/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "escape.h" #include "nodes.h" namespace art { void VisitEscapes(HInstruction* reference, EscapeVisitor& escape_visitor) { // References not allocated in the method are intrinsically escaped. // Finalizable references are always escaping since they end up in FinalizerQueues. if ((!reference->IsNewInstance() && !reference->IsNewArray()) || (reference->IsNewInstance() && reference->AsNewInstance()->IsFinalizable())) { if (!escape_visitor(reference)) { return; } } // Visit all uses to determine if this reference can escape into the heap, // a method call, an alias, etc. for (const HUseListNode& use : reference->GetUses()) { HInstruction* user = use.GetUser(); if (user->IsBoundType() || user->IsNullCheck()) { // BoundType shouldn't normally be necessary for an allocation. Just be conservative // for the uncommon cases. Similarly, null checks are eventually eliminated for explicit // allocations, but if we see one before it is simplified, assume an alias. if (!escape_visitor(user)) { return; } } else if (user->IsCheckCast() || user->IsInstanceOf()) { // TODO Currently we'll just be conservative for Partial LSE and avoid // optimizing check-cast things since we'd need to add blocks otherwise. // Normally the simplifier should be able to just get rid of them if (!escape_visitor(user)) { return; } } else if (user->IsPhi() || user->IsSelect() || (user->IsInvoke() && user->GetSideEffects().DoesAnyWrite()) || (user->IsInstanceFieldSet() && (reference == user->InputAt(1))) || (user->IsUnresolvedInstanceFieldSet() && (reference == user->InputAt(1))) || (user->IsStaticFieldSet() && (reference == user->InputAt(1))) || (user->IsUnresolvedStaticFieldSet() && (reference == user->InputAt(0))) || (user->IsArraySet() && (reference == user->InputAt(2)))) { // The reference is merged to HPhi/HSelect, passed to a callee, or stored to heap. // Hence, the reference is no longer the only name that can refer to its value. if (!escape_visitor(user)) { return; } } else if ((user->IsUnresolvedInstanceFieldGet() && (reference == user->InputAt(0))) || (user->IsUnresolvedInstanceFieldSet() && (reference == user->InputAt(0)))) { // The field is accessed in an unresolved way. We mark the object as a non-singleton. // Note that we could optimize this case and still perform some optimizations until // we hit the unresolved access, but the conservative assumption is the simplest. if (!escape_visitor(user)) { return; } } else if (user->IsReturn()) { if (!escape_visitor(user)) { return; } } } // Look at the environment uses if it's for HDeoptimize. Other environment uses are fine, // as long as client optimizations that rely on this information are disabled for debuggable. for (const HUseListNode& use : reference->GetEnvUses()) { HEnvironment* user = use.GetUser(); if (user->GetHolder()->IsDeoptimize()) { if (!escape_visitor(user->GetHolder())) { return; } } } } void CalculateEscape(HInstruction* reference, NoEscapeCheck& no_escape, /*out*/ bool* is_singleton, /*out*/ bool* is_singleton_and_not_returned, /*out*/ bool* is_singleton_and_not_deopt_visible) { // For references not allocated in the method, don't assume anything. if (!reference->IsNewInstance() && !reference->IsNewArray()) { *is_singleton = false; *is_singleton_and_not_returned = false; *is_singleton_and_not_deopt_visible = false; return; } // Assume the best until proven otherwise. *is_singleton = true; *is_singleton_and_not_returned = true; *is_singleton_and_not_deopt_visible = true; if (reference->IsNewInstance() && reference->AsNewInstance()->IsFinalizable()) { // Finalizable reference is treated as being returned in the end. *is_singleton_and_not_returned = false; } LambdaEscapeVisitor visitor([&](HInstruction* escape) -> bool { if (escape == reference || no_escape(reference, escape)) { // Ignore already known inherent escapes and escapes client supplied // analysis knows is safe. Continue on. return true; } else if (escape->IsInstanceOf() || escape->IsCheckCast()) { // Ignore since these are not relevant for regular LSE. return true; } else if (escape->IsReturn()) { // value is returned but might still be singleton. Continue on. *is_singleton_and_not_returned = false; return true; } else if (escape->IsDeoptimize()) { // value escapes through deopt but might still be singleton. Continue on. *is_singleton_and_not_deopt_visible = false; return true; } else { // Real escape. All knowledge about what happens to the value lost. We can // stop here. *is_singleton = false; *is_singleton_and_not_returned = false; *is_singleton_and_not_deopt_visible = false; return false; } }); VisitEscapes(reference, visitor); } bool DoesNotEscape(HInstruction* reference, NoEscapeCheck& no_escape) { bool is_singleton = false; bool is_singleton_and_not_returned = false; bool is_singleton_and_not_deopt_visible = false; // not relevant for escape CalculateEscape(reference, no_escape, &is_singleton, &is_singleton_and_not_returned, &is_singleton_and_not_deopt_visible); return is_singleton_and_not_returned; } } // namespace art