on screen since it's used for occlusion // detection. transformedLayerBounds.intersect(screenBounds, &transformedLayerBounds); info.frameLeft = transformedLayerBounds.left; info.frameTop = transformedLayerBounds.top; info.frameRight = transformedLayerBounds.right; info.frameBottom = transformedLayerBounds.bottom; // Position the touchable region relative to frame screen location and restrict it to frame // bounds. info.touchableRegion = inputTransform.transform(info.touchableRegion); } void Layer::fillTouchOcclusionMode(InputWindowInfo& info) { sp p = this; while (p != nullptr && !p->hasInputInfo()) { p = p->mDrawingParent.promote(); } if (p != nullptr) { info.touchOcclusionMode = p->mDrawingState.inputInfo.touchOcclusionMode; } } InputWindowInfo Layer::fillInputInfo(const sp& display) { if (!hasInputInfo()) { mDrawingState.inputInfo.name = getName(); mDrawingState.inputInfo.ownerUid = mOwnerUid; mDrawingState.inputInfo.ownerPid = mOwnerPid; mDrawingState.inputInfo.inputFeatures = InputWindowInfo::Feature::NO_INPUT_CHANNEL; mDrawingState.inputInfo.flags = InputWindowInfo::Flag::NOT_TOUCH_MODAL; mDrawingState.inputInfo.displayId = getLayerStack(); } InputWindowInfo info = mDrawingState.inputInfo; info.id = sequence; if (info.displayId == ADISPLAY_ID_NONE) { info.displayId = getLayerStack(); } // Transform that goes from "logical(rotated)" display to physical/unrotated display. // This is for when inputflinger operates in physical display-space. ui::Transform toPhysicalDisplay; if (display) { toPhysicalDisplay = display->getTransform(); info.displayWidth = display->getWidth(); info.displayHeight = display->getHeight(); } fillInputFrameInfo(info, toPhysicalDisplay); // For compatibility reasons we let layers which can receive input // receive input before they have actually submitted a buffer. Because // of this we use canReceiveInput instead of isVisible to check the // policy-visibility, ignoring the buffer state. However for layers with // hasInputInfo()==false we can use the real visibility state. // We are just using these layers for occlusion detection in // InputDispatcher, and obviously if they aren't visible they can't occlude // anything. info.visible = hasInputInfo() ? canReceiveInput() : isVisible(); info.alpha = getAlpha(); fillTouchOcclusionMode(info); handleDropInputMode(info); auto cropLayer = mDrawingState.touchableRegionCrop.promote(); if (info.replaceTouchableRegionWithCrop) { if (cropLayer == nullptr) { info.touchableRegion = Region(toPhysicalDisplay.transform(Rect{mScreenBounds})); } else { info.touchableRegion = Region(toPhysicalDisplay.transform(Rect{cropLayer->mScreenBounds})); } } else if (cropLayer != nullptr) { info.touchableRegion = info.touchableRegion.intersect( toPhysicalDisplay.transform(Rect{cropLayer->mScreenBounds})); } // Inherit the trusted state from the parent hierarchy, but don't clobber the trusted state // if it was set by WM for a known system overlay info.trustedOverlay = info.trustedOverlay || isTrustedOverlay(); // If the layer is a clone, we need to crop the input region to cloned root to prevent // touches from going outside the cloned area. if (isClone()) { sp clonedRoot = getClonedRoot(); if (clonedRoot != nullptr) { Rect rect = toPhysicalDisplay.transform(Rect{clonedRoot->mScreenBounds}); info.touchableRegion = info.touchableRegion.intersect(rect); } } return info; } sp Layer::getClonedRoot() { if (mClonedChild != nullptr) { return this; } if (mDrawingParent == nullptr || mDrawingParent.promote() == nullptr) { return nullptr; } return mDrawingParent.promote()->getClonedRoot(); } bool Layer::hasInputInfo() const { return mDrawingState.inputInfo.token != nullptr || mDrawingState.inputInfo.inputFeatures.test(InputWindowInfo::Feature::NO_INPUT_CHANNEL); } bool Layer::canReceiveInput() const { return !isHiddenByPolicy(); } compositionengine::OutputLayer* Layer::findOutputLayerForDisplay( const DisplayDevice* display) const { if (!display) return nullptr; return display->getCompositionDisplay()->getOutputLayerForLayer(getCompositionEngineLayerFE()); } Region Layer::getVisibleRegion(const DisplayDevice* display) const { const auto outputLayer = findOutputLayerForDisplay(display); return outputLayer ? outputLayer->getState().visibleRegion : Region(); } void Layer::setInitialValuesForClone(const sp& clonedFrom) { // copy drawing state from cloned layer mDrawingState = clonedFrom->mDrawingState; mClonedFrom = clonedFrom; } void Layer::updateMirrorInfo() { if (mClonedChild == nullptr || !mClonedChild->isClonedFromAlive()) { // If mClonedChild is null, there is nothing to mirror. If isClonedFromAlive returns false, // it means that there is a clone, but the layer it was cloned from has been destroyed. In // that case, we want to delete the reference to the clone since we want it to get // destroyed. The root, this layer, will still be around since the client can continue // to hold a reference, but no cloned layers will be displayed. mClonedChild = nullptr; return; } std::map, sp> clonedLayersMap; // If the real layer exists and is in current state, add the clone as a child of the root. // There's no need to remove from drawingState when the layer is offscreen since currentState is // copied to drawingState for the root layer. So the clonedChild is always removed from // drawingState and then needs to be added back each traversal. if (!mClonedChild->getClonedFrom()->isRemovedFromCurrentState()) { addChildToDrawing(mClonedChild); } mClonedChild->updateClonedDrawingState(clonedLayersMap); mClonedChild->updateClonedChildren(this, clonedLayersMap); mClonedChild->updateClonedRelatives(clonedLayersMap); } void Layer::updateClonedDrawingState(std::map, sp>& clonedLayersMap) { // If the layer the clone was cloned from is alive, copy the content of the drawingState // to the clone. If the real layer is no longer alive, continue traversing the children // since we may be able to pull out other children that are still alive. if (isClonedFromAlive()) { sp clonedFrom = getClonedFrom(); mDrawingState = clonedFrom->mDrawingState; clonedLayersMap.emplace(clonedFrom, this); } // The clone layer may have children in drawingState since they may have been created and // added from a previous request to updateMirorInfo. This is to ensure we don't recreate clones // that already exist, since we can just re-use them. // The drawingChildren will not get overwritten by the currentChildren since the clones are // not updated in the regular traversal. They are skipped since the root will lose the // reference to them when it copies its currentChildren to drawing. for (sp& child : mDrawingChildren) { child->updateClonedDrawingState(clonedLayersMap); } } void Layer::updateClonedChildren(const sp& mirrorRoot, std::map, sp>& clonedLayersMap) { mDrawingChildren.clear(); if (!isClonedFromAlive()) { return; } sp clonedFrom = getClonedFrom(); for (sp& child : clonedFrom->mDrawingChildren) { if (child == mirrorRoot) { // This is to avoid cyclical mirroring. continue; } sp clonedChild = clonedLayersMap[child]; if (clonedChild == nullptr) { clonedChild = child->createClone(); clonedLayersMap[child] = clonedChild; } addChildToDrawing(clonedChild); clonedChild->updateClonedChildren(mirrorRoot, clonedLayersMap); } } void Layer::updateClonedInputInfo(const std::map, sp>& clonedLayersMap) { auto cropLayer = mDrawingState.touchableRegionCrop.promote(); if (cropLayer != nullptr) { if (clonedLayersMap.count(cropLayer) == 0) { // Real layer had a crop layer but it's not in the cloned hierarchy. Just set to // self as crop layer to avoid going outside bounds. mDrawingState.touchableRegionCrop = this; } else { const sp& clonedCropLayer = clonedLayersMap.at(cropLayer); mDrawingState.touchableRegionCrop = clonedCropLayer; } } // Cloned layers shouldn't handle watch outside since their z order is not determined by // WM or the client. mDrawingState.inputInfo.flags &= ~InputWindowInfo::Flag::WATCH_OUTSIDE_TOUCH; } void Layer::updateClonedRelatives(const std::map, sp>& clonedLayersMap) { mDrawingState.zOrderRelativeOf = nullptr; mDrawingState.zOrderRelatives.clear(); if (!isClonedFromAlive()) { return; } const sp& clonedFrom = getClonedFrom(); for (wp& relativeWeak : clonedFrom->mDrawingState.zOrderRelatives) { const sp& relative = relativeWeak.promote(); if (clonedLayersMap.count(relative) > 0) { auto& clonedRelative = clonedLayersMap.at(relative); mDrawingState.zOrderRelatives.add(clonedRelative); } } // Check if the relativeLayer for the real layer is part of the cloned hierarchy. // It's possible that the layer it's relative to is outside the requested cloned hierarchy. // In that case, we treat the layer as if the relativeOf has been removed. This way, it will // still traverse the children, but the layer with the missing relativeOf will not be shown // on screen. const sp& relativeOf = clonedFrom->mDrawingState.zOrderRelativeOf.promote(); if (clonedLayersMap.count(relativeOf) > 0) { const sp& clonedRelativeOf = clonedLayersMap.at(relativeOf); mDrawingState.zOrderRelativeOf = clonedRelativeOf; } updateClonedInputInfo(clonedLayersMap); for (sp& child : mDrawingChildren) { child->updateClonedRelatives(clonedLayersMap); } } void Layer::addChildToDrawing(const sp& layer) { mDrawingChildren.add(layer); layer->mDrawingParent = this; } Layer::FrameRateCompatibility Layer::FrameRate::convertCompatibility(int8_t compatibility) { switch (compatibility) { case ANATIVEWINDOW_FRAME_RATE_COMPATIBILITY_DEFAULT: return FrameRateCompatibility::Default; case ANATIVEWINDOW_FRAME_RATE_COMPATIBILITY_FIXED_SOURCE: return FrameRateCompatibility::ExactOrMultiple; case ANATIVEWINDOW_FRAME_RATE_EXACT: return FrameRateCompatibility::Exact; default: LOG_ALWAYS_FATAL("Invalid frame rate compatibility value %d", compatibility); return FrameRateCompatibility::Default; } } bool Layer::setDropInputMode(gui::DropInputMode mode) { if (mDrawingState.dropInputMode == mode) { return false; } mDrawingState.dropInputMode = mode; mDrawingState.modified = true; mFlinger->mInputInfoChanged = true; setTransactionFlags(eTransactionNeeded); return true; } scheduler::Seamlessness Layer::FrameRate::convertChangeFrameRateStrategy(int8_t strategy) { switch (strategy) { case ANATIVEWINDOW_CHANGE_FRAME_RATE_ONLY_IF_SEAMLESS: return Seamlessness::OnlySeamless; case ANATIVEWINDOW_CHANGE_FRAME_RATE_ALWAYS: return Seamlessness::SeamedAndSeamless; default: LOG_ALWAYS_FATAL("Invalid change frame sate strategy value %d", strategy); return Seamlessness::Default; } } bool Layer::getPrimaryDisplayOnly() const { const State& s(mDrawingState); if (s.flags & layer_state_t::eLayerSkipScreenshot) { return true; } sp parent = mDrawingParent.promote(); return parent == nullptr ? false : parent->getPrimaryDisplayOnly(); } void Layer::setClonedChild(const sp& clonedChild) { mClonedChild = clonedChild; mHadClonedChild = true; mFlinger->mNumClones++; } const String16 Layer::Handle::kDescriptor = String16("android.Layer.Handle"); wp Layer::fromHandle(const sp& handleBinder) { if (handleBinder == nullptr) { return nullptr; } BBinder* b = handleBinder->localBinder(); if (b == nullptr || b->getInterfaceDescriptor() != Handle::kDescriptor) { return nullptr; } // We can safely cast this binder since its local and we verified its interface descriptor. sp handle = static_cast(handleBinder.get()); return handle->owner; } // --------------------------------------------------------------------------- std::ostream& operator<<(std::ostream& stream, const Layer::FrameRate& rate) { return stream << "{rate=" << rate.rate << " type=" << Layer::frameRateCompatibilityString(rate.type) << " seamlessness=" << toString(rate.seamlessness) << "}"; } }; // namespace android #if defined(__gl_h_) #error "don't include gl/gl.h in this file" #endif #if defined(__gl2_h_) #error "don't include gl2/gl2.h in this file" #endif // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic pop // ignored "-Wconversion"