/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "bounds_check_elimination.h" #include #include "base/scoped_arena_allocator.h" #include "base/scoped_arena_containers.h" #include "induction_var_range.h" #include "nodes.h" #include "side_effects_analysis.h" namespace art { class MonotonicValueRange; /** * A value bound is represented as a pair of value and constant, * e.g. array.length - 1. */ class ValueBound : public ValueObject { public: ValueBound(HInstruction* instruction, int32_t constant) { if (instruction != nullptr && instruction->IsIntConstant()) { // Normalize ValueBound with constant instruction. int32_t instr_const = instruction->AsIntConstant()->GetValue(); if (!WouldAddOverflowOrUnderflow(instr_const, constant)) { instruction_ = nullptr; constant_ = instr_const + constant; return; } } instruction_ = instruction; constant_ = constant; } // Return whether (left + right) overflows or underflows. static bool WouldAddOverflowOrUnderflow(int32_t left, int32_t right) { if (right == 0) { return false; } if ((right > 0) && (left <= (std::numeric_limits::max() - right))) { // No overflow. return false; } if ((right < 0) && (left >= (std::numeric_limits::min() - right))) { // No underflow. return false; } return true; } // Return true if instruction can be expressed as "left_instruction + right_constant". static bool IsAddOrSubAConstant(HInstruction* instruction, /* out */ HInstruction** left_instruction, /* out */ int32_t* right_constant) { HInstruction* left_so_far = nullptr; int32_t right_so_far = 0; while (instruction->IsAdd() || instruction->IsSub()) { HBinaryOperation* bin_op = instruction->AsBinaryOperation(); HInstruction* left = bin_op->GetLeft(); HInstruction* right = bin_op->GetRight(); if (right->IsIntConstant()) { int32_t v = right->AsIntConstant()->GetValue(); int32_t c = instruction->IsAdd() ? v : -v; if (!WouldAddOverflowOrUnderflow(right_so_far, c)) { instruction = left; left_so_far = left; right_so_far += c; continue; } } break; } // Return result: either false and "null+0" or true and "instr+constant". *left_instruction = left_so_far; *right_constant = right_so_far; return left_so_far != nullptr; } // Expresses any instruction as a value bound. static ValueBound AsValueBound(HInstruction* instruction) { if (instruction->IsIntConstant()) { return ValueBound(nullptr, instruction->AsIntConstant()->GetValue()); } HInstruction *left; int32_t right; if (IsAddOrSubAConstant(instruction, &left, &right)) { return ValueBound(left, right); } return ValueBound(instruction, 0); } // Try to detect useful value bound format from an instruction, e.g. // a constant or array length related value. static ValueBound DetectValueBoundFromValue(HInstruction* instruction, /* out */ bool* found) { DCHECK(instruction != nullptr); if (instruction->IsIntConstant()) { *found = true; return ValueBound(nullptr, instruction->AsIntConstant()->GetValue()); } if (instruction->IsArrayLength()) { *found = true; return ValueBound(instruction, 0); } // Try to detect (array.length + c) format. HInstruction *left; int32_t right; if (IsAddOrSubAConstant(instruction, &left, &right)) { if (left->IsArrayLength()) { *found = true; return ValueBound(left, right); } } // No useful bound detected. *found = false; return ValueBound::Max(); } HInstruction* GetInstruction() const { return instruction_; } int32_t GetConstant() const { return constant_; } bool IsRelatedToArrayLength() const { // Some bounds are created with HNewArray* as the instruction instead // of HArrayLength*. They are treated the same. return (instruction_ != nullptr) && (instruction_->IsArrayLength() || instruction_->IsNewArray()); } bool IsConstant() const { return instruction_ == nullptr; } static ValueBound Min() { return ValueBound(nullptr, std::numeric_limits::min()); } static ValueBound Max() { return ValueBound(nullptr, std::numeric_limits::max()); } bool Equals(ValueBound bound) const { return instruction_ == bound.instruction_ && constant_ == bound.constant_; } static bool Equal(HInstruction* instruction1, HInstruction* instruction2) { if (instruction1 == instruction2) { return true; } if (instruction1 == nullptr || instruction2 == nullptr) { return false; } instruction1 = HuntForDeclaration(instruction1); instruction2 = HuntForDeclaration(instruction2); return instruction1 == instruction2; } // Returns if it's certain this->bound >= `bound`. bool GreaterThanOrEqualTo(ValueBound bound) const { if (Equal(instruction_, bound.instruction_)) { return constant_ >= bound.constant_; } // Not comparable. Just return false. return false; } // Returns if it's certain this->bound <= `bound`. bool LessThanOrEqualTo(ValueBound bound) const { if (Equal(instruction_, bound.instruction_)) { return constant_ <= bound.constant_; } // Not comparable. Just return false. return false; } // Returns if it's certain this->bound > `bound`. bool GreaterThan(ValueBound bound) const { if (Equal(instruction_, bound.instruction_)) { return constant_ > bound.constant_; } // Not comparable. Just return false. return false; } // Returns if it's certain this->bound < `bound`. bool LessThan(ValueBound bound) const { if (Equal(instruction_, bound.instruction_)) { return constant_ < bound.constant_; } // Not comparable. Just return false. return false; } // Try to narrow lower bound. Returns the greatest of the two if possible. // Pick one if they are not comparable. static ValueBound NarrowLowerBound(ValueBound bound1, ValueBound bound2) { if (bound1.GreaterThanOrEqualTo(bound2)) { return bound1; } if (bound2.GreaterThanOrEqualTo(bound1)) { return bound2; } // Not comparable. Just pick one. We may lose some info, but that's ok. // Favor constant as lower bound. return bound1.IsConstant() ? bound1 : bound2; } // Try to narrow upper bound. Returns the lowest of the two if possible. // Pick one if they are not comparable. static ValueBound NarrowUpperBound(ValueBound bound1, ValueBound bound2) { if (bound1.LessThanOrEqualTo(bound2)) { return bound1; } if (bound2.LessThanOrEqualTo(bound1)) { return bound2; } // Not comparable. Just pick one. We may lose some info, but that's ok. // Favor array length as upper bound. return bound1.IsRelatedToArrayLength() ? bound1 : bound2; } // Add a constant to a ValueBound. // `overflow` or `underflow` will return whether the resulting bound may // overflow or underflow an int. ValueBound Add(int32_t c, /* out */ bool* overflow, /* out */ bool* underflow) const { *overflow = *underflow = false; if (c == 0) { return *this; } int32_t new_constant; if (c > 0) { if (constant_ > (std::numeric_limits::max() - c)) { *overflow = true; return Max(); } new_constant = constant_ + c; // (array.length + non-positive-constant) won't overflow an int. if (IsConstant() || (IsRelatedToArrayLength() && new_constant <= 0)) { return ValueBound(instruction_, new_constant); } // Be conservative. *overflow = true; return Max(); } else { if (constant_ < (std::numeric_limits::min() - c)) { *underflow = true; return Min(); } new_constant = constant_ + c; // Regardless of the value new_constant, (array.length+new_constant) will // never underflow since array.length is no less than 0. if (IsConstant() || IsRelatedToArrayLength()) { return ValueBound(instruction_, new_constant); } // Be conservative. *underflow = true; return Min(); } } private: HInstruction* instruction_; int32_t constant_; }; /** * Represent a range of lower bound and upper bound, both being inclusive. * Currently a ValueRange may be generated as a result of the following: * comparisons related to array bounds, array bounds check, add/sub on top * of an existing value range, NewArray or a loop phi corresponding to an * incrementing/decrementing array index (MonotonicValueRange). */ class ValueRange : public ArenaObject { public: ValueRange(ScopedArenaAllocator* allocator, ValueBound lower, ValueBound upper) : allocator_(allocator), lower_(lower), upper_(upper) {} virtual ~ValueRange() {} virtual MonotonicValueRange* AsMonotonicValueRange() { return nullptr; } bool IsMonotonicValueRange() { return AsMonotonicValueRange() != nullptr; } ScopedArenaAllocator* GetAllocator() const { return allocator_; } ValueBound GetLower() const { return lower_; } ValueBound GetUpper() const { return upper_; } bool IsConstantValueRange() const { return lower_.IsConstant() && upper_.IsConstant(); } // If it's certain that this value range fits in other_range. virtual bool FitsIn(ValueRange* other_range) const { if (other_range == nullptr) { return true; } DCHECK(!other_range->IsMonotonicValueRange()); return lower_.GreaterThanOrEqualTo(other_range->lower_) && upper_.LessThanOrEqualTo(other_range->upper_); } // Returns the intersection of this and range. // If it's not possible to do intersection because some // bounds are not comparable, it's ok to pick either bound. virtual ValueRange* Narrow(ValueRange* range) { if (range == nullptr) { return this; } if (range->IsMonotonicValueRange()) { return this; } return new (allocator_) ValueRange( allocator_, ValueBound::NarrowLowerBound(lower_, range->lower_), ValueBound::NarrowUpperBound(upper_, range->upper_)); } // Shift a range by a constant. ValueRange* Add(int32_t constant) const { bool overflow, underflow; ValueBound lower = lower_.Add(constant, &overflow, &underflow); if (underflow) { // Lower bound underflow will wrap around to positive values // and invalidate the upper bound. return nullptr; } ValueBound upper = upper_.Add(constant, &overflow, &underflow); if (overflow) { // Upper bound overflow will wrap around to negative values // and invalidate the lower bound. return nullptr; } return new (allocator_) ValueRange(allocator_, lower, upper); } private: ScopedArenaAllocator* const allocator_; const ValueBound lower_; // inclusive const ValueBound upper_; // inclusive DISALLOW_COPY_AND_ASSIGN(ValueRange); }; /** * A monotonically incrementing/decrementing value range, e.g. * the variable i in "for (int i=0; iGetBlock()->IsLoopHeader()); return induction_variable_->GetBlock(); } MonotonicValueRange* AsMonotonicValueRange() override { return this; } // If it's certain that this value range fits in other_range. bool FitsIn(ValueRange* other_range) const override { if (other_range == nullptr) { return true; } DCHECK(!other_range->IsMonotonicValueRange()); return false; } // Try to narrow this MonotonicValueRange given another range. // Ideally it will return a normal ValueRange. But due to // possible overflow/underflow, that may not be possible. ValueRange* Narrow(ValueRange* range) override { if (range == nullptr) { return this; } DCHECK(!range->IsMonotonicValueRange()); if (increment_ > 0) { // Monotonically increasing. ValueBound lower = ValueBound::NarrowLowerBound(bound_, range->GetLower()); if (!lower.IsConstant() || lower.GetConstant() == std::numeric_limits::min()) { // Lower bound isn't useful. Leave it to deoptimization. return this; } // We currently conservatively assume max array length is Max(). // If we can make assumptions about the max array length, e.g. due to the max heap size, // divided by the element size (such as 4 bytes for each integer array), we can // lower this number and rule out some possible overflows. int32_t max_array_len = std::numeric_limits::max(); // max possible integer value of range's upper value. int32_t upper = std::numeric_limits::max(); // Try to lower upper. ValueBound upper_bound = range->GetUpper(); if (upper_bound.IsConstant()) { upper = upper_bound.GetConstant(); } else if (upper_bound.IsRelatedToArrayLength() && upper_bound.GetConstant() <= 0) { // Normal case. e.g. <= array.length - 1. upper = max_array_len + upper_bound.GetConstant(); } // If we can prove for the last number in sequence of initial_, // initial_ + increment_, initial_ + 2 x increment_, ... // that's <= upper, (last_num_in_sequence + increment_) doesn't trigger overflow, // then this MonoticValueRange is narrowed to a normal value range. // Be conservative first, assume last number in the sequence hits upper. int32_t last_num_in_sequence = upper; if (initial_->IsIntConstant()) { int32_t initial_constant = initial_->AsIntConstant()->GetValue(); if (upper <= initial_constant) { last_num_in_sequence = upper; } else { // Cast to int64_t for the substraction part to avoid int32_t overflow. last_num_in_sequence = initial_constant + ((int64_t)upper - (int64_t)initial_constant) / increment_ * increment_; } } if (last_num_in_sequence <= (std::numeric_limits::max() - increment_)) { // No overflow. The sequence will be stopped by the upper bound test as expected. return new (GetAllocator()) ValueRange(GetAllocator(), lower, range->GetUpper()); } // There might be overflow. Give up narrowing. return this; } else { DCHECK_NE(increment_, 0); // Monotonically decreasing. ValueBound upper = ValueBound::NarrowUpperBound(bound_, range->GetUpper()); if ((!upper.IsConstant() || upper.GetConstant() == std::numeric_limits::max()) && !upper.IsRelatedToArrayLength()) { // Upper bound isn't useful. Leave it to deoptimization. return this; } // Need to take care of underflow. Try to prove underflow won't happen // for common cases. if (range->GetLower().IsConstant()) { int32_t constant = range->GetLower().GetConstant(); if (constant >= (std::numeric_limits::min() - increment_)) { return new (GetAllocator()) ValueRange(GetAllocator(), range->GetLower(), upper); } } // For non-constant lower bound, just assume might be underflow. Give up narrowing. return this; } } private: HPhi* const induction_variable_; // Induction variable for this monotonic value range. HInstruction* const initial_; // Initial value. const int32_t increment_; // Increment for each loop iteration. const ValueBound bound_; // Additional value bound info for initial_. DISALLOW_COPY_AND_ASSIGN(MonotonicValueRange); }; class BCEVisitor : public HGraphVisitor { public: // The least number of bounds checks that should be eliminated by triggering // the deoptimization technique. static constexpr size_t kThresholdForAddingDeoptimize = 2; // Very large lengths are considered an anomaly. This is a threshold beyond which we don't // bother to apply the deoptimization technique since it's likely, or sometimes certain, // an AIOOBE will be thrown. static constexpr uint32_t kMaxLengthForAddingDeoptimize = std::numeric_limits::max() - 1024 * 1024; // Added blocks for loop body entry test. bool IsAddedBlock(HBasicBlock* block) const { return block->GetBlockId() >= initial_block_size_; } BCEVisitor(HGraph* graph, const SideEffectsAnalysis& side_effects, HInductionVarAnalysis* induction_analysis) : HGraphVisitor(graph), allocator_(graph->GetArenaStack()), maps_(graph->GetBlocks().size(), ScopedArenaSafeMap( std::less(), allocator_.Adapter(kArenaAllocBoundsCheckElimination)), allocator_.Adapter(kArenaAllocBoundsCheckElimination)), first_index_bounds_check_map_(std::less(), allocator_.Adapter(kArenaAllocBoundsCheckElimination)), early_exit_loop_(std::less(), allocator_.Adapter(kArenaAllocBoundsCheckElimination)), taken_test_loop_(std::less(), allocator_.Adapter(kArenaAllocBoundsCheckElimination)), finite_loop_(allocator_.Adapter(kArenaAllocBoundsCheckElimination)), has_dom_based_dynamic_bce_(false), initial_block_size_(graph->GetBlocks().size()), side_effects_(side_effects), induction_range_(induction_analysis), next_(nullptr) {} void VisitBasicBlock(HBasicBlock* block) override { DCHECK(!IsAddedBlock(block)); first_index_bounds_check_map_.clear(); // Visit phis and instructions using a safe iterator. The iteration protects // against deleting the current instruction during iteration. However, it // must advance next_ if that instruction is deleted during iteration. for (HInstruction* instruction = block->GetFirstPhi(); instruction != nullptr;) { DCHECK(instruction->IsInBlock()); next_ = instruction->GetNext(); instruction->Accept(this); instruction = next_; } for (HInstruction* instruction = block->GetFirstInstruction(); instruction != nullptr;) { DCHECK(instruction->IsInBlock()); next_ = instruction->GetNext(); instruction->Accept(this); instruction = next_; } // We should never deoptimize from an osr method, otherwise we might wrongly optimize // code dominated by the deoptimization. if (!GetGraph()->IsCompilingOsr()) { AddComparesWithDeoptimization(block); } } void Finish() { // Preserve SSA structure which may have been broken by adding one or more // new taken-test structures (see TransformLoopForDeoptimizationIfNeeded()). InsertPhiNodes(); // Clear the loop data structures. early_exit_loop_.clear(); taken_test_loop_.clear(); finite_loop_.clear(); } private: // Return the map of proven value ranges at the beginning of a basic block. ScopedArenaSafeMap* GetValueRangeMap(HBasicBlock* basic_block) { if (IsAddedBlock(basic_block)) { // Added blocks don't keep value ranges. return nullptr; } return &maps_[basic_block->GetBlockId()]; } // Traverse up the dominator tree to look for value range info. ValueRange* LookupValueRange(HInstruction* instruction, HBasicBlock* basic_block) { while (basic_block != nullptr) { ScopedArenaSafeMap* map = GetValueRangeMap(basic_block); if (map != nullptr) { if (map->find(instruction->GetId()) != map->end()) { return map->Get(instruction->GetId()); } } else { DCHECK(IsAddedBlock(basic_block)); } basic_block = basic_block->GetDominator(); } // Didn't find any. return nullptr; } // Helper method to assign a new range to an instruction in given basic block. void AssignRange(HBasicBlock* basic_block, HInstruction* instruction, ValueRange* range) { DCHECK(!range->IsMonotonicValueRange() || instruction->IsLoopHeaderPhi()); GetValueRangeMap(basic_block)->Overwrite(instruction->GetId(), range); } // Narrow the value range of `instruction` at the end of `basic_block` with `range`, // and push the narrowed value range to `successor`. void ApplyRangeFromComparison(HInstruction* instruction, HBasicBlock* basic_block, HBasicBlock* successor, ValueRange* range) { ValueRange* existing_range = LookupValueRange(instruction, basic_block); if (existing_range == nullptr) { if (range != nullptr) { AssignRange(successor, instruction, range); } return; } if (existing_range->IsMonotonicValueRange()) { DCHECK(instruction->IsLoopHeaderPhi()); // Make sure the comparison is in the loop header so each increment is // checked with a comparison. if (instruction->GetBlock() != basic_block) { return; } } AssignRange(successor, instruction, existing_range->Narrow(range)); } // Special case that we may simultaneously narrow two MonotonicValueRange's to // regular value ranges. void HandleIfBetweenTwoMonotonicValueRanges(HIf* instruction, HInstruction* left, HInstruction* right, IfCondition cond, MonotonicValueRange* left_range, MonotonicValueRange* right_range) { DCHECK(left->IsLoopHeaderPhi()); DCHECK(right->IsLoopHeaderPhi()); if (instruction->GetBlock() != left->GetBlock()) { // Comparison needs to be in loop header to make sure it's done after each // increment/decrement. return; } // Handle common cases which also don't have overflow/underflow concerns. if (left_range->GetIncrement() == 1 && left_range->GetBound().IsConstant() && right_range->GetIncrement() == -1 && right_range->GetBound().IsRelatedToArrayLength() && right_range->GetBound().GetConstant() < 0) { HBasicBlock* successor = nullptr; int32_t left_compensation = 0; int32_t right_compensation = 0; if (cond == kCondLT) { left_compensation = -1; right_compensation = 1; successor = instruction->IfTrueSuccessor(); } else if (cond == kCondLE) { successor = instruction->IfTrueSuccessor(); } else if (cond == kCondGT) { successor = instruction->IfFalseSuccessor(); } else if (cond == kCondGE) { left_compensation = -1; right_compensation = 1; successor = instruction->IfFalseSuccessor(); } else { // We don't handle '=='/'!=' test in case left and right can cross and // miss each other. return; } if (successor != nullptr) { bool overflow; bool underflow; ValueRange* new_left_range = new (&allocator_) ValueRange( &allocator_, left_range->GetBound(), right_range->GetBound().Add(left_compensation, &overflow, &underflow)); if (!overflow && !underflow) { ApplyRangeFromComparison(left, instruction->GetBlock(), successor, new_left_range); } ValueRange* new_right_range = new (&allocator_) ValueRange( &allocator_, left_range->GetBound().Add(right_compensation, &overflow, &underflow), right_range->GetBound()); if (!overflow && !underflow) { ApplyRangeFromComparison(right, instruction->GetBlock(), successor, new_right_range); } } } } // Handle "if (left cmp_cond right)". void HandleIf(HIf* instruction, HInstruction* left, HInstruction* right, IfCondition cond) { HBasicBlock* block = instruction->GetBlock(); HBasicBlock* true_successor = instruction->IfTrueSuccessor(); // There should be no critical edge at this point. DCHECK_EQ(true_successor->GetPredecessors().size(), 1u); HBasicBlock* false_successor = instruction->IfFalseSuccessor(); // There should be no critical edge at this point. DCHECK_EQ(false_successor->GetPredecessors().size(), 1u); ValueRange* left_range = LookupValueRange(left, block); MonotonicValueRange* left_monotonic_range = nullptr; if (left_range != nullptr) { left_monotonic_range = left_range->AsMonotonicValueRange(); if (left_monotonic_range != nullptr) { HBasicBlock* loop_head = left_monotonic_range->GetLoopHeader(); if (instruction->GetBlock() != loop_head) { // For monotonic value range, don't handle `instruction` // if it's not defined in the loop header. return; } } } bool found; ValueBound bound = ValueBound::DetectValueBoundFromValue(right, &found); // Each comparison can establish a lower bound and an upper bound // for the left hand side. ValueBound lower = bound; ValueBound upper = bound; if (!found) { // No constant or array.length+c format bound found. // For iIsMonotonicValueRange()) { if (left_range != nullptr && left_range->IsMonotonicValueRange()) { HandleIfBetweenTwoMonotonicValueRanges(instruction, left, right, cond, left_range->AsMonotonicValueRange(), right_range->AsMonotonicValueRange()); return; } } lower = right_range->GetLower(); upper = right_range->GetUpper(); } else { lower = ValueBound::Min(); upper = ValueBound::Max(); } } bool overflow, underflow; if (cond == kCondLT || cond == kCondLE) { if (!upper.Equals(ValueBound::Max())) { int32_t compensation = (cond == kCondLT) ? -1 : 0; // upper bound is inclusive ValueBound new_upper = upper.Add(compensation, &overflow, &underflow); if (overflow || underflow) { return; } ValueRange* new_range = new (&allocator_) ValueRange( &allocator_, ValueBound::Min(), new_upper); ApplyRangeFromComparison(left, block, true_successor, new_range); } // array.length as a lower bound isn't considered useful. if (!lower.Equals(ValueBound::Min()) && !lower.IsRelatedToArrayLength()) { int32_t compensation = (cond == kCondLE) ? 1 : 0; // lower bound is inclusive ValueBound new_lower = lower.Add(compensation, &overflow, &underflow); if (overflow || underflow) { return; } ValueRange* new_range = new (&allocator_) ValueRange( &allocator_, new_lower, ValueBound::Max()); ApplyRangeFromComparison(left, block, false_successor, new_range); } } else if (cond == kCondGT || cond == kCondGE) { // array.length as a lower bound isn't considered useful. if (!lower.Equals(ValueBound::Min()) && !lower.IsRelatedToArrayLength()) { int32_t compensation = (cond == kCondGT) ? 1 : 0; // lower bound is inclusive ValueBound new_lower = lower.Add(compensation, &overflow, &underflow); if (overflow || underflow) { return; } ValueRange* new_range = new (&allocator_) ValueRange( &allocator_, new_lower, ValueBound::Max()); ApplyRangeFromComparison(left, block, true_successor, new_range); } if (!upper.Equals(ValueBound::Max())) { int32_t compensation = (cond == kCondGE) ? -1 : 0; // upper bound is inclusive ValueBound new_upper = upper.Add(compensation, &overflow, &underflow); if (overflow || underflow) { return; } ValueRange* new_range = new (&allocator_) ValueRange( &allocator_, ValueBound::Min(), new_upper); ApplyRangeFromComparison(left, block, false_successor, new_range); } } else if (cond == kCondNE || cond == kCondEQ) { if (left->IsArrayLength()) { if (lower.IsConstant() && upper.IsConstant()) { // Special case: // length == [c,d] yields [c, d] along true // length != [c,d] yields [c, d] along false if (!lower.Equals(ValueBound::Min()) || !upper.Equals(ValueBound::Max())) { ValueRange* new_range = new (&allocator_) ValueRange(&allocator_, lower, upper); ApplyRangeFromComparison( left, block, cond == kCondEQ ? true_successor : false_successor, new_range); } // In addition: // length == 0 yields [1, max] along false // length != 0 yields [1, max] along true if (lower.GetConstant() == 0 && upper.GetConstant() == 0) { ValueRange* new_range = new (&allocator_) ValueRange( &allocator_, ValueBound(nullptr, 1), ValueBound::Max()); ApplyRangeFromComparison( left, block, cond == kCondEQ ? false_successor : true_successor, new_range); } } } else if (lower.IsRelatedToArrayLength() && lower.Equals(upper)) { // Special aliasing case, with x not array length itself: // x == [length,length] yields x == length along true // x != [length,length] yields x == length along false ValueRange* new_range = new (&allocator_) ValueRange(&allocator_, lower, upper); ApplyRangeFromComparison( left, block, cond == kCondEQ ? true_successor : false_successor, new_range); } } } void VisitBoundsCheck(HBoundsCheck* bounds_check) override { HBasicBlock* block = bounds_check->GetBlock(); HInstruction* index = bounds_check->InputAt(0); HInstruction* array_length = bounds_check->InputAt(1); DCHECK(array_length->IsIntConstant() || array_length->IsArrayLength() || array_length->IsPhi()); bool try_dynamic_bce = true; // Analyze index range. if (!index->IsIntConstant()) { // Non-constant index. ValueBound lower = ValueBound(nullptr, 0); // constant 0 ValueBound upper = ValueBound(array_length, -1); // array_length - 1 ValueRange array_range(&allocator_, lower, upper); // Try index range obtained by dominator-based analysis. ValueRange* index_range = LookupValueRange(index, block); if (index_range != nullptr) { if (index_range->FitsIn(&array_range)) { ReplaceInstruction(bounds_check, index); return; } else if (index_range->IsConstantValueRange()) { // If the non-constant index turns out to have a constant range, // make one more attempt to get a constant in the array range. ValueRange* existing_range = LookupValueRange(array_length, block); if (existing_range != nullptr && existing_range->IsConstantValueRange() && existing_range->GetLower().GetConstant() > 0) { ValueBound constant_upper(nullptr, existing_range->GetLower().GetConstant() - 1); ValueRange constant_array_range(&allocator_, lower, constant_upper); if (index_range->FitsIn(&constant_array_range)) { ReplaceInstruction(bounds_check, index); return; } } } } // Try index range obtained by induction variable analysis. // Disables dynamic bce if OOB is certain. if (InductionRangeFitsIn(&array_range, bounds_check, &try_dynamic_bce)) { ReplaceInstruction(bounds_check, index); return; } } else { // Constant index. int32_t constant = index->AsIntConstant()->GetValue(); if (constant < 0) { // Will always throw exception. return; } else if (array_length->IsIntConstant()) { if (constant < array_length->AsIntConstant()->GetValue()) { ReplaceInstruction(bounds_check, index); } return; } // Analyze array length range. DCHECK(array_length->IsArrayLength()); ValueRange* existing_range = LookupValueRange(array_length, block); if (existing_range != nullptr) { ValueBound lower = existing_range->GetLower(); DCHECK(lower.IsConstant()); if (constant < lower.GetConstant()) { ReplaceInstruction(bounds_check, index); return; } else { // Existing range isn't strong enough to eliminate the bounds check. // Fall through to update the array_length range with info from this // bounds check. } } // Once we have an array access like 'array[5] = 1', we record array.length >= 6. // We currently don't do it for non-constant index since a valid array[i] can't prove // a valid array[i-1] yet due to the lower bound side. if (constant == std::numeric_limits::max()) { // Max() as an index will definitely throw AIOOBE. return; } else { ValueBound lower = ValueBound(nullptr, constant + 1); ValueBound upper = ValueBound::Max(); ValueRange* range = new (&allocator_) ValueRange(&allocator_, lower, upper); AssignRange(block, array_length, range); } } // If static analysis fails, and OOB is not certain, try dynamic elimination. if (try_dynamic_bce) { // Try loop-based dynamic elimination. HLoopInformation* loop = bounds_check->GetBlock()->GetLoopInformation(); bool needs_finite_test = false; bool needs_taken_test = false; if (DynamicBCESeemsProfitable(loop, bounds_check->GetBlock()) && induction_range_.CanGenerateRange( bounds_check, index, &needs_finite_test, &needs_taken_test) && CanHandleInfiniteLoop(loop, index, needs_finite_test) && // Do this test last, since it may generate code. CanHandleLength(loop, array_length, needs_taken_test)) { TransformLoopForDeoptimizationIfNeeded(loop, needs_taken_test); TransformLoopForDynamicBCE(loop, bounds_check); return; } // Otherwise, prepare dominator-based dynamic elimination. if (first_index_bounds_check_map_.find(array_length->GetId()) == first_index_bounds_check_map_.end()) { // Remember the first bounds check against each array_length. That bounds check // instruction has an associated HEnvironment where we may add an HDeoptimize // to eliminate subsequent bounds checks against the same array_length. first_index_bounds_check_map_.Put(array_length->GetId(), bounds_check); } } } static bool HasSameInputAtBackEdges(HPhi* phi) { DCHECK(phi->IsLoopHeaderPhi()); HConstInputsRef inputs = phi->GetInputs(); // Start with input 1. Input 0 is from the incoming block. const HInstruction* input1 = inputs[1]; DCHECK(phi->GetBlock()->GetLoopInformation()->IsBackEdge( *phi->GetBlock()->GetPredecessors()[1])); for (size_t i = 2; i < inputs.size(); ++i) { DCHECK(phi->GetBlock()->GetLoopInformation()->IsBackEdge( *phi->GetBlock()->GetPredecessors()[i])); if (input1 != inputs[i]) { return false; } } return true; } void VisitPhi(HPhi* phi) override { if (phi->IsLoopHeaderPhi() && (phi->GetType() == DataType::Type::kInt32) && HasSameInputAtBackEdges(phi)) { HInstruction* instruction = phi->InputAt(1); HInstruction *left; int32_t increment; if (ValueBound::IsAddOrSubAConstant(instruction, &left, &increment)) { if (left == phi) { HInstruction* initial_value = phi->InputAt(0); ValueRange* range = nullptr; if (increment == 0) { // Add constant 0. It's really a fixed value. range = new (&allocator_) ValueRange( &allocator_, ValueBound(initial_value, 0), ValueBound(initial_value, 0)); } else { // Monotonically increasing/decreasing. bool found; ValueBound bound = ValueBound::DetectValueBoundFromValue( initial_value, &found); if (!found) { // No constant or array.length+c bound found. // For i=j, we can still use j's upper bound as i's upper bound. // Same for lower. ValueRange* initial_range = LookupValueRange(initial_value, phi->GetBlock()); if (initial_range != nullptr) { bound = increment > 0 ? initial_range->GetLower() : initial_range->GetUpper(); } else { bound = increment > 0 ? ValueBound::Min() : ValueBound::Max(); } } range = new (&allocator_) MonotonicValueRange( &allocator_, phi, initial_value, increment, bound); } AssignRange(phi->GetBlock(), phi, range); } } } } void VisitIf(HIf* instruction) override { if (instruction->InputAt(0)->IsCondition()) { HCondition* cond = instruction->InputAt(0)->AsCondition(); HandleIf(instruction, cond->GetLeft(), cond->GetRight(), cond->GetCondition()); } } // Check whether HSub is a result of the HRem optimization of: // q = Div(dividend, const_divisor) // r = Rem(dividend, const_divisor) // into // q = Div(dividend, const_divisor) // t = Mul(q, const_divisor) // r = Sub(dividend, t) // or for divisors 2^n + 1 into // q = Div(dividend, const_divisor) // t1 = Shl(q, n) // t2 = Add(q, t1) // r = Sub(dividend, t2) // or for divisors 2^n - 1 into // q = Div(dividend, const_divisor) // t1 = Shl(q, n) // t2 = Sub(t1, q) // r = Sub(dividend, t2) // // If it is the case, the value range for the instruction is // [1 - abs(const_divisor), abs(const_divisor) - 1] merged with // the range of the left input is assigned and true is returned. Otherwise, // no range is assigned and false is returned. bool TryToAssignRangeIfOptimizedRemWithConstantDivisor(HSub* instruction) { if (instruction->GetResultType() != DataType::Type::kInt32) { return false; } auto is_needed_shl = [](HShl* shl) { return shl != nullptr && shl->GetRight()->IsConstant() && shl->GetLeft()->IsDiv(); }; HDiv* div = nullptr; int64_t const_divisor = 0; if (HMul* mul = instruction->GetRight()->AsMul()) { if (!mul->GetLeft()->IsDiv() || !mul->GetRight()->IsConstant()) { return false; } div = mul->GetLeft()->AsDiv(); const_divisor = Int64FromConstant(mul->GetRight()->AsConstant()); } else if (HAdd* add = instruction->GetRight()->AsAdd()) { HShl* shl = add->GetRight()->AsShl(); if (!is_needed_shl(shl)) { return false; } div = shl->GetLeft()->AsDiv(); if (add->GetLeft() != div) { return false; } int32_t n = shl->GetRight()->AsIntConstant()->GetValue(); if (n == BitSizeOf() - 1) { // 2^n + 1 will be negative. return false; } const_divisor = (1LL << n) + 1; } else if (HSub* sub = instruction->GetRight()->AsSub()) { HShl* shl = sub->GetLeft()->AsShl(); if (!is_needed_shl(shl)) { return false; } div = shl->GetLeft()->AsDiv(); if (sub->GetRight() != div) { return false; } int32_t n = shl->GetRight()->AsIntConstant()->GetValue(); const_divisor = (1LL << n) - 1; } if (div == nullptr || !IsInt64Value(div->GetRight(), const_divisor) || div->GetLeft() != instruction->GetLeft()) { return false; } ValueRange* range = nullptr; if (const_divisor == DataType::MinValueOfIntegralType(DataType::Type::kInt32)) { range = new (&allocator_) ValueRange(&allocator_, ValueBound(nullptr, DataType::MinValueOfIntegralType(DataType::Type::kInt32) + 1), ValueBound(nullptr, DataType::MaxValueOfIntegralType(DataType::Type::kInt32))); } else { DCHECK_GT(const_divisor, DataType::MinValueOfIntegralType(DataType::Type::kInt32)); DCHECK_LE(const_divisor, DataType::MaxValueOfIntegralType(DataType::Type::kInt32)); int32_t abs_const_divisor = static_cast(std::abs(const_divisor)); range = new (&allocator_) ValueRange(&allocator_, ValueBound(nullptr, 1 - abs_const_divisor), ValueBound(nullptr, abs_const_divisor - 1)); } HBasicBlock* basic_block = instruction->GetBlock(); if (ValueRange* left_range = LookupValueRange(instruction->GetLeft(), basic_block)) { range = range->Narrow(left_range); } AssignRange(basic_block, instruction, range); return true; } void VisitAdd(HAdd* add) override { HInstruction* right = add->GetRight(); if (right->IsIntConstant()) { ValueRange* left_range = LookupValueRange(add->GetLeft(), add->GetBlock()); if (left_range == nullptr) { return; } ValueRange* range = left_range->Add(right->AsIntConstant()->GetValue()); if (range != nullptr) { AssignRange(add->GetBlock(), add, range); } } } void VisitSub(HSub* sub) override { if (TryToAssignRangeIfOptimizedRemWithConstantDivisor(sub)) { return; } HInstruction* left = sub->GetLeft(); HInstruction* right = sub->GetRight(); if (right->IsIntConstant()) { ValueRange* left_range = LookupValueRange(left, sub->GetBlock()); if (left_range == nullptr) { return; } ValueRange* range = left_range->Add(-right->AsIntConstant()->GetValue()); if (range != nullptr) { AssignRange(sub->GetBlock(), sub, range); return; } } // Here we are interested in the typical triangular case of nested loops, // such as the inner loop 'for (int j=0; jIsArrayLength()) { HInstruction* array_length = left->AsArrayLength(); ValueRange* right_range = LookupValueRange(right, sub->GetBlock()); if (right_range != nullptr) { ValueBound lower = right_range->GetLower(); ValueBound upper = right_range->GetUpper(); if (lower.IsConstant() && upper.IsRelatedToArrayLength()) { HInstruction* upper_inst = upper.GetInstruction(); // Make sure it's the same array. if (ValueBound::Equal(array_length, upper_inst)) { int32_t c0 = right_const; int32_t c1 = lower.GetConstant(); int32_t c2 = upper.GetConstant(); // (array.length + c0 - v) where v is in [c1, array.length + c2] // gets [c0 - c2, array.length + c0 - c1] as its value range. if (!ValueBound::WouldAddOverflowOrUnderflow(c0, -c2) && !ValueBound::WouldAddOverflowOrUnderflow(c0, -c1)) { if ((c0 - c1) <= 0) { // array.length + (c0 - c1) won't overflow/underflow. ValueRange* range = new (&allocator_) ValueRange( &allocator_, ValueBound(nullptr, right_const - upper.GetConstant()), ValueBound(array_length, right_const - lower.GetConstant())); AssignRange(sub->GetBlock(), sub, range); } } } } } } } void FindAndHandlePartialArrayLength(HBinaryOperation* instruction) { DCHECK(instruction->IsDiv() || instruction->IsShr() || instruction->IsUShr()); HInstruction* right = instruction->GetRight(); int32_t right_const; if (right->IsIntConstant()) { right_const = right->AsIntConstant()->GetValue(); // Detect division by two or more. if ((instruction->IsDiv() && right_const <= 1) || (instruction->IsShr() && right_const < 1) || (instruction->IsUShr() && right_const < 1)) { return; } } else { return; } // Try to handle array.length/2 or (array.length-1)/2 format. HInstruction* left = instruction->GetLeft(); HInstruction* left_of_left; // left input of left. int32_t c = 0; if (ValueBound::IsAddOrSubAConstant(left, &left_of_left, &c)) { left = left_of_left; } // The value of left input of instruction equals (left + c). // (array_length + 1) or smaller divided by two or more // always generate a value in [Min(), array_length]. // This is true even if array_length is Max(). if (left->IsArrayLength() && c <= 1) { if (instruction->IsUShr() && c < 0) { // Make sure for unsigned shift, left side is not negative. // e.g. if array_length is 2, ((array_length - 3) >>> 2) is way bigger // than array_length. return; } ValueRange* range = new (&allocator_) ValueRange( &allocator_, ValueBound(nullptr, std::numeric_limits::min()), ValueBound(left, 0)); AssignRange(instruction->GetBlock(), instruction, range); } } void VisitDiv(HDiv* div) override { FindAndHandlePartialArrayLength(div); } void VisitShr(HShr* shr) override { FindAndHandlePartialArrayLength(shr); } void VisitUShr(HUShr* ushr) override { FindAndHandlePartialArrayLength(ushr); } void VisitAnd(HAnd* instruction) override { if (instruction->GetRight()->IsIntConstant()) { int32_t constant = instruction->GetRight()->AsIntConstant()->GetValue(); if (constant > 0) { // constant serves as a mask so any number masked with it // gets a [0, constant] value range. ValueRange* range = new (&allocator_) ValueRange( &allocator_, ValueBound(nullptr, 0), ValueBound(nullptr, constant)); AssignRange(instruction->GetBlock(), instruction, range); } } } void VisitRem(HRem* instruction) override { HInstruction* left = instruction->GetLeft(); HInstruction* right = instruction->GetRight(); // Handle 'i % CONST' format expression in array index, e.g: // array[i % 20]; if (right->IsIntConstant()) { int32_t right_const = std::abs(right->AsIntConstant()->GetValue()); if (right_const == 0) { return; } // The sign of divisor CONST doesn't affect the sign final value range. // For example: // if (i > 0) { // array[i % 10]; // index value range [0, 9] // array[i % -10]; // index value range [0, 9] // } ValueRange* right_range = new (&allocator_) ValueRange( &allocator_, ValueBound(nullptr, 1 - right_const), ValueBound(nullptr, right_const - 1)); ValueRange* left_range = LookupValueRange(left, instruction->GetBlock()); if (left_range != nullptr) { right_range = right_range->Narrow(left_range); } AssignRange(instruction->GetBlock(), instruction, right_range); return; } // Handle following pattern: // i0 NullCheck // i1 ArrayLength[i0] // i2 DivByZeroCheck [i1] <-- right // i3 Rem [i5, i2] <-- we are here. // i4 BoundsCheck [i3,i1] if (right->IsDivZeroCheck()) { // if array_length can pass div-by-zero check, // array_length must be > 0. right = right->AsDivZeroCheck()->InputAt(0); } // Handle 'i % array.length' format expression in array index, e.g: // array[(i+7) % array.length]; if (right->IsArrayLength()) { ValueBound lower = ValueBound::Min(); // ideally, lower should be '1-array_length'. ValueBound upper = ValueBound(right, -1); // array_length - 1 ValueRange* right_range = new (&allocator_) ValueRange( &allocator_, lower, upper); ValueRange* left_range = LookupValueRange(left, instruction->GetBlock()); if (left_range != nullptr) { right_range = right_range->Narrow(left_range); } AssignRange(instruction->GetBlock(), instruction, right_range); return; } } void VisitNewArray(HNewArray* new_array) override { HInstruction* len = new_array->GetLength(); if (!len->IsIntConstant()) { HInstruction *left; int32_t right_const; if (ValueBound::IsAddOrSubAConstant(len, &left, &right_const)) { // (left + right_const) is used as size to new the array. // We record "-right_const <= left <= new_array - right_const"; ValueBound lower = ValueBound(nullptr, -right_const); // We use new_array for the bound instead of new_array.length, // which isn't available as an instruction yet. new_array will // be treated the same as new_array.length when it's used in a ValueBound. ValueBound upper = ValueBound(new_array, -right_const); ValueRange* range = new (&allocator_) ValueRange(&allocator_, lower, upper); ValueRange* existing_range = LookupValueRange(left, new_array->GetBlock()); if (existing_range != nullptr) { range = existing_range->Narrow(range); } AssignRange(new_array->GetBlock(), left, range); } } } /** * After null/bounds checks are eliminated, some invariant array references * may be exposed underneath which can be hoisted out of the loop to the * preheader or, in combination with dynamic bce, the deoptimization block. * * for (int i = 0; i < n; i++) { * <-------+ * for (int j = 0; j < n; j++) | * a[i][j] = 0; --a[i]--+ * } * * Note: this optimization is no longer applied after dominator-based dynamic deoptimization * has occurred (see AddCompareWithDeoptimization()), since in those cases it would be * unsafe to hoist array references across their deoptimization instruction inside a loop. */ void VisitArrayGet(HArrayGet* array_get) override { if (!has_dom_based_dynamic_bce_ && array_get->IsInLoop()) { HLoopInformation* loop = array_get->GetBlock()->GetLoopInformation(); if (loop->IsDefinedOutOfTheLoop(array_get->InputAt(0)) && loop->IsDefinedOutOfTheLoop(array_get->InputAt(1))) { SideEffects loop_effects = side_effects_.GetLoopEffects(loop->GetHeader()); if (!array_get->GetSideEffects().MayDependOn(loop_effects)) { // We can hoist ArrayGet only if its execution is guaranteed on every iteration. // In other words only if array_get_bb dominates all back branches. if (loop->DominatesAllBackEdges(array_get->GetBlock())) { HoistToPreHeaderOrDeoptBlock(loop, array_get); } } } } } /** Performs dominator-based dynamic elimination on suitable set of bounds checks. */ void AddCompareWithDeoptimization(HBasicBlock* block, HInstruction* array_length, HInstruction* base, int32_t min_c, int32_t max_c) { HBoundsCheck* bounds_check = first_index_bounds_check_map_.Get(array_length->GetId())->AsBoundsCheck(); // Construct deoptimization on single or double bounds on range [base-min_c,base+max_c], // for example either for a[0]..a[3] just 3 or for a[base-1]..a[base+3] both base-1 // and base+3, since we made the assumption any in between value may occur too. // In code, using unsigned comparisons: // (1) constants only // if (max_c >= a.length) deoptimize; // (2) general case // if (base-min_c > base+max_c) deoptimize; // if (base+max_c >= a.length ) deoptimize; static_assert(kMaxLengthForAddingDeoptimize < std::numeric_limits::max(), "Incorrect max length may be subject to arithmetic wrap-around"); HInstruction* upper = GetGraph()->GetIntConstant(max_c); if (base == nullptr) { DCHECK_GE(min_c, 0); } else { HInstruction* lower = new (GetGraph()->GetAllocator()) HAdd(DataType::Type::kInt32, base, GetGraph()->GetIntConstant(min_c)); upper = new (GetGraph()->GetAllocator()) HAdd(DataType::Type::kInt32, base, upper); block->InsertInstructionBefore(lower, bounds_check); block->InsertInstructionBefore(upper, bounds_check); InsertDeoptInBlock(bounds_check, new (GetGraph()->GetAllocator()) HAbove(lower, upper)); } InsertDeoptInBlock( bounds_check, new (GetGraph()->GetAllocator()) HAboveOrEqual(upper, array_length)); // Flag that this kind of deoptimization has occurred. has_dom_based_dynamic_bce_ = true; } /** Attempts dominator-based dynamic elimination on remaining candidates. */ void AddComparesWithDeoptimization(HBasicBlock* block) { for (const auto& entry : first_index_bounds_check_map_) { HBoundsCheck* bounds_check = entry.second; HInstruction* index = bounds_check->InputAt(0); HInstruction* array_length = bounds_check->InputAt(1); if (!array_length->IsArrayLength()) { continue; // disregard phis and constants } // Collect all bounds checks that are still there and that are related as "a[base + constant]" // for a base instruction (possibly absent) and various constants. Note that no attempt // is made to partition the set into matching subsets (viz. a[0], a[1] and a[base+1] and // a[base+2] are considered as one set). // TODO: would such a partitioning be worthwhile? ValueBound value = ValueBound::AsValueBound(index); HInstruction* base = value.GetInstruction(); int32_t min_c = base == nullptr ? 0 : value.GetConstant(); int32_t max_c = value.GetConstant(); ScopedArenaVector candidates( allocator_.Adapter(kArenaAllocBoundsCheckElimination)); ScopedArenaVector standby( allocator_.Adapter(kArenaAllocBoundsCheckElimination)); for (const HUseListNode& use : array_length->GetUses()) { // Another bounds check in same or dominated block? HInstruction* user = use.GetUser(); HBasicBlock* other_block = user->GetBlock(); if (user->IsBoundsCheck() && block->Dominates(other_block)) { HBoundsCheck* other_bounds_check = user->AsBoundsCheck(); HInstruction* other_index = other_bounds_check->InputAt(0); HInstruction* other_array_length = other_bounds_check->InputAt(1); ValueBound other_value = ValueBound::AsValueBound(other_index); if (array_length == other_array_length && base == other_value.GetInstruction()) { // Reject certain OOB if BoundsCheck(l, l) occurs on considered subset. if (array_length == other_index) { candidates.clear(); standby.clear(); break; } // Since a subsequent dominated block could be under a conditional, only accept // the other bounds check if it is in same block or both blocks dominate the exit. // TODO: we could improve this by testing proper post-dominance, or even if this // constant is seen along *all* conditional paths that follow. HBasicBlock* exit = GetGraph()->GetExitBlock(); if (block == user->GetBlock() || (block->Dominates(exit) && other_block->Dominates(exit))) { int32_t other_c = other_value.GetConstant(); min_c = std::min(min_c, other_c); max_c = std::max(max_c, other_c); candidates.push_back(other_bounds_check); } else { // Add this candidate later only if it falls into the range. standby.push_back(other_bounds_check); } } } } // Add standby candidates that fall in selected range. for (HBoundsCheck* other_bounds_check : standby) { HInstruction* other_index = other_bounds_check->InputAt(0); int32_t other_c = ValueBound::AsValueBound(other_index).GetConstant(); if (min_c <= other_c && other_c <= max_c) { candidates.push_back(other_bounds_check); } } // Perform dominator-based deoptimization if it seems profitable, where we eliminate // bounds checks and replace these with deopt checks that guard against any possible // OOB. Note that we reject cases where the distance min_c:max_c range gets close to // the maximum possible array length, since those cases are likely to always deopt // (such situations do not necessarily go OOB, though, since the array could be really // large, or the programmer could rely on arithmetic wrap-around from max to min). size_t threshold = kThresholdForAddingDeoptimize + (base == nullptr ? 0 : 1); // extra test? uint32_t distance = static_cast(max_c) - static_cast(min_c); if (candidates.size() >= threshold && (base != nullptr || min_c >= 0) && // reject certain OOB distance <= kMaxLengthForAddingDeoptimize) { // reject likely/certain deopt AddCompareWithDeoptimization(block, array_length, base, min_c, max_c); for (HBoundsCheck* other_bounds_check : candidates) { // Only replace if still in the graph. This avoids visiting the same // bounds check twice if it occurred multiple times in the use list. if (other_bounds_check->IsInBlock()) { ReplaceInstruction(other_bounds_check, other_bounds_check->InputAt(0)); } } } } } /** * Returns true if static range analysis based on induction variables can determine the bounds * check on the given array range is always satisfied with the computed index range. The output * parameter try_dynamic_bce is set to false if OOB is certain. */ bool InductionRangeFitsIn(ValueRange* array_range, HBoundsCheck* context, bool* try_dynamic_bce) { InductionVarRange::Value v1; InductionVarRange::Value v2; bool needs_finite_test = false; HInstruction* index = context->InputAt(0); HInstruction* hint = HuntForDeclaration(context->InputAt(1)); if (induction_range_.GetInductionRange(context, index, hint, &v1, &v2, &needs_finite_test)) { if (v1.is_known && (v1.a_constant == 0 || v1.a_constant == 1) && v2.is_known && (v2.a_constant == 0 || v2.a_constant == 1)) { DCHECK(v1.a_constant == 1 || v1.instruction == nullptr); DCHECK(v2.a_constant == 1 || v2.instruction == nullptr); ValueRange index_range(&allocator_, ValueBound(v1.instruction, v1.b_constant), ValueBound(v2.instruction, v2.b_constant)); // If analysis reveals a certain OOB, disable dynamic BCE. Otherwise, // use analysis for static bce only if loop is finite. if (index_range.GetLower().LessThan(array_range->GetLower()) || index_range.GetUpper().GreaterThan(array_range->GetUpper())) { *try_dynamic_bce = false; } else if (!needs_finite_test && index_range.FitsIn(array_range)) { return true; } } } return false; } /** * Performs loop-based dynamic elimination on a bounds check. In order to minimize the * number of eventually generated tests, related bounds checks with tests that can be * combined with tests for the given bounds check are collected first. */ void TransformLoopForDynamicBCE(HLoopInformation* loop, HBoundsCheck* bounds_check) { HInstruction* index = bounds_check->InputAt(0); HInstruction* array_length = bounds_check->InputAt(1); DCHECK(loop->IsDefinedOutOfTheLoop(array_length)); // pre-checked DCHECK(loop->DominatesAllBackEdges(bounds_check->GetBlock())); // Collect all bounds checks in the same loop that are related as "a[base + constant]" // for a base instruction (possibly absent) and various constants. ValueBound value = ValueBound::AsValueBound(index); HInstruction* base = value.GetInstruction(); int32_t min_c = base == nullptr ? 0 : value.GetConstant(); int32_t max_c = value.GetConstant(); ScopedArenaVector candidates( allocator_.Adapter(kArenaAllocBoundsCheckElimination)); ScopedArenaVector standby( allocator_.Adapter(kArenaAllocBoundsCheckElimination)); for (const HUseListNode& use : array_length->GetUses()) { HInstruction* user = use.GetUser(); if (user->IsBoundsCheck() && loop == user->GetBlock()->GetLoopInformation()) { HBoundsCheck* other_bounds_check = user->AsBoundsCheck(); HInstruction* other_index = other_bounds_check->InputAt(0); HInstruction* other_array_length = other_bounds_check->InputAt(1); ValueBound other_value = ValueBound::AsValueBound(other_index); int32_t other_c = other_value.GetConstant(); if (array_length == other_array_length && base == other_value.GetInstruction()) { // Ensure every candidate could be picked for code generation. bool b1 = false, b2 = false; if (!induction_range_.CanGenerateRange(other_bounds_check, other_index, &b1, &b2)) { continue; } // Does the current basic block dominate all back edges? If not, // add this candidate later only if it falls into the range. if (!loop->DominatesAllBackEdges(user->GetBlock())) { standby.push_back(other_bounds_check); continue; } min_c = std::min(min_c, other_c); max_c = std::max(max_c, other_c); candidates.push_back(other_bounds_check); } } } // Add standby candidates that fall in selected range. for (HBoundsCheck* other_bounds_check : standby) { HInstruction* other_index = other_bounds_check->InputAt(0); int32_t other_c = ValueBound::AsValueBound(other_index).GetConstant(); if (min_c <= other_c && other_c <= max_c) { candidates.push_back(other_bounds_check); } } // Perform loop-based deoptimization if it seems profitable, where we eliminate bounds // checks and replace these with deopt checks that guard against any possible OOB. DCHECK_LT(0u, candidates.size()); uint32_t distance = static_cast(max_c) - static_cast(min_c); if ((base != nullptr || min_c >= 0) && // reject certain OOB distance <= kMaxLengthForAddingDeoptimize) { // reject likely/certain deopt HBasicBlock* block = GetPreHeader(loop, bounds_check); HInstruction* min_lower = nullptr; HInstruction* min_upper = nullptr; HInstruction* max_lower = nullptr; HInstruction* max_upper = nullptr; // Iterate over all bounds checks. for (HBoundsCheck* other_bounds_check : candidates) { // Only handle if still in the graph. This avoids visiting the same // bounds check twice if it occurred multiple times in the use list. if (other_bounds_check->IsInBlock()) { HInstruction* other_index = other_bounds_check->InputAt(0); int32_t other_c = ValueBound::AsValueBound(other_index).GetConstant(); // Generate code for either the maximum or minimum. Range analysis already was queried // whether code generation on the original and, thus, related bounds check was possible. // It handles either loop invariants (lower is not set) or unit strides. if (other_c == max_c) { induction_range_.GenerateRange( other_bounds_check, other_index, GetGraph(), block, &max_lower, &max_upper); } else if (other_c == min_c && base != nullptr) { induction_range_.GenerateRange( other_bounds_check, other_index, GetGraph(), block, &min_lower, &min_upper); } ReplaceInstruction(other_bounds_check, other_index); } } // In code, using unsigned comparisons: // (1) constants only // if (max_upper >= a.length ) deoptimize; // (2) two symbolic invariants // if (min_upper > max_upper) deoptimize; unless min_c == max_c // if (max_upper >= a.length ) deoptimize; // (3) general case, unit strides (where lower would exceed upper for arithmetic wrap-around) // if (min_lower > max_lower) deoptimize; unless min_c == max_c // if (max_lower > max_upper) deoptimize; // if (max_upper >= a.length ) deoptimize; if (base == nullptr) { // Constants only. DCHECK_GE(min_c, 0); DCHECK(min_lower == nullptr && min_upper == nullptr && max_lower == nullptr && max_upper != nullptr); } else if (max_lower == nullptr) { // Two symbolic invariants. if (min_c != max_c) { DCHECK(min_lower == nullptr && min_upper != nullptr && max_lower == nullptr && max_upper != nullptr); InsertDeoptInLoop( loop, block, new (GetGraph()->GetAllocator()) HAbove(min_upper, max_upper)); } else { DCHECK(min_lower == nullptr && min_upper == nullptr && max_lower == nullptr && max_upper != nullptr); } } else { // General case, unit strides. if (min_c != max_c) { DCHECK(min_lower != nullptr && min_upper != nullptr && max_lower != nullptr && max_upper != nullptr); InsertDeoptInLoop( loop, block, new (GetGraph()->GetAllocator()) HAbove(min_lower, max_lower)); } else { DCHECK(min_lower == nullptr && min_upper == nullptr && max_lower != nullptr && max_upper != nullptr); } InsertDeoptInLoop( loop, block, new (GetGraph()->GetAllocator()) HAbove(max_lower, max_upper)); } InsertDeoptInLoop( loop, block, new (GetGraph()->GetAllocator()) HAboveOrEqual(max_upper, array_length)); } else { // TODO: if rejected, avoid doing this again for subsequent instructions in this set? } } /** * Returns true if heuristics indicate that dynamic bce may be profitable. */ bool DynamicBCESeemsProfitable(HLoopInformation* loop, HBasicBlock* block) { if (loop != nullptr) { // The loop preheader of an irreducible loop does not dominate all the blocks in // the loop. We would need to find the common dominator of all blocks in the loop. if (loop->IsIrreducible()) { return false; } // We should never deoptimize from an osr method, otherwise we might wrongly optimize // code dominated by the deoptimization. if (GetGraph()->IsCompilingOsr()) { return false; } // A try boundary preheader is hard to handle. // TODO: remove this restriction. if (loop->GetPreHeader()->GetLastInstruction()->IsTryBoundary()) { return false; } // Does loop have early-exits? If so, the full range may not be covered by the loop // at runtime and testing the range may apply deoptimization unnecessarily. if (IsEarlyExitLoop(loop)) { return false; } // Does the current basic block dominate all back edges? If not, // don't apply dynamic bce to something that may not be executed. return loop->DominatesAllBackEdges(block); } return false; } /** * Returns true if the loop has early exits, which implies it may not cover * the full range computed by range analysis based on induction variables. */ bool IsEarlyExitLoop(HLoopInformation* loop) { const uint32_t loop_id = loop->GetHeader()->GetBlockId(); // If loop has been analyzed earlier for early-exit, don't repeat the analysis. auto it = early_exit_loop_.find(loop_id); if (it != early_exit_loop_.end()) { return it->second; } // First time early-exit analysis for this loop. Since analysis requires scanning // the full loop-body, results of the analysis is stored for subsequent queries. HBlocksInLoopReversePostOrderIterator it_loop(*loop); for (it_loop.Advance(); !it_loop.Done(); it_loop.Advance()) { for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) { if (!loop->Contains(*successor)) { early_exit_loop_.Put(loop_id, true); return true; } } } early_exit_loop_.Put(loop_id, false); return false; } /** * Returns true if the array length is already loop invariant, or can be made so * by handling the null check under the hood of the array length operation. */ bool CanHandleLength(HLoopInformation* loop, HInstruction* length, bool needs_taken_test) { if (loop->IsDefinedOutOfTheLoop(length)) { return true; } else if (length->IsArrayLength() && length->GetBlock()->GetLoopInformation() == loop) { if (CanHandleNullCheck(loop, length->InputAt(0), needs_taken_test)) { HoistToPreHeaderOrDeoptBlock(loop, length); return true; } } return false; } /** * Returns true if the null check is already loop invariant, or can be made so * by generating a deoptimization test. */ bool CanHandleNullCheck(HLoopInformation* loop, HInstruction* check, bool needs_taken_test) { if (loop->IsDefinedOutOfTheLoop(check)) { return true; } else if (check->IsNullCheck() && check->GetBlock()->GetLoopInformation() == loop) { HInstruction* array = check->InputAt(0); if (loop->IsDefinedOutOfTheLoop(array)) { // Generate: if (array == null) deoptimize; TransformLoopForDeoptimizationIfNeeded(loop, needs_taken_test); HBasicBlock* block = GetPreHeader(loop, check); HInstruction* cond = new (GetGraph()->GetAllocator()) HEqual(array, GetGraph()->GetNullConstant()); InsertDeoptInLoop(loop, block, cond, /* is_null_check= */ true); ReplaceInstruction(check, array); return true; } } return false; } /** * Returns true if compiler can apply dynamic bce to loops that may be infinite * (e.g. for (int i = 0; i <= U; i++) with U = MAX_INT), which would invalidate * the range analysis evaluation code by "overshooting" the computed range. * Since deoptimization would be a bad choice, and there is no other version * of the loop to use, dynamic bce in such cases is only allowed if other tests * ensure the loop is finite. */ bool CanHandleInfiniteLoop(HLoopInformation* loop, HInstruction* index, bool needs_infinite_test) { if (needs_infinite_test) { // If we already forced the loop to be finite, allow directly. const uint32_t loop_id = loop->GetHeader()->GetBlockId(); if (finite_loop_.find(loop_id) != finite_loop_.end()) { return true; } // Otherwise, allow dynamic bce if the index (which is necessarily an induction at // this point) is the direct loop index (viz. a[i]), since then the runtime tests // ensure upper bound cannot cause an infinite loop. HInstruction* control = loop->GetHeader()->GetLastInstruction(); if (control->IsIf()) { HInstruction* if_expr = control->AsIf()->InputAt(0); if (if_expr->IsCondition()) { HCondition* condition = if_expr->AsCondition(); if (index == condition->InputAt(0) || index == condition->InputAt(1)) { finite_loop_.insert(loop_id); return true; } } } return false; } return true; } /** * Returns appropriate preheader for the loop, depending on whether the * instruction appears in the loop header or proper loop-body. */ HBasicBlock* GetPreHeader(HLoopInformation* loop, HInstruction* instruction) { // Use preheader unless there is an earlier generated deoptimization block since // hoisted expressions may depend on and/or used by the deoptimization tests. HBasicBlock* header = loop->GetHeader(); const uint32_t loop_id = header->GetBlockId(); auto it = taken_test_loop_.find(loop_id); if (it != taken_test_loop_.end()) { HBasicBlock* block = it->second; // If always taken, keep it that way by returning the original preheader, // which can be found by following the predecessor of the true-block twice. if (instruction->GetBlock() == header) { return block->GetSinglePredecessor()->GetSinglePredecessor(); } return block; } return loop->GetPreHeader(); } /** Inserts a deoptimization test in a loop preheader. */ void InsertDeoptInLoop(HLoopInformation* loop, HBasicBlock* block, HInstruction* condition, bool is_null_check = false) { HInstruction* suspend = loop->GetSuspendCheck(); block->InsertInstructionBefore(condition, block->GetLastInstruction()); DeoptimizationKind kind = is_null_check ? DeoptimizationKind::kLoopNullBCE : DeoptimizationKind::kLoopBoundsBCE; HDeoptimize* deoptimize = new (GetGraph()->GetAllocator()) HDeoptimize( GetGraph()->GetAllocator(), condition, kind, suspend->GetDexPc()); block->InsertInstructionBefore(deoptimize, block->GetLastInstruction()); if (suspend->HasEnvironment()) { deoptimize->CopyEnvironmentFromWithLoopPhiAdjustment( suspend->GetEnvironment(), loop->GetHeader()); } } /** Inserts a deoptimization test right before a bounds check. */ void InsertDeoptInBlock(HBoundsCheck* bounds_check, HInstruction* condition) { HBasicBlock* block = bounds_check->GetBlock(); block->InsertInstructionBefore(condition, bounds_check); HDeoptimize* deoptimize = new (GetGraph()->GetAllocator()) HDeoptimize( GetGraph()->GetAllocator(), condition, DeoptimizationKind::kBlockBCE, bounds_check->GetDexPc()); block->InsertInstructionBefore(deoptimize, bounds_check); deoptimize->CopyEnvironmentFrom(bounds_check->GetEnvironment()); } /** Hoists instruction out of the loop to preheader or deoptimization block. */ void HoistToPreHeaderOrDeoptBlock(HLoopInformation* loop, HInstruction* instruction) { HBasicBlock* block = GetPreHeader(loop, instruction); DCHECK(!instruction->HasEnvironment()); instruction->MoveBefore(block->GetLastInstruction()); } /** * Adds a new taken-test structure to a loop if needed and not already done. * The taken-test protects range analysis evaluation code to avoid any * deoptimization caused by incorrect trip-count evaluation in non-taken loops. * * old_preheader * | * if_block <- taken-test protects deoptimization block * / \ * true_block false_block <- deoptimizations/invariants are placed in true_block * \ / * new_preheader <- may require phi nodes to preserve SSA structure * | * header * * For example, this loop: * * for (int i = lower; i < upper; i++) { * array[i] = 0; * } * * will be transformed to: * * if (lower < upper) { * if (array == null) deoptimize; * array_length = array.length; * if (lower > upper) deoptimize; // unsigned * if (upper >= array_length) deoptimize; // unsigned * } else { * array_length = 0; * } * for (int i = lower; i < upper; i++) { * // Loop without null check and bounds check, and any array.length replaced with array_length. * array[i] = 0; * } */ void TransformLoopForDeoptimizationIfNeeded(HLoopInformation* loop, bool needs_taken_test) { // Not needed (can use preheader) or already done (can reuse)? const uint32_t loop_id = loop->GetHeader()->GetBlockId(); if (!needs_taken_test || taken_test_loop_.find(loop_id) != taken_test_loop_.end()) { return; } // Generate top test structure. HBasicBlock* header = loop->GetHeader(); GetGraph()->TransformLoopHeaderForBCE(header); HBasicBlock* new_preheader = loop->GetPreHeader(); HBasicBlock* if_block = new_preheader->GetDominator(); HBasicBlock* true_block = if_block->GetSuccessors()[0]; // True successor. HBasicBlock* false_block = if_block->GetSuccessors()[1]; // False successor. // Goto instructions. true_block->AddInstruction(new (GetGraph()->GetAllocator()) HGoto()); false_block->AddInstruction(new (GetGraph()->GetAllocator()) HGoto()); new_preheader->AddInstruction(new (GetGraph()->GetAllocator()) HGoto()); // Insert the taken-test to see if the loop body is entered. If the // loop isn't entered at all, it jumps around the deoptimization block. if_block->AddInstruction(new (GetGraph()->GetAllocator()) HGoto()); // placeholder HInstruction* condition = induction_range_.GenerateTakenTest( header->GetLastInstruction(), GetGraph(), if_block); DCHECK(condition != nullptr); if_block->RemoveInstruction(if_block->GetLastInstruction()); if_block->AddInstruction(new (GetGraph()->GetAllocator()) HIf(condition)); taken_test_loop_.Put(loop_id, true_block); } /** * Inserts phi nodes that preserve SSA structure in generated top test structures. * All uses of instructions in the deoptimization block that reach the loop need * a phi node in the new loop preheader to fix the dominance relation. * * Example: * if_block * / \ * x_0 = .. false_block * \ / * x_1 = phi(x_0, null) <- synthetic phi * | * new_preheader */ void InsertPhiNodes() { // Scan all new deoptimization blocks. for (const auto& entry : taken_test_loop_) { HBasicBlock* true_block = entry.second; HBasicBlock* new_preheader = true_block->GetSingleSuccessor(); // Scan all instructions in a new deoptimization block. for (HInstructionIterator it(true_block->GetInstructions()); !it.Done(); it.Advance()) { HInstruction* instruction = it.Current(); DataType::Type type = instruction->GetType(); HPhi* phi = nullptr; // Scan all uses of an instruction and replace each later use with a phi node. const HUseList& uses = instruction->GetUses(); for (auto it2 = uses.begin(), end2 = uses.end(); it2 != end2; /* ++it2 below */) { HInstruction* user = it2->GetUser(); size_t index = it2->GetIndex(); // Increment `it2` now because `*it2` may disappear thanks to user->ReplaceInput(). ++it2; if (user->GetBlock() != true_block) { if (phi == nullptr) { phi = NewPhi(new_preheader, instruction, type); } user->ReplaceInput(phi, index); // Removes the use node from the list. induction_range_.Replace(user, instruction, phi); // update induction } } // Scan all environment uses of an instruction and replace each later use with a phi node. const HUseList& env_uses = instruction->GetEnvUses(); for (auto it2 = env_uses.begin(), end2 = env_uses.end(); it2 != end2; /* ++it2 below */) { HEnvironment* user = it2->GetUser(); size_t index = it2->GetIndex(); // Increment `it2` now because `*it2` may disappear thanks to user->RemoveAsUserOfInput(). ++it2; if (user->GetHolder()->GetBlock() != true_block) { if (phi == nullptr) { phi = NewPhi(new_preheader, instruction, type); } user->RemoveAsUserOfInput(index); user->SetRawEnvAt(index, phi); phi->AddEnvUseAt(user, index); } } } } } /** * Construct a phi(instruction, 0) in the new preheader to fix the dominance relation. * These are synthetic phi nodes without a virtual register. */ HPhi* NewPhi(HBasicBlock* new_preheader, HInstruction* instruction, DataType::Type type) { HGraph* graph = GetGraph(); HInstruction* zero; switch (type) { case DataType::Type::kReference: zero = graph->GetNullConstant(); break; case DataType::Type::kFloat32: zero = graph->GetFloatConstant(0); break; case DataType::Type::kFloat64: zero = graph->GetDoubleConstant(0); break; default: zero = graph->GetConstant(type, 0); break; } HPhi* phi = new (graph->GetAllocator()) HPhi(graph->GetAllocator(), kNoRegNumber, /*number_of_inputs*/ 2, HPhi::ToPhiType(type)); phi->SetRawInputAt(0, instruction); phi->SetRawInputAt(1, zero); if (type == DataType::Type::kReference) { phi->SetReferenceTypeInfo(instruction->GetReferenceTypeInfo()); } new_preheader->AddPhi(phi); return phi; } /** Helper method to replace an instruction with another instruction. */ void ReplaceInstruction(HInstruction* instruction, HInstruction* replacement) { // Safe iteration. if (instruction == next_) { next_ = next_->GetNext(); } // Replace and remove. instruction->ReplaceWith(replacement); instruction->GetBlock()->RemoveInstruction(instruction); } // Use local allocator for allocating memory. ScopedArenaAllocator allocator_; // A set of maps, one per basic block, from instruction to range. ScopedArenaVector> maps_; // Map an HArrayLength instruction's id to the first HBoundsCheck instruction // in a block that checks an index against that HArrayLength. ScopedArenaSafeMap first_index_bounds_check_map_; // Early-exit loop bookkeeping. ScopedArenaSafeMap early_exit_loop_; // Taken-test loop bookkeeping. ScopedArenaSafeMap taken_test_loop_; // Finite loop bookkeeping. ScopedArenaSet finite_loop_; // Flag that denotes whether dominator-based dynamic elimination has occurred. bool has_dom_based_dynamic_bce_; // Initial number of blocks. uint32_t initial_block_size_; // Side effects. const SideEffectsAnalysis& side_effects_; // Range analysis based on induction variables. InductionVarRange induction_range_; // Safe iteration. HInstruction* next_; DISALLOW_COPY_AND_ASSIGN(BCEVisitor); }; bool BoundsCheckElimination::Run() { if (!graph_->HasBoundsChecks()) { return false; } // Reverse post order guarantees a node's dominators are visited first. // We want to visit in the dominator-based order since if a value is known to // be bounded by a range at one instruction, it must be true that all uses of // that value dominated by that instruction fits in that range. Range of that // value can be narrowed further down in the dominator tree. BCEVisitor visitor(graph_, side_effects_, induction_analysis_); for (size_t i = 0, size = graph_->GetReversePostOrder().size(); i != size; ++i) { HBasicBlock* current = graph_->GetReversePostOrder()[i]; if (visitor.IsAddedBlock(current)) { // Skip added blocks. Their effects are already taken care of. continue; } visitor.VisitBasicBlock(current); // Skip forward to the current block in case new basic blocks were inserted // (which always appear earlier in reverse post order) to avoid visiting the // same basic block twice. size_t new_size = graph_->GetReversePostOrder().size(); DCHECK_GE(new_size, size); i += new_size - size; DCHECK_EQ(current, graph_->GetReversePostOrder()[i]); size = new_size; } // Perform cleanup. visitor.Finish(); return true; } } // namespace art