/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "code_generator_utils.h" #include #include "nodes.h" namespace art { void CalculateMagicAndShiftForDivRem(int64_t divisor, bool is_long, int64_t* magic, int* shift) { // It does not make sense to calculate magic and shift for zero divisor. DCHECK_NE(divisor, 0); /* Implementation according to H.S.Warren's "Hacker's Delight" (Addison Wesley, 2002) * Chapter 10 and T.Grablund, P.L.Montogomery's "Division by Invariant Integers Using * Multiplication" (PLDI 1994). * The magic number M and shift S can be calculated in the following way: * Let nc be the most positive value of numerator(n) such that nc = kd - 1, * where divisor(d) >= 2. * Let nc be the most negative value of numerator(n) such that nc = kd + 1, * where divisor(d) <= -2. * Thus nc can be calculated like: * nc = exp + exp % d - 1, where d >= 2 and exp = 2^31 for int or 2^63 for long * nc = -exp + (exp + 1) % d, where d >= 2 and exp = 2^31 for int or 2^63 for long * * So the shift p is the smallest p satisfying * 2^p > nc * (d - 2^p % d), where d >= 2 * 2^p > nc * (d + 2^p % d), where d <= -2. * * The magic number M is calculated by * M = (2^p + d - 2^p % d) / d, where d >= 2 * M = (2^p - d - 2^p % d) / d, where d <= -2. * * Notice that p is always bigger than or equal to 32 (resp. 64), so we just return 32 - p * (resp. 64 - p) as the shift number S. */ int64_t p = is_long ? 63 : 31; const uint64_t exp = is_long ? (UINT64_C(1) << 63) : (UINT32_C(1) << 31); // Initialize the computations. uint64_t abs_d = (divisor >= 0) ? divisor : -divisor; uint64_t sign_bit = is_long ? static_cast(divisor) >> 63 : static_cast(divisor) >> 31; uint64_t tmp = exp + sign_bit; uint64_t abs_nc = tmp - 1 - (tmp % abs_d); uint64_t quotient1 = exp / abs_nc; uint64_t remainder1 = exp % abs_nc; uint64_t quotient2 = exp / abs_d; uint64_t remainder2 = exp % abs_d; /* * To avoid handling both positive and negative divisor, "Hacker's Delight" * introduces a method to handle these 2 cases together to avoid duplication. */ uint64_t delta; do { p++; quotient1 = 2 * quotient1; remainder1 = 2 * remainder1; if (remainder1 >= abs_nc) { quotient1++; remainder1 = remainder1 - abs_nc; } quotient2 = 2 * quotient2; remainder2 = 2 * remainder2; if (remainder2 >= abs_d) { quotient2++; remainder2 = remainder2 - abs_d; } delta = abs_d - remainder2; } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0)); *magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1); if (!is_long) { *magic = static_cast(*magic); } *shift = is_long ? p - 64 : p - 32; } bool IsBooleanValueOrMaterializedCondition(HInstruction* cond_input) { return !cond_input->IsCondition() || !cond_input->IsEmittedAtUseSite(); } // A helper class to group functions analyzing if values are non-negative // at the point of use. The class keeps some context used by the functions. // The class is not supposed to be used directly or its instances to be kept. // The main function using it is HasNonNegativeInputAt. // If you want to use the class methods you need to become a friend of the class. class UnsignedUseAnalyzer { private: explicit UnsignedUseAnalyzer(ArenaAllocator* allocator) : seen_values_(allocator->Adapter(kArenaAllocCodeGenerator)) { } bool IsNonNegativeUse(HInstruction* target_user, HInstruction* value); bool IsComparedValueNonNegativeInBlock(HInstruction* value, HCondition* cond, HBasicBlock* target_block); ArenaSet seen_values_; friend bool HasNonNegativeInputAt(HInstruction* instr, size_t i); }; // Check that the value compared with a non-negavite value is // non-negative in the specified basic block. bool UnsignedUseAnalyzer::IsComparedValueNonNegativeInBlock(HInstruction* value, HCondition* cond, HBasicBlock* target_block) { DCHECK(cond->HasInput(value)); // To simplify analysis, we require: // 1. The condition basic block and target_block to be different. // 2. The condition basic block to end with HIf. // 3. HIf to use the condition. if (cond->GetBlock() == target_block || !cond->GetBlock()->EndsWithIf() || cond->GetBlock()->GetLastInstruction()->InputAt(0) != cond) { return false; } // We need to find a successor basic block of HIf for the case when instr is non-negative. // If the successor dominates target_block, instructions in target_block see a non-negative value. HIf* if_instr = cond->GetBlock()->GetLastInstruction()->AsIf(); HBasicBlock* successor = nullptr; switch (cond->GetCondition()) { case kCondGT: case kCondGE: { if (cond->GetLeft() == value) { // The expression is v > A or v >= A. // If A is non-negative, we need the true successor. if (IsNonNegativeUse(cond, cond->GetRight())) { successor = if_instr->IfTrueSuccessor(); } else { return false; } } else { DCHECK_EQ(cond->GetRight(), value); // The expression is A > v or A >= v. // If A is non-negative, we need the false successor. if (IsNonNegativeUse(cond, cond->GetLeft())) { successor = if_instr->IfFalseSuccessor(); } else { return false; } } break; } case kCondLT: case kCondLE: { if (cond->GetLeft() == value) { // The expression is v < A or v <= A. // If A is non-negative, we need the false successor. if (IsNonNegativeUse(cond, cond->GetRight())) { successor = if_instr->IfFalseSuccessor(); } else { return false; } } else { DCHECK_EQ(cond->GetRight(), value); // The expression is A < v or A <= v. // If A is non-negative, we need the true successor. if (IsNonNegativeUse(cond, cond->GetLeft())) { successor = if_instr->IfTrueSuccessor(); } else { return false; } } break; } default: return false; } DCHECK_NE(successor, nullptr); return successor->Dominates(target_block); } // Check the value used by target_user is non-negative. bool UnsignedUseAnalyzer::IsNonNegativeUse(HInstruction* target_user, HInstruction* value) { DCHECK(target_user->HasInput(value)); // Prevent infinitive recursion which can happen when the value is an induction variable. if (!seen_values_.insert(value).second) { return false; } // Check if the value is always non-negative. if (IsGEZero(value)) { return true; } for (const HUseListNode& use : value->GetUses()) { HInstruction* user = use.GetUser(); if (user == target_user) { continue; } // If the value is compared with some non-negative value, this can guarantee the value to be // non-negative at its use. // JFYI: We're not using HTypeConversion to bind the new information because it would // increase the complexity of optimizations: HTypeConversion can create a dependency // which does not exist in the input program, for example: // between two uses, 1st - cmp, 2nd - target_user. if (user->IsCondition()) { // The condition must dominate target_user to guarantee that the value is always checked // before it is used by target_user. if (user->GetBlock()->Dominates(target_user->GetBlock()) && IsComparedValueNonNegativeInBlock(value, user->AsCondition(), target_user->GetBlock())) { return true; } } // TODO The value is non-negative if it is used as an array index before. // TODO The value is non-negative if it is initialized by a positive number and all of its // modifications keep the value non-negative, for example the division operation. } return false; } bool HasNonNegativeInputAt(HInstruction* instr, size_t i) { UnsignedUseAnalyzer analyzer(instr->GetBlock()->GetGraph()->GetAllocator()); return analyzer.IsNonNegativeUse(instr, instr->InputAt(i)); } bool HasNonNegativeOrMinIntInputAt(HInstruction* instr, size_t i) { HInstruction* input = instr->InputAt(i); return input->IsAbs() || IsInt64Value(input, DataType::MinValueOfIntegralType(input->GetType())) || HasNonNegativeInputAt(instr, i); } } // namespace art