/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Client.h" #include "ClientCache.h" #include "DisplayHardware/ComposerHal.h" #include "DisplayHardware/HWComposer.h" #include "Fps.h" #include "FrameTracker.h" #include "LayerVector.h" #include "MonitoredProducer.h" #include "RenderArea.h" #include "Scheduler/LayerInfo.h" #include "Scheduler/Seamlessness.h" #include "SurfaceFlinger.h" #include "SurfaceTracing.h" #include "TransactionCallbackInvoker.h" using namespace android::surfaceflinger; namespace android { class Client; class Colorizer; class DisplayDevice; class GraphicBuffer; class SurfaceFlinger; class LayerDebugInfo; namespace compositionengine { class OutputLayer; struct LayerFECompositionState; } namespace impl { class SurfaceInterceptor; } namespace frametimeline { class SurfaceFrame; } // namespace frametimeline struct LayerCreationArgs { LayerCreationArgs(SurfaceFlinger*, sp, std::string name, uint32_t w, uint32_t h, uint32_t flags, LayerMetadata); SurfaceFlinger* flinger; const sp client; std::string name; uint32_t w; uint32_t h; uint32_t flags; LayerMetadata metadata; pid_t callingPid; uid_t callingUid; uint32_t textureName; }; // HUANGLONG begin // Modify to public inheritance in order to access the member variables mLayerEx of LayerFE. class Layer : public virtual RefBase, public compositionengine::LayerFE { // HUANGLONG end static std::atomic sSequence; // The following constants represent priority of the window. SF uses this information when // deciding which window has a priority when deciding about the refresh rate of the screen. // Priority 0 is considered the highest priority. -1 means that the priority is unset. static constexpr int32_t PRIORITY_UNSET = -1; // Windows that are in focus and voted for the preferred mode ID static constexpr int32_t PRIORITY_FOCUSED_WITH_MODE = 0; // // Windows that are in focus, but have not requested a specific mode ID. static constexpr int32_t PRIORITY_FOCUSED_WITHOUT_MODE = 1; // Windows that are not in focus, but voted for a specific mode ID. static constexpr int32_t PRIORITY_NOT_FOCUSED_WITH_MODE = 2; public: enum { // flags for doTransaction() eDontUpdateGeometryState = 0x00000001, eVisibleRegion = 0x00000002, eInputInfoChanged = 0x00000004 }; struct Geometry { uint32_t w; uint32_t h; ui::Transform transform; inline bool operator==(const Geometry& rhs) const { return (w == rhs.w && h == rhs.h) && (transform.tx() == rhs.transform.tx()) && (transform.ty() == rhs.transform.ty()); } inline bool operator!=(const Geometry& rhs) const { return !operator==(rhs); } }; struct RoundedCornerState { RoundedCornerState() = default; RoundedCornerState(FloatRect cropRect, float radius) : cropRect(cropRect), radius(radius) {} // Rounded rectangle in local layer coordinate space. FloatRect cropRect = FloatRect(); // Radius of the rounded rectangle. float radius = 0.0f; }; using FrameRate = scheduler::LayerInfo::FrameRate; using FrameRateCompatibility = scheduler::LayerInfo::FrameRateCompatibility; struct State { Geometry active_legacy; Geometry requested_legacy; int32_t z; // The identifier of the layer stack this layer belongs to. A layer can // only be associated to a single layer stack. A layer stack is a // z-ordered group of layers which can be associated to one or more // displays. Using the same layer stack on different displays is a way // to achieve mirroring. uint32_t layerStack; uint32_t flags; uint8_t reserved[2]; int32_t sequence; // changes when visible regions can change bool modified; // Crop is expressed in layer space coordinate. Rect crop; Rect requestedCrop; // the transparentRegion hint is a bit special, it's latched only // when we receive a buffer -- this is because it's "content" // dependent. Region activeTransparentRegion_legacy; Region requestedTransparentRegion_legacy; LayerMetadata metadata; // If non-null, a Surface this Surface's Z-order is interpreted relative to. wp zOrderRelativeOf; bool isRelativeOf{false}; // A list of surfaces whose Z-order is interpreted relative to ours. SortedVector> zOrderRelatives; half4 color; float cornerRadius; int backgroundBlurRadius; InputWindowInfo inputInfo; wp touchableRegionCrop; // dataspace is only used by BufferStateLayer and EffectLayer ui::Dataspace dataspace; // The fields below this point are only used by BufferStateLayer uint64_t frameNumber; uint32_t width; uint32_t height; ui::Transform transform; uint32_t bufferTransform; bool transformToDisplayInverse; Region transparentRegionHint; std::shared_ptr buffer; client_cache_t clientCacheId; sp acquireFence; std::shared_ptr acquireFenceTime; HdrMetadata hdrMetadata; Region surfaceDamageRegion; int32_t api; sp sidebandStream; mat4 colorTransform; bool hasColorTransform; // pointer to background color layer that, if set, appears below the buffer state layer // and the buffer state layer's children. Z order will be set to // INT_MIN sp bgColorLayer; // The deque of callback handles for this frame. The back of the deque contains the most // recent callback handle. std::deque> callbackHandles; bool colorSpaceAgnostic; nsecs_t desiredPresentTime = 0; bool isAutoTimestamp = true; // Length of the cast shadow. If the radius is > 0, a shadow of length shadowRadius will // be rendered around the layer. float shadowRadius; // Layer regions that are made of custom materials, like frosted glass std::vector blurRegions; // Priority of the layer assigned by Window Manager. int32_t frameRateSelectionPriority; FrameRate frameRate; // The combined frame rate of parents / children of this layer FrameRate frameRateForLayerTree; // Set by window manager indicating the layer and all its children are // in a different orientation than the display. The hint suggests that // the graphic producers should receive a transform hint as if the // display was in this orientation. When the display changes to match // the layer orientation, the graphic producer may not need to allocate // a buffer of a different size. ui::Transform::ROT_INVALID means the // a fixed transform hint is not set. ui::Transform::RotationFlags fixedTransformHint; // The vsync info that was used to start the transaction FrameTimelineInfo frameTimelineInfo; // When the transaction was posted nsecs_t postTime; sp releaseBufferListener; // SurfaceFrame that tracks the timeline of Transactions that contain a Buffer. Only one // such SurfaceFrame exists because only one buffer can be presented on the layer per vsync. // If multiple buffers are queued, the prior ones will be dropped, along with the // SurfaceFrame that's tracking them. std::shared_ptr bufferSurfaceFrameTX; // A map of token(frametimelineVsyncId) to the SurfaceFrame that's tracking a transaction // that contains the token. Only one SurfaceFrame exisits for transactions that share the // same token, unless they are presented in different vsyncs. std::unordered_map> bufferlessSurfaceFramesTX; // An arbitrary threshold for the number of BufferlessSurfaceFrames in the state. Used to // trigger a warning if the number of SurfaceFrames crosses the threshold. static constexpr uint32_t kStateSurfaceFramesThreshold = 25; // Stretch effect to apply to this layer StretchEffect stretchEffect; // Whether or not this layer is a trusted overlay for input bool isTrustedOverlay; Rect bufferCrop; gui::DropInputMode dropInputMode; Rect destinationFrame; }; /* * Trivial class, used to ensure that mFlinger->onLayerDestroyed(mLayer) * is called. */ class LayerCleaner { sp mFlinger; sp mLayer; BBinder* mHandle; protected: ~LayerCleaner() { // destroy client resources mFlinger->onHandleDestroyed(mHandle, mLayer); } public: LayerCleaner(const sp& flinger, const sp& layer, BBinder* handle) : mFlinger(flinger), mLayer(layer), mHandle(handle) {} }; /* * The layer handle is just a BBinder object passed to the client * (remote process) -- we don't keep any reference on our side such that * the dtor is called when the remote side let go of its reference. * * LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for * this layer when the handle is destroyed. */ class Handle : public BBinder, public LayerCleaner { public: Handle(const sp& flinger, const sp& layer) : LayerCleaner(flinger, layer, this), owner(layer) {} const String16& getInterfaceDescriptor() const override { return kDescriptor; } static const String16 kDescriptor; wp owner; }; static wp fromHandle(const sp& handle); explicit Layer(const LayerCreationArgs& args); virtual ~Layer(); static bool isLayerFocusedBasedOnPriority(int32_t priority); static void miniDumpHeader(std::string& result); static std::string frameRateCompatibilityString(FrameRateCompatibility compatibility); // Provide unique string for each class type in the Layer hierarchy virtual const char* getType() const = 0; // true if this layer is visible, false otherwise virtual bool isVisible() const = 0; virtual sp createClone() = 0; // Geometry setting functions. // // The following group of functions are used to specify the layers // bounds, and the mapping of the texture on to those bounds. According // to various settings changes to them may apply immediately, or be delayed until // a pending resize is completed by the producer submitting a buffer. For example // if we were to change the buffer size, and update the matrix ahead of the // new buffer arriving, then we would be stretching the buffer to a different // aspect before and after the buffer arriving, which probably isn't what we wanted. // // The first set of geometry functions are controlled by the scaling mode, described // in window.h. The scaling mode may be set by the client, as it submits buffers. // // Put simply, if our scaling mode is SCALING_MODE_FREEZE, then // matrix updates will not be applied while a resize is pending // and the size and transform will remain in their previous state // until a new buffer is submitted. If the scaling mode is another value // then the old-buffer will immediately be scaled to the pending size // and the new matrix will be immediately applied following this scaling // transformation. // Set the default buffer size for the assosciated Producer, in pixels. This is // also the rendered size of the layer prior to any transformations. Parent // or local matrix transformations will not affect the size of the buffer, // but may affect it's on-screen size or clipping. virtual bool setSize(uint32_t w, uint32_t h); // Set a 2x2 transformation matrix on the layer. This transform // will be applied after parent transforms, but before any final // producer specified transform. virtual bool setMatrix(const layer_state_t::matrix22_t& matrix, bool allowNonRectPreservingTransforms); // This second set of geometry attributes are controlled by // setGeometryAppliesWithResize, and their default mode is to be // immediate. If setGeometryAppliesWithResize is specified // while a resize is pending, then update of these attributes will // be delayed until the resize completes. // setPosition operates in parent buffer space (pre parent-transform) or display // space for top-level layers. virtual bool setPosition(float x, float y); // Buffer space virtual bool setCrop(const Rect& crop); // TODO(b/38182121): Could we eliminate the various latching modes by // using the layer hierarchy? // ----------------------------------------------------------------------- virtual bool setLayer(int32_t z); virtual bool setRelativeLayer(const sp& relativeToHandle, int32_t relativeZ); virtual bool setAlpha(float alpha); virtual bool setColor(const half3& /*color*/) { return false; }; // Set rounded corner radius for this layer and its children. // // We only support 1 radius per layer in the hierarchy, where parent layers have precedence. // The shape of the rounded corner rectangle is specified by the crop rectangle of the layer // from which we inferred the rounded corner radius. virtual bool setCornerRadius(float cornerRadius); // When non-zero, everything below this layer will be blurred by backgroundBlurRadius, which // is specified in pixels. virtual bool setBackgroundBlurRadius(int backgroundBlurRadius); virtual bool setBlurRegions(const std::vector& effectRegions); virtual bool setTransparentRegionHint(const Region& transparent); virtual bool setTrustedOverlay(bool); virtual bool setFlags(uint32_t flags, uint32_t mask); virtual bool setLayerStack(uint32_t layerStack); virtual uint32_t getLayerStack() const; virtual bool setMetadata(const LayerMetadata& data); virtual void setChildrenDrawingParent(const sp&); virtual bool reparent(const sp& newParentHandle); virtual bool setColorTransform(const mat4& matrix); virtual mat4 getColorTransform() const; virtual bool hasColorTransform() const; virtual bool isColorSpaceAgnostic() const { return mDrawingState.colorSpaceAgnostic; } // Used only to set BufferStateLayer state virtual bool setTransform(uint32_t /*transform*/) { return false; }; virtual bool setTransformToDisplayInverse(bool /*transformToDisplayInverse*/) { return false; }; virtual bool setBuffer(const std::shared_ptr& /*buffer*/, const sp& /*acquireFence*/, nsecs_t /*postTime*/, nsecs_t /*desiredPresentTime*/, bool /*isAutoTimestamp*/, const client_cache_t& /*clientCacheId*/, uint64_t /* frameNumber */, std::optional /* dequeueTime */, const FrameTimelineInfo& /*info*/, const sp& /* releaseBufferListener */) { return false; }; virtual bool setAcquireFence(const sp& /*fence*/) { return false; }; virtual bool setDataspace(ui::Dataspace /*dataspace*/) { return false; }; virtual bool setHdrMetadata(const HdrMetadata& /*hdrMetadata*/) { return false; }; virtual bool setSurfaceDamageRegion(const Region& /*surfaceDamage*/) { return false; }; virtual bool setApi(int32_t /*api*/) { return false; }; virtual bool setSidebandStream(const sp& /*sidebandStream*/) { return false; }; virtual bool setTransactionCompletedListeners( const std::vector>& /*handles*/) { return false; }; virtual bool addFrameEvent(const sp& /*acquireFence*/, nsecs_t /*postedTime*/, nsecs_t /*requestedPresentTime*/) { return false; } virtual bool setBackgroundColor(const half3& color, float alpha, ui::Dataspace dataspace); virtual bool setColorSpaceAgnostic(const bool agnostic); virtual bool setFrameRateSelectionPriority(int32_t priority); virtual bool setFixedTransformHint(ui::Transform::RotationFlags fixedTransformHint); virtual void setAutoRefresh(bool /* autoRefresh */) {} bool setDropInputMode(gui::DropInputMode); // If the variable is not set on the layer, it traverses up the tree to inherit the frame // rate priority from its parent. virtual int32_t getFrameRateSelectionPriority() const; virtual ui::Dataspace getDataSpace() const { return ui::Dataspace::UNKNOWN; } virtual sp getCompositionEngineLayerFE() const; virtual compositionengine::LayerFECompositionState* editCompositionState(); // If we have received a new buffer this frame, we will pass its surface // damage down to hardware composer. Otherwise, we must send a region with // one empty rect. virtual void useSurfaceDamage() {} virtual void useEmptyDamage() {} Region getVisibleRegion(const DisplayDevice*) const; /* * isOpaque - true if this surface is opaque * * This takes into account the buffer format (i.e. whether or not the * pixel format includes an alpha channel) and the "opaque" flag set * on the layer. It does not examine the current plane alpha value. */ virtual bool isOpaque(const Layer::State&) const { return false; } /* * Returns whether this layer can receive input. */ virtual bool canReceiveInput() const; /* * isProtected - true if the layer may contain protected contents in the * GRALLOC_USAGE_PROTECTED sense. */ virtual bool isProtected() const { return false; } /* * isFixedSize - true if content has a fixed size */ virtual bool isFixedSize() const { return true; } /* * usesSourceCrop - true if content should use a source crop */ virtual bool usesSourceCrop() const { return false; } // Most layers aren't created from the main thread, and therefore need to // grab the SF state lock to access HWC, but ContainerLayer does, so we need // to avoid grabbing the lock again to avoid deadlock virtual bool isCreatedFromMainThread() const { return false; } uint32_t getActiveWidth(const Layer::State& s) const { return s.width; } uint32_t getActiveHeight(const Layer::State& s) const { return s.height; } ui::Transform getActiveTransform(const Layer::State& s) const { return s.transform; } virtual Region getActiveTransparentRegion(const Layer::State& s) const { return s.activeTransparentRegion_legacy; } virtual Rect getCrop(const Layer::State& s) const { return s.crop; } virtual bool needsFiltering(const DisplayDevice*) const { return false; } // True if this layer requires filtering // This method is distinct from needsFiltering() in how the filter // requirement is computed. needsFiltering() compares displayFrame and crop, // where as this method transforms the displayFrame to layer-stack space // first. This method should be used if there is no physical display to // project onto when taking screenshots, as the filtering requirements are // different. // If the parent transform needs to be undone when capturing the layer, then // the inverse parent transform is also required. virtual bool needsFilteringForScreenshots(const DisplayDevice*, const ui::Transform&) const { return false; } virtual void updateCloneBufferInfo(){}; virtual void setDefaultBufferSize(uint32_t /*w*/, uint32_t /*h*/) {} virtual bool isHdrY410() const { return false; } virtual bool shouldPresentNow(nsecs_t /*expectedPresentTime*/) const { return false; } virtual uint64_t getHeadFrameNumber(nsecs_t /* expectedPresentTime */) const { return 0; } /* * called after composition. * returns true if the layer latched a new buffer this frame. */ virtual bool onPostComposition(const DisplayDevice*, const std::shared_ptr& /*glDoneFence*/, const std::shared_ptr& /*presentFence*/, const CompositorTiming&) { return false; } // If a buffer was replaced this frame, release the former buffer virtual void releasePendingBuffer(nsecs_t /*dequeueReadyTime*/) { } virtual void finalizeFrameEventHistory(const std::shared_ptr& /*glDoneFence*/, const CompositorTiming& /*compositorTiming*/) {} /* * latchBuffer - called each time the screen is redrawn and returns whether * the visible regions need to be recomputed (this is a fairly heavy * operation, so this should be set only if needed). Typically this is used * to figure out if the content or size of a surface has changed. */ virtual bool latchBuffer(bool& /*recomputeVisibleRegions*/, nsecs_t /*latchTime*/, nsecs_t /*expectedPresentTime*/) { return false; } virtual bool isBufferLatched() const { return false; } virtual void latchAndReleaseBuffer() {} /* * returns the rectangle that crops the content of the layer and scales it * to the layer's size. */ virtual Rect getBufferCrop() const { return Rect(); } /* * Returns the transform applied to the buffer. */ virtual uint32_t getBufferTransform() const { return 0; } virtual sp getBuffer() const { return nullptr; } virtual ui::Transform::RotationFlags getTransformHint() const { return ui::Transform::ROT_0; } /* * Returns if a frame is ready */ virtual bool hasReadyFrame() const { return false; } virtual int32_t getQueuedFrameCount() const { return 0; } /** * Returns active buffer size in the correct orientation. Buffer size is determined by undoing * any buffer transformations. If the layer has no buffer then return INVALID_RECT. */ virtual Rect getBufferSize(const Layer::State&) const { return Rect::INVALID_RECT; } /** * Returns the source bounds. If the bounds are not defined, it is inferred from the * buffer size. Failing that, the bounds are determined from the passed in parent bounds. * For the root layer, this is the display viewport size. */ virtual FloatRect computeSourceBounds(const FloatRect& parentBounds) const { return parentBounds; } virtual FrameRate getFrameRateForLayerTree() const; virtual std::vector getOccupancyHistory(bool /*forceFlush*/) { return {}; } virtual bool getTransformToDisplayInverse() const { return false; } // Returns how rounded corners should be drawn for this layer. // This will traverse the hierarchy until it reaches its root, finding topmost rounded // corner definition and converting it into current layer's coordinates. // As of now, only 1 corner radius per display list is supported. Subsequent ones will be // ignored. virtual RoundedCornerState getRoundedCornerState() const; bool hasRoundedCorners() const override { return getRoundedCornerState().radius > .0f; } virtual PixelFormat getPixelFormat() const { return PIXEL_FORMAT_NONE; } /** * Return whether this layer needs an input info. For most layer types * this is only true if they explicitly set an input-info but BufferLayer * overrides this so we can generate input-info for Buffered layers that don't * have them (for input occlusion detection checks). */ virtual bool needsInputInfo() const { return hasInputInfo(); } // Implements RefBase. void onFirstRef() override; // implements compositionengine::LayerFE const compositionengine::LayerFECompositionState* getCompositionState() const override; bool onPreComposition(nsecs_t) override; void prepareCompositionState(compositionengine::LayerFE::StateSubset subset) override; std::vector prepareClientCompositionList( compositionengine::LayerFE::ClientCompositionTargetSettings&) override; void onLayerDisplayed(const sp& releaseFence) override; const char* getDebugName() const override; bool setShadowRadius(float shadowRadius); // Before color management is introduced, contents on Android have to be // desaturated in order to match what they appears like visually. // With color management, these contents will appear desaturated, thus // needed to be saturated so that they match what they are designed for // visually. bool isLegacyDataSpace() const; uint32_t getTransactionFlags() const { return mTransactionFlags; } uint32_t getTransactionFlags(uint32_t flags); uint32_t setTransactionFlags(uint32_t flags); // Deprecated, please use compositionengine::Output::belongsInOutput() // instead. // TODO(lpique): Move the remaining callers (screencap) to the new function. bool belongsToDisplay(uint32_t layerStack) const { return getLayerStack() == layerStack; } FloatRect getBounds(const Region& activeTransparentRegion) const; FloatRect getBounds() const; // Compute bounds for the layer and cache the results. void computeBounds(FloatRect parentBounds, ui::Transform parentTransform, float shadowRadius); int32_t getSequence() const override { return sequence; } // For tracing. // TODO: Replace with raw buffer id from buffer metadata when that becomes available. // GraphicBuffer::getId() does not provide a reliable global identifier. Since the traces // creates its tracks by buffer id and has no way of associating a buffer back to the process // that created it, the current implementation is only sufficient for cases where a buffer is // only used within a single layer. uint64_t getCurrentBufferId() const { return getBuffer() ? getBuffer()->getId() : 0; } /* * isSecure - true if this surface is secure, that is if it prevents * screenshots or VNC servers. A surface can be set to be secure by the * application, being secure doesn't mean the surface has DRM contents. */ bool isSecure() const; /* * isHiddenByPolicy - true if this layer has been forced invisible. * just because this is false, doesn't mean isVisible() is true. * For example if this layer has no active buffer, it may not be hidden by * policy, but it still can not be visible. */ bool isHiddenByPolicy() const; bool isRemovedFromCurrentState() const; LayerProto* writeToProto(LayersProto& layersProto, uint32_t traceFlags, const DisplayDevice*); // Write states that are modified by the main thread. This includes drawing // state as well as buffer data. This should be called in the main or tracing // thread. void writeToProtoDrawingState(LayerProto* layerInfo, uint32_t traceFlags, const DisplayDevice*); // Write drawing or current state. If writing current state, the caller should hold the // external mStateLock. If writing drawing state, this function should be called on the // main or tracing thread. void writeToProtoCommonState(LayerProto* layerInfo, LayerVector::StateSet, uint32_t traceFlags = SurfaceTracing::TRACE_ALL); InputWindowInfo::Type getWindowType() const { return mWindowType; } bool getPrimaryDisplayOnly() const; void updateMirrorInfo(); /* * doTransaction - process the transaction. This is a good place to figure * out which attributes of the surface have changed. */ virtual uint32_t doTransaction(uint32_t transactionFlags); /* * Remove relative z for the layer if its relative parent is not part of the * provided layer tree. */ void removeRelativeZ(const std::vector& layersInTree); /* * Remove from current state and mark for removal. */ void removeFromCurrentState(); /* * called with the state lock from a binder thread when the layer is * removed from the current list to the pending removal list */ void onRemovedFromCurrentState(); /* * Called when the layer is added back to the current state list. */ void addToCurrentState(); /* * Sets display transform hint on BufferLayerConsumer. */ void updateTransformHint(ui::Transform::RotationFlags); inline const State& getDrawingState() const { return mDrawingState; } inline State& getDrawingState() { return mDrawingState; } LayerDebugInfo getLayerDebugInfo(const DisplayDevice*) const; void miniDump(std::string& result, const DisplayDevice&) const; void dumpFrameStats(std::string& result) const; void dumpFrameEvents(std::string& result); void dumpCallingUidPid(std::string& result) const; void clearFrameStats(); void logFrameStats(); void getFrameStats(FrameStats* outStats) const; void onDisconnect(); void addAndGetFrameTimestamps(const NewFrameEventsEntry* newEntry, FrameEventHistoryDelta* outDelta); ui::Transform getTransform() const; // Returns the Alpha of the Surface, accounting for the Alpha // of parent Surfaces in the hierarchy (alpha's will be multiplied // down the hierarchy). half getAlpha() const; half4 getColor() const; int32_t getBackgroundBlurRadius() const; bool drawShadows() const { return mEffectiveShadowRadius > 0.f; }; // Returns the transform hint set by Window Manager on the layer or one of its parents. // This traverses the current state because the data is needed when creating // the layer(off drawing thread) and the hint should be available before the producer // is ready to acquire a buffer. ui::Transform::RotationFlags getFixedTransformHint() const; /** * Traverse this layer and it's hierarchy of children directly. Unlike traverseInZOrder * which will not emit children who have relativeZOrder to another layer, this method * just directly emits all children. It also emits them in no particular order. * So this method is not suitable for graphical operations, as it doesn't represent * the scene state, but it's also more efficient than traverseInZOrder and so useful for * book-keeping. */ void traverse(LayerVector::StateSet, const LayerVector::Visitor&); void traverseInReverseZOrder(LayerVector::StateSet, const LayerVector::Visitor&); void traverseInZOrder(LayerVector::StateSet, const LayerVector::Visitor&); /** * Traverse only children in z order, ignoring relative layers that are not children of the * parent. */ void traverseChildrenInZOrder(LayerVector::StateSet, const LayerVector::Visitor&); size_t getChildrenCount() const; // ONLY CALL THIS FROM THE LAYER DTOR! // See b/141111965. We need to add current children to offscreen layers in // the layer dtor so as not to dangle layers. Since the layer has not // committed its transaction when the layer is destroyed, we must add // current children. This is safe in the dtor as we will no longer update // the current state, but should not be called anywhere else! LayerVector& getCurrentChildren() { return mCurrentChildren; } void addChild(const sp&); // Returns index if removed, or negative value otherwise // for symmetry with Vector::remove ssize_t removeChild(const sp& layer); sp getParent() const { return mCurrentParent.promote(); } // Should be called with the surfaceflinger statelock held bool isAtRoot() const { return mIsAtRoot; } void setIsAtRoot(bool isAtRoot) { mIsAtRoot = isAtRoot; } bool hasParent() const { return getParent() != nullptr; } Rect getScreenBounds(bool reduceTransparentRegion = true) const; bool setChildLayer(const sp& childLayer, int32_t z); bool setChildRelativeLayer(const sp& childLayer, const sp& relativeToHandle, int32_t relativeZ); // Copy the current list of children to the drawing state. Called by // SurfaceFlinger to complete a transaction. void commitChildList(); int32_t getZ(LayerVector::StateSet) const; /** * Returns the cropped buffer size or the layer crop if the layer has no buffer. Return * INVALID_RECT if the layer has no buffer and no crop. * A layer with an invalid buffer size and no crop is considered to be boundless. The layer * bounds are constrained by its parent bounds. */ Rect getCroppedBufferSize(const Layer::State& s) const; bool setFrameRate(FrameRate); virtual void setFrameTimelineInfoForBuffer(const FrameTimelineInfo& /*info*/) {} void setFrameTimelineVsyncForBufferTransaction(const FrameTimelineInfo& info, nsecs_t postTime); void setFrameTimelineVsyncForBufferlessTransaction(const FrameTimelineInfo& info, nsecs_t postTime); void addSurfaceFrameDroppedForBuffer( std::shared_ptr& surfaceFrame); void addSurfaceFramePresentedForBuffer( std::shared_ptr& surfaceFrame, nsecs_t acquireFenceTime, nsecs_t currentLatchTime); std::shared_ptr createSurfaceFrameForTransaction( const FrameTimelineInfo& info, nsecs_t postTime); std::shared_ptr createSurfaceFrameForBuffer( const FrameTimelineInfo& info, nsecs_t queueTime, std::string debugName); // Creates a new handle each time, so we only expect // this to be called once. sp getHandle(); const std::string& getName() const { return mName; } bool getPremultipledAlpha() const; void setInputInfo(const InputWindowInfo& info); InputWindowInfo fillInputInfo(const sp& display); /** * Returns whether this layer has an explicitly set input-info. */ bool hasInputInfo() const; // Sets the parent's gameMode for this layer and all its children. Parent's gameMode is applied // only to layers that do not have the GAME_MODE_METADATA set by WMShell. Any layer(along with // its children) that has the metadata set will use the gameMode from the metadata. void setGameModeForTree(int32_t parentGameMode); void setGameMode(int32_t gameMode) { mGameMode = gameMode; }; int32_t getGameMode() const { return mGameMode; } virtual uid_t getOwnerUid() const { return mOwnerUid; } pid_t getOwnerPid() { return mOwnerPid; } // This layer is not a clone, but it's the parent to the cloned hierarchy. The // variable mClonedChild represents the top layer that will be cloned so this // layer will be the parent of mClonedChild. // The layers in the cloned hierarchy will match the lifetime of the real layers. That is // if the real layer is destroyed, then the clone layer will also be destroyed. sp mClonedChild; bool mHadClonedChild = false; void setClonedChild(const sp& mClonedChild); mutable bool contentDirty{false}; Region surfaceDamageRegion; // Layer serial number. This gives layers an explicit ordering, so we // have a stable sort order when their layer stack and Z-order are // the same. int32_t sequence{sSequence++}; bool mPendingHWCDestroy{false}; bool backpressureEnabled() { return mDrawingState.flags & layer_state_t::eEnableBackpressure; } bool setStretchEffect(const StretchEffect& effect); StretchEffect getStretchEffect() const; virtual bool setBufferCrop(const Rect& /* bufferCrop */) { return false; } virtual bool setDestinationFrame(const Rect& /* destinationFrame */) { return false; } virtual std::atomic* getPendingBufferCounter() { return nullptr; } virtual std::string getPendingBufferCounterName() { return ""; } virtual bool updateGeometry() { return false; } protected: friend class impl::SurfaceInterceptor; // HUANGLONG begin // For SurfaceFlingerEx accessing findOutputLayerForDisplay, getCompositionType. friend class SurfaceFlingerEx; // HUANGLONG end // For unit tests friend class TestableSurfaceFlinger; friend class FpsReporterTest; friend class RefreshRateSelectionTest; friend class SetFrameRateTest; friend class TransactionFrameTracerTest; friend class TransactionSurfaceFrameTest; virtual void setInitialValuesForClone(const sp& clonedFrom); virtual std::optional prepareClientComposition( compositionengine::LayerFE::ClientCompositionTargetSettings&); virtual void preparePerFrameCompositionState(); virtual void commitTransaction(State& stateToCommit); virtual void onSurfaceFrameCreated(const std::shared_ptr&) {} // Returns mCurrentScaling mode (originating from the // Client) or mOverrideScalingMode mode (originating from // the Surface Controller) if set. virtual uint32_t getEffectiveScalingMode() const { return 0; } sp asLayerFE() const; sp getClonedFrom() { return mClonedFrom != nullptr ? mClonedFrom.promote() : nullptr; } bool isClone() { return mClonedFrom != nullptr; } bool isClonedFromAlive() { return getClonedFrom() != nullptr; } void updateClonedDrawingState(std::map, sp>& clonedLayersMap); void updateClonedChildren(const sp& mirrorRoot, std::map, sp>& clonedLayersMap); void updateClonedRelatives(const std::map, sp>& clonedLayersMap); void addChildToDrawing(const sp&); void updateClonedInputInfo(const std::map, sp>& clonedLayersMap); // Modifies the passed in layer settings to clear the contents. If the blackout flag is set, // the settings clears the content with a solid black fill. void prepareClearClientComposition(LayerFE::LayerSettings&, bool blackout) const; void prepareShadowClientComposition(LayerFE::LayerSettings& caster, const Rect& layerStackRect); void prepareBasicGeometryCompositionState(); void prepareGeometryCompositionState(); void prepareCursorCompositionState(); uint32_t getEffectiveUsage(uint32_t usage) const; /** * Setup rounded corners coordinates of this layer, taking into account the layer bounds and * crop coordinates, transforming them into layer space. */ void setupRoundedCornersCropCoordinates(Rect win, const FloatRect& roundedCornersCrop) const; void setParent(const sp&); LayerVector makeTraversalList(LayerVector::StateSet, bool* outSkipRelativeZUsers); void addZOrderRelative(const wp& relative); void removeZOrderRelative(const wp& relative); compositionengine::OutputLayer* findOutputLayerForDisplay(const DisplayDevice*) const; bool usingRelativeZ(LayerVector::StateSet) const; virtual ui::Transform getInputTransform() const; virtual Rect getInputBounds() const; // constant sp mFlinger; bool mPremultipliedAlpha{true}; const std::string mName; const std::string mTransactionName{"TX - " + mName}; // These are only accessed by the main thread or the tracing thread. State mDrawingState; uint32_t mTransactionFlags{0}; // Updated in doTransaction, used to track the last sequence number we // committed. Currently this is really only used for updating visible // regions. int32_t mLastCommittedTxSequence = -1; // Timestamp history for UIAutomation. Thread safe. FrameTracker mFrameTracker; // Timestamp history for the consumer to query. // Accessed by both consumer and producer on main and binder threads. Mutex mFrameEventHistoryMutex; ConsumerFrameEventHistory mFrameEventHistory; FenceTimeline mAcquireTimeline; FenceTimeline mReleaseTimeline; // main thread sp mSidebandStream; // False if the buffer and its contents have been previously used for GPU // composition, true otherwise. bool mIsActiveBufferUpdatedForGpu = true; // We encode unset as -1. std::atomic mCurrentFrameNumber{0}; // Whether filtering is needed b/c of the drawingstate bool mNeedsFiltering{false}; std::atomic mRemovedFromDrawingState{false}; // page-flip thread (currently main thread) bool mProtectedByApp{false}; // application requires protected path to external sink // protected by mLock mutable Mutex mLock; const wp mClientRef; // This layer can be a cursor on some displays. bool mPotentialCursor{false}; LayerVector mCurrentChildren{LayerVector::StateSet::Current}; LayerVector mDrawingChildren{LayerVector::StateSet::Drawing}; wp mCurrentParent; wp mDrawingParent; // Window types from WindowManager.LayoutParams const InputWindowInfo::Type mWindowType; // The owner of the layer. If created from a non system process, it will be the calling uid. // If created from a system process, the value can be passed in. uid_t mOwnerUid; // The owner pid of the layer. If created from a non system process, it will be the calling pid. // If created from a system process, the value can be passed in. pid_t mOwnerPid; // Keeps track of the time SF latched the last buffer from this layer. // Used in buffer stuffing analysis in FrameTimeline. nsecs_t mLastLatchTime = 0; mutable bool mDrawingStateModified = false; private: virtual void setTransformHint(ui::Transform::RotationFlags) {} // Returns true if the layer can draw shadows on its border. virtual bool canDrawShadows() const { return true; } Hwc2::IComposerClient::Composition getCompositionType(const DisplayDevice&) const; /** * Returns an unsorted vector of all layers that are part of this tree. * That includes the current layer and all its descendants. */ std::vector getLayersInTree(LayerVector::StateSet); /** * Traverses layers that are part of this tree in the correct z order. * layersInTree must be sorted before calling this method. */ void traverseChildrenInZOrderInner(const std::vector& layersInTree, LayerVector::StateSet, const LayerVector::Visitor&); LayerVector makeChildrenTraversalList(LayerVector::StateSet, const std::vector& layersInTree); void updateTreeHasFrameRateVote(); bool propagateFrameRateForLayerTree(FrameRate parentFrameRate, bool* transactionNeeded); bool setFrameRateForLayerTree(FrameRate); void setZOrderRelativeOf(const wp& relativeOf); bool isTrustedOverlay() const; gui::DropInputMode getDropInputMode() const; void handleDropInputMode(InputWindowInfo& info) const; // Find the root of the cloned hierarchy, this means the first non cloned parent. // This will return null if first non cloned parent is not found. sp getClonedRoot(); // Finds the top most layer in the hierarchy. This will find the root Layer where the parent is // null. sp getRootLayer(); // Fills in the touch occlusion mode of the first parent (including this layer) that // hasInputInfo() or no-op if no such parent is found. void fillTouchOcclusionMode(InputWindowInfo& info); // Fills in the frame and transform info for the InputWindowInfo void fillInputFrameInfo(InputWindowInfo& info, const ui::Transform& toPhysicalDisplay); // Cached properties computed from drawing state // Effective transform taking into account parent transforms and any parent scaling, which is // a transform from the current layer coordinate space to display(screen) coordinate space. ui::Transform mEffectiveTransform; // Bounds of the layer before any transformation is applied and before it has been cropped // by its parents. FloatRect mSourceBounds; // Bounds of the layer in layer space. This is the mSourceBounds cropped by its layer crop and // its parent bounds. FloatRect mBounds; // Layer bounds in screen space. FloatRect mScreenBounds; bool mGetHandleCalled = false; // Tracks the process and user id of the caller when creating this layer // to help debugging. pid_t mCallingPid; uid_t mCallingUid; // The current layer is a clone of mClonedFrom. This means that this layer will update it's // properties based on mClonedFrom. When mClonedFrom latches a new buffer for BufferLayers, // this layer will update it's buffer. When mClonedFrom updates it's drawing state, children, // and relatives, this layer will update as well. wp mClonedFrom; // The inherited shadow radius after taking into account the layer hierarchy. This is the // final shadow radius for this layer. If a shadow is specified for a layer, then effective // shadow radius is the set shadow radius, otherwise its the parent's shadow radius. float mEffectiveShadowRadius = 0.f; // Game mode for the layer. Set by WindowManagerShell, game mode is used in // metrics(SurfaceFlingerStats). int32_t mGameMode = 0; // A list of regions on this layer that should have blurs. const std::vector getBlurRegions() const; bool mIsAtRoot = false; }; std::ostream& operator<<(std::ostream& stream, const Layer::FrameRate& rate); } // namespace android