/* * Copyright 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include #include #include #include static const char* VERTEX_SHADER = R"SHADER__(#version 300 es precision highp float; layout(location = 0) in vec4 mesh_position; void main() { gl_Position = mesh_position; } )SHADER__"; static const char* FRAGMENT_SHADER = R"SHADER__(#version 300 es precision highp float; layout(location = 0) uniform vec4 resolution; layout(location = 1) uniform float time; layout(location = 2) uniform vec3[4] SPHERICAL_HARMONICS; layout(location = 0) out vec4 fragColor; #define saturate(x) clamp(x, 0.0, 1.0) #define PI 3.14159265359 //------------------------------------------------------------------------------ // Distance field functions //------------------------------------------------------------------------------ float sdPlane(in vec3 p) { return p.y; } float sdSphere(in vec3 p, float s) { return length(p) - s; } float sdTorus(in vec3 p, in vec2 t) { return length(vec2(length(p.xz) - t.x, p.y)) - t.y; } vec2 opUnion(vec2 d1, vec2 d2) { return d1.x < d2.x ? d1 : d2; } vec2 scene(in vec3 position) { vec2 scene = opUnion( vec2(sdPlane(position), 1.0), vec2(sdSphere(position - vec3(0.0, 0.4, 0.0), 0.4), 12.0) ); return scene; } //------------------------------------------------------------------------------ // Ray casting //------------------------------------------------------------------------------ float shadow(in vec3 origin, in vec3 direction, in float tmin, in float tmax) { float hit = 1.0; for (float t = tmin; t < tmax; ) { float h = scene(origin + direction * t).x; if (h < 0.001) return 0.0; t += h; hit = min(hit, 10.0 * h / t); } return clamp(hit, 0.0, 1.0); } vec2 traceRay(in vec3 origin, in vec3 direction) { float tmin = 0.02; float tmax = 20.0; float material = -1.0; float t = tmin; for ( ; t < tmax; ) { vec2 hit = scene(origin + direction * t); if (hit.x < 0.002 || t > tmax) break; t += hit.x; material = hit.y; } if (t > tmax) { material = -1.0; } return vec2(t, material); } vec3 normal(in vec3 position) { vec3 epsilon = vec3(0.001, 0.0, 0.0); vec3 n = vec3( scene(position + epsilon.xyy).x - scene(position - epsilon.xyy).x, scene(position + epsilon.yxy).x - scene(position - epsilon.yxy).x, scene(position + epsilon.yyx).x - scene(position - epsilon.yyx).x); return normalize(n); } //------------------------------------------------------------------------------ // BRDF //------------------------------------------------------------------------------ float pow5(float x) { float x2 = x * x; return x2 * x2 * x; } float D_GGX(float linearRoughness, float NoH, const vec3 h) { // Walter et al. 2007, "Microfacet Models for Refraction through Rough Surfaces" float oneMinusNoHSquared = 1.0 - NoH * NoH; float a = NoH * linearRoughness; float k = linearRoughness / (oneMinusNoHSquared + a * a); float d = k * k * (1.0 / PI); return d; } float V_SmithGGXCorrelated(float linearRoughness, float NoV, float NoL) { // Heitz 2014, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs" float a2 = linearRoughness * linearRoughness; float GGXV = NoL * sqrt((NoV - a2 * NoV) * NoV + a2); float GGXL = NoV * sqrt((NoL - a2 * NoL) * NoL + a2); return 0.5 / (GGXV + GGXL); } vec3 F_Schlick(const vec3 f0, float VoH) { // Schlick 1994, "An Inexpensive BRDF Model for Physically-Based Rendering" return f0 + (vec3(1.0) - f0) * pow5(1.0 - VoH); } float F_Schlick(float f0, float f90, float VoH) { return f0 + (f90 - f0) * pow5(1.0 - VoH); } float Fd_Burley(float linearRoughness, float NoV, float NoL, float LoH) { // Burley 2012, "Physically-Based Shading at Disney" float f90 = 0.5 + 2.0 * linearRoughness * LoH * LoH; float lightScatter = F_Schlick(1.0, f90, NoL); float viewScatter = F_Schlick(1.0, f90, NoV); return lightScatter * viewScatter * (1.0 / PI); } float Fd_Lambert() { return 1.0 / PI; } //------------------------------------------------------------------------------ // Indirect lighting //------------------------------------------------------------------------------ vec3 Irradiance_SphericalHarmonics(const vec3 n) { return max( SPHERICAL_HARMONICS[0] + SPHERICAL_HARMONICS[1] * (n.y) + SPHERICAL_HARMONICS[2] * (n.z) + SPHERICAL_HARMONICS[3] * (n.x) , 0.0); } vec2 PrefilteredDFG_Karis(float roughness, float NoV) { // Karis 2014, "Physically Based Material on Mobile" const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022); const vec4 c1 = vec4( 1.0, 0.0425, 1.040, -0.040); vec4 r = roughness * c0 + c1; float a004 = min(r.x * r.x, exp2(-9.28 * NoV)) * r.x + r.y; return vec2(-1.04, 1.04) * a004 + r.zw; } //------------------------------------------------------------------------------ // Tone mapping and transfer functions //------------------------------------------------------------------------------ vec3 Tonemap_ACES(const vec3 x) { // Narkowicz 2015, "ACES Filmic Tone Mapping Curve" const float a = 2.51; const float b = 0.03; const float c = 2.43; const float d = 0.59; const float e = 0.14; return (x * (a * x + b)) / (x * (c * x + d) + e); } vec3 OECF_sRGBFast(const vec3 linear) { return pow(linear, vec3(1.0 / 2.2)); } //------------------------------------------------------------------------------ // Rendering //------------------------------------------------------------------------------ vec3 render(in vec3 origin, in vec3 direction, out float distance) { // Sky gradient vec3 color = vec3(0.65, 0.85, 1.0) + direction.y * 0.72; // (distance, material) vec2 hit = traceRay(origin, direction); distance = hit.x; float material = hit.y; // We've hit something in the scene if (material > 0.0) { vec3 position = origin + distance * direction; vec3 v = normalize(-direction); vec3 n = normal(position); vec3 l = normalize(vec3(0.6, 0.7, -0.7)); vec3 h = normalize(v + l); vec3 r = normalize(reflect(direction, n)); float NoV = abs(dot(n, v)) + 1e-5; float NoL = saturate(dot(n, l)); float NoH = saturate(dot(n, h)); float LoH = saturate(dot(l, h)); vec3 baseColor = vec3(0.0); float roughness = 0.0; float metallic = 0.0; float intensity = 2.0; float indirectIntensity = 0.64; if (material < 4.0) { // Checkerboard floor float f = mod(floor(6.0 * position.z) + floor(6.0 * position.x), 2.0); baseColor = 0.4 + f * vec3(0.6); roughness = 0.1; } else if (material < 16.0) { // Metallic objects baseColor = vec3(0.3, 0.0, 0.0); roughness = 0.2; } float linearRoughness = roughness * roughness; vec3 diffuseColor = (1.0 - metallic) * baseColor.rgb; vec3 f0 = 0.04 * (1.0 - metallic) + baseColor.rgb * metallic; float attenuation = shadow(position, l, 0.02, 2.5); // specular BRDF float D = D_GGX(linearRoughness, NoH, h); float V = V_SmithGGXCorrelated(linearRoughness, NoV, NoL); vec3 F = F_Schlick(f0, LoH); vec3 Fr = (D * V) * F; // diffuse BRDF vec3 Fd = diffuseColor * Fd_Burley(linearRoughness, NoV, NoL, LoH); color = Fd + Fr; color *= (intensity * attenuation * NoL) * vec3(0.98, 0.92, 0.89); // diffuse indirect vec3 indirectDiffuse = Irradiance_SphericalHarmonics(n) * Fd_Lambert(); vec2 indirectHit = traceRay(position, r); vec3 indirectSpecular = vec3(0.65, 0.85, 1.0) + r.y * 0.72; if (indirectHit.y > 0.0) { if (indirectHit.y < 4.0) { vec3 indirectPosition = position + indirectHit.x * r; // Checkerboard floor float f = mod(floor(6.0 * indirectPosition.z) + floor(6.0 * indirectPosition.x), 2.0); indirectSpecular = 0.4 + f * vec3(0.6); } else if (indirectHit.y < 16.0) { // Metallic objects indirectSpecular = vec3(0.3, 0.0, 0.0); } } // indirect contribution vec2 dfg = PrefilteredDFG_Karis(roughness, NoV); vec3 specularColor = f0 * dfg.x + dfg.y; vec3 ibl = diffuseColor * indirectDiffuse + indirectSpecular * specularColor; color += ibl * indirectIntensity; } return color; } //------------------------------------------------------------------------------ // Setup and execution //------------------------------------------------------------------------------ mat3 setCamera(in vec3 origin, in vec3 target, float rotation) { vec3 forward = normalize(target - origin); vec3 orientation = vec3(sin(rotation), cos(rotation), 0.0); vec3 left = normalize(cross(forward, orientation)); vec3 up = normalize(cross(left, forward)); return mat3(left, up, forward); } void main() { // Normalized coordinates vec2 p = -1.0 + 2.0 * gl_FragCoord.xy / resolution.xy; // Aspect ratio p.x *= resolution.x / resolution.y; // Camera position and "look at" vec3 origin = vec3(0.0, 1.0, 0.0); vec3 target = vec3(0.0); origin.x += 2.0 * cos(time * 0.2); origin.z += 2.0 * sin(time * 0.2); mat3 toWorld = setCamera(origin, target, 0.0); vec3 direction = toWorld * normalize(vec3(p.xy, 2.0)); // Render scene float distance; vec3 color = render(origin, direction, distance); // Tone mapping color = Tonemap_ACES(color); // Exponential distance fog color = mix(color, 0.8 * vec3(0.7, 0.8, 1.0), 1.0 - exp2(-0.011 * distance * distance)); // Gamma compression color = OECF_sRGBFast(color); fragColor = vec4(color, 1.0); } )SHADER__"; static const android::vec3 SPHERICAL_HARMONICS[4] = {{0.754554516862612, 0.748542953903366, 0.790921515418539}, {-0.083856548007422, 0.092533500963210, 0.322764661032516}, {0.308152705331738, 0.366796330467391, 0.466698181299906}, {-0.188884931542396, -0.277402551592231, -0.377844212327557}}; static const android::vec4 TRIANGLE[3] = {{-1.0f, -1.0f, 1.0f, 1.0f}, {3.0f, -1.0f, 1.0f, 1.0f}, {-1.0f, 3.0f, 1.0f, 1.0f}};