/* * Copyright 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wextra" #define ATRACE_TAG ATRACE_TAG_GRAPHICS //#define LOG_NDEBUG 0 #include "VSyncPredictor.h" #include #include #include #include #include #include #include #include #include #include "RefreshRateConfigs.h" #undef LOG_TAG #define LOG_TAG "VSyncPredictor" namespace android::scheduler { using base::StringAppendF; static auto constexpr kMaxPercent = 100u; VSyncPredictor::~VSyncPredictor() = default; VSyncPredictor::VSyncPredictor(nsecs_t idealPeriod, size_t historySize, size_t minimumSamplesForPrediction, uint32_t outlierTolerancePercent) : mTraceOn(property_get_bool("debug.sf.vsp_trace", true)), kHistorySize(historySize), kMinimumSamplesForPrediction(minimumSamplesForPrediction), kOutlierTolerancePercent(std::min(outlierTolerancePercent, kMaxPercent)), mIdealPeriod(idealPeriod) { resetModel(); } inline void VSyncPredictor::traceInt64If(const char* name, int64_t value) const { if (CC_UNLIKELY(mTraceOn)) { ATRACE_INT64(name, value); } } inline size_t VSyncPredictor::next(size_t i) const { return (i + 1) % mTimestamps.size(); } bool VSyncPredictor::validate(nsecs_t timestamp) const { if (mLastTimestampIndex < 0 || mTimestamps.empty()) { return true; } auto const aValidTimestamp = mTimestamps[mLastTimestampIndex]; auto const percent = (timestamp - aValidTimestamp) % mIdealPeriod * kMaxPercent / mIdealPeriod; if (percent >= kOutlierTolerancePercent && percent <= (kMaxPercent - kOutlierTolerancePercent)) { return false; } const auto iter = std::min_element(mTimestamps.begin(), mTimestamps.end(), [timestamp](nsecs_t a, nsecs_t b) { return std::abs(timestamp - a) < std::abs(timestamp - b); }); const auto distancePercent = std::abs(*iter - timestamp) * kMaxPercent / mIdealPeriod; if (distancePercent < kOutlierTolerancePercent) { // duplicate timestamp return false; } return true; } nsecs_t VSyncPredictor::currentPeriod() const { std::lock_guard lock(mMutex); return mRateMap.find(mIdealPeriod)->second.slope; } bool VSyncPredictor::addVsyncTimestamp(nsecs_t timestamp) { std::lock_guard lock(mMutex); if (!validate(timestamp)) { // VSR could elect to ignore the incongruent timestamp or resetModel(). If ts is ignored, // don't insert this ts into mTimestamps ringbuffer. If we are still // in the learning phase we should just clear all timestamps and start // over. if (mTimestamps.size() < kMinimumSamplesForPrediction) { // Add the timestamp to mTimestamps before clearing it so we could // update mKnownTimestamp based on the new timestamp. mTimestamps.push_back(timestamp); clearTimestamps(); } else if (!mTimestamps.empty()) { mKnownTimestamp = std::max(timestamp, *std::max_element(mTimestamps.begin(), mTimestamps.end())); } else { mKnownTimestamp = timestamp; } return false; } if (mTimestamps.size() != kHistorySize) { mTimestamps.push_back(timestamp); mLastTimestampIndex = next(mLastTimestampIndex); } else { mLastTimestampIndex = next(mLastTimestampIndex); mTimestamps[mLastTimestampIndex] = timestamp; } if (mTimestamps.size() < kMinimumSamplesForPrediction) { mRateMap[mIdealPeriod] = {mIdealPeriod, 0}; return true; } // This is a 'simple linear regression' calculation of Y over X, with Y being the // vsync timestamps, and X being the ordinal of vsync count. // The calculated slope is the vsync period. // Formula for reference: // Sigma_i: means sum over all timestamps. // mean(variable): statistical mean of variable. // X: snapped ordinal of the timestamp // Y: vsync timestamp // // Sigma_i( (X_i - mean(X)) * (Y_i - mean(Y) ) // slope = ------------------------------------------- // Sigma_i ( X_i - mean(X) ) ^ 2 // // intercept = mean(Y) - slope * mean(X) // std::vector vsyncTS(mTimestamps.size()); std::vector ordinals(mTimestamps.size()); // normalizing to the oldest timestamp cuts down on error in calculating the intercept. auto const oldest_ts = *std::min_element(mTimestamps.begin(), mTimestamps.end()); auto it = mRateMap.find(mIdealPeriod); auto const currentPeriod = it->second.slope; // TODO (b/144707443): its important that there's some precision in the mean of the ordinals // for the intercept calculation, so scale the ordinals by 1000 to continue // fixed point calculation. Explore expanding // scheduler::utils::calculate_mean to have a fixed point fractional part. static constexpr int64_t kScalingFactor = 1000; for (auto i = 0u; i < mTimestamps.size(); i++) { traceInt64If("VSP-ts", mTimestamps[i]); vsyncTS[i] = mTimestamps[i] - oldest_ts; ordinals[i] = ((vsyncTS[i] + (currentPeriod / 2)) / currentPeriod) * kScalingFactor; } auto meanTS = scheduler::calculate_mean(vsyncTS); auto meanOrdinal = scheduler::calculate_mean(ordinals); for (size_t i = 0; i < vsyncTS.size(); i++) { vsyncTS[i] -= meanTS; ordinals[i] -= meanOrdinal; } auto top = 0ll; auto bottom = 0ll; for (size_t i = 0; i < vsyncTS.size(); i++) { top += vsyncTS[i] * ordinals[i]; bottom += ordinals[i] * ordinals[i]; } if (CC_UNLIKELY(bottom == 0)) { it->second = {mIdealPeriod, 0}; clearTimestamps(); return false; } nsecs_t const anticipatedPeriod = top * kScalingFactor / bottom; nsecs_t const intercept = meanTS - (anticipatedPeriod * meanOrdinal / kScalingFactor); auto const percent = std::abs(anticipatedPeriod - mIdealPeriod) * kMaxPercent / mIdealPeriod; if (percent >= kOutlierTolerancePercent) { it->second = {mIdealPeriod, 0}; clearTimestamps(); return false; } traceInt64If("VSP-period", anticipatedPeriod); traceInt64If("VSP-intercept", intercept); it->second = {anticipatedPeriod, intercept}; ALOGV("model update ts: %" PRId64 " slope: %" PRId64 " intercept: %" PRId64, timestamp, anticipatedPeriod, intercept); return true; } nsecs_t VSyncPredictor::nextAnticipatedVSyncTimeFromLocked(nsecs_t timePoint) const { auto const [slope, intercept] = getVSyncPredictionModelLocked(); if (mTimestamps.empty()) { traceInt64If("VSP-mode", 1); auto const knownTimestamp = mKnownTimestamp ? *mKnownTimestamp : timePoint; auto const numPeriodsOut = ((timePoint - knownTimestamp) / mIdealPeriod) + 1; return knownTimestamp + numPeriodsOut * mIdealPeriod; } auto const oldest = *std::min_element(mTimestamps.begin(), mTimestamps.end()); // See b/145667109, the ordinal calculation must take into account the intercept. auto const zeroPoint = oldest + intercept; auto const ordinalRequest = (timePoint - zeroPoint + slope) / slope; auto const prediction = (ordinalRequest * slope) + intercept + oldest; traceInt64If("VSP-mode", 0); traceInt64If("VSP-timePoint", timePoint); traceInt64If("VSP-prediction", prediction); auto const printer = [&, slope = slope, intercept = intercept] { std::stringstream str; str << "prediction made from: " << timePoint << "prediction: " << prediction << " (+" << prediction - timePoint << ") slope: " << slope << " intercept: " << intercept << "oldestTS: " << oldest << " ordinal: " << ordinalRequest; return str.str(); }; ALOGV("%s", printer().c_str()); LOG_ALWAYS_FATAL_IF(prediction < timePoint, "VSyncPredictor: model miscalculation: %s", printer().c_str()); return prediction; } nsecs_t VSyncPredictor::nextAnticipatedVSyncTimeFrom(nsecs_t timePoint) const { std::lock_guard lock(mMutex); return nextAnticipatedVSyncTimeFromLocked(timePoint); } /* * Returns whether a given vsync timestamp is in phase with a frame rate. * If the frame rate is not a divider of the refresh rate, it is always considered in phase. * For example, if the vsync timestamps are (16.6,33.3,50.0,66.6): * isVSyncInPhase(16.6, 30) = true * isVSyncInPhase(33.3, 30) = false * isVSyncInPhase(50.0, 30) = true */ bool VSyncPredictor::isVSyncInPhase(nsecs_t timePoint, Fps frameRate) const { struct VsyncError { nsecs_t vsyncTimestamp; float error; bool operator<(const VsyncError& other) const { return error < other.error; } }; std::lock_guard lock(mMutex); const auto divider = RefreshRateConfigs::getFrameRateDivider(Fps::fromPeriodNsecs(mIdealPeriod), frameRate); if (divider <= 1 || timePoint == 0) { return true; } const nsecs_t period = mRateMap[mIdealPeriod].slope; const nsecs_t justBeforeTimePoint = timePoint - period / 2; const nsecs_t dividedPeriod = mIdealPeriod / divider; // If this is the first time we have asked about this divider with the // current vsync period, it is considered in phase and we store the closest // vsync timestamp const auto knownTimestampIter = mRateDividerKnownTimestampMap.find(dividedPeriod); if (knownTimestampIter == mRateDividerKnownTimestampMap.end()) { const auto vsync = nextAnticipatedVSyncTimeFromLocked(justBeforeTimePoint); mRateDividerKnownTimestampMap[dividedPeriod] = vsync; return true; } // Find the next N vsync timestamp where N is the divider. // One of these vsyncs will be in phase. We return the one which is // the most aligned with the last known in phase vsync std::vector vsyncs(static_cast(divider)); const nsecs_t knownVsync = knownTimestampIter->second; nsecs_t point = justBeforeTimePoint; for (size_t i = 0; i < divider; i++) { const nsecs_t vsync = nextAnticipatedVSyncTimeFromLocked(point); const auto numPeriods = static_cast(vsync - knownVsync) / (period * divider); const auto error = std::abs(std::round(numPeriods) - numPeriods); vsyncs[i] = {vsync, error}; point = vsync + 1; } const auto minVsyncError = std::min_element(vsyncs.begin(), vsyncs.end()); mRateDividerKnownTimestampMap[dividedPeriod] = minVsyncError->vsyncTimestamp; return std::abs(minVsyncError->vsyncTimestamp - timePoint) < period / 2; } VSyncPredictor::Model VSyncPredictor::getVSyncPredictionModel() const { std::lock_guard lock(mMutex); const auto model = VSyncPredictor::getVSyncPredictionModelLocked(); return {model.slope, model.intercept}; } VSyncPredictor::Model VSyncPredictor::getVSyncPredictionModelLocked() const { return mRateMap.find(mIdealPeriod)->second; } void VSyncPredictor::setPeriod(nsecs_t period) { ATRACE_CALL(); std::lock_guard lock(mMutex); static constexpr size_t kSizeLimit = 30; if (CC_UNLIKELY(mRateMap.size() == kSizeLimit)) { mRateMap.erase(mRateMap.begin()); } mIdealPeriod = period; if (mRateMap.find(period) == mRateMap.end()) { mRateMap[mIdealPeriod] = {period, 0}; } clearTimestamps(); } void VSyncPredictor::clearTimestamps() { if (!mTimestamps.empty()) { auto const maxRb = *std::max_element(mTimestamps.begin(), mTimestamps.end()); if (mKnownTimestamp) { mKnownTimestamp = std::max(*mKnownTimestamp, maxRb); } else { mKnownTimestamp = maxRb; } mTimestamps.clear(); mLastTimestampIndex = 0; } } bool VSyncPredictor::needsMoreSamples() const { std::lock_guard lock(mMutex); return mTimestamps.size() < kMinimumSamplesForPrediction; } void VSyncPredictor::resetModel() { std::lock_guard lock(mMutex); mRateMap[mIdealPeriod] = {mIdealPeriod, 0}; clearTimestamps(); } void VSyncPredictor::dump(std::string& result) const { std::lock_guard lock(mMutex); StringAppendF(&result, "\tmIdealPeriod=%.2f\n", mIdealPeriod / 1e6f); StringAppendF(&result, "\tRefresh Rate Map:\n"); for (const auto& [idealPeriod, periodInterceptTuple] : mRateMap) { StringAppendF(&result, "\t\tFor ideal period %.2fms: period = %.2fms, intercept = %" PRId64 "\n", idealPeriod / 1e6f, periodInterceptTuple.slope / 1e6f, periodInterceptTuple.intercept); } } } // namespace android::scheduler // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic pop // ignored "-Wextra"