/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "intrinsics_arm_vixl.h" #include "arch/arm/callee_save_frame_arm.h" #include "arch/arm/instruction_set_features_arm.h" #include "art_method.h" #include "code_generator_arm_vixl.h" #include "common_arm.h" #include "heap_poisoning.h" #include "intrinsics.h" #include "intrinsics_utils.h" #include "lock_word.h" #include "mirror/array-inl.h" #include "mirror/object_array-inl.h" #include "mirror/reference.h" #include "mirror/string-inl.h" #include "scoped_thread_state_change-inl.h" #include "thread-current-inl.h" #include "aarch32/constants-aarch32.h" namespace art { namespace arm { #define __ assembler->GetVIXLAssembler()-> using helpers::DRegisterFrom; using helpers::HighRegisterFrom; using helpers::InputDRegisterAt; using helpers::InputRegisterAt; using helpers::InputSRegisterAt; using helpers::Int32ConstantFrom; using helpers::LocationFrom; using helpers::LowRegisterFrom; using helpers::LowSRegisterFrom; using helpers::HighSRegisterFrom; using helpers::OutputDRegister; using helpers::OutputRegister; using helpers::RegisterFrom; using helpers::SRegisterFrom; using namespace vixl::aarch32; // NOLINT(build/namespaces) using vixl::ExactAssemblyScope; using vixl::CodeBufferCheckScope; ArmVIXLAssembler* IntrinsicCodeGeneratorARMVIXL::GetAssembler() { return codegen_->GetAssembler(); } ArenaAllocator* IntrinsicCodeGeneratorARMVIXL::GetAllocator() { return codegen_->GetGraph()->GetAllocator(); } using IntrinsicSlowPathARMVIXL = IntrinsicSlowPath; // Compute base address for the System.arraycopy intrinsic in `base`. static void GenSystemArrayCopyBaseAddress(ArmVIXLAssembler* assembler, DataType::Type type, const vixl32::Register& array, const Location& pos, const vixl32::Register& base) { // This routine is only used by the SystemArrayCopy intrinsic at the // moment. We can allow DataType::Type::kReference as `type` to implement // the SystemArrayCopyChar intrinsic. DCHECK_EQ(type, DataType::Type::kReference); const int32_t element_size = DataType::Size(type); const uint32_t element_size_shift = DataType::SizeShift(type); const uint32_t data_offset = mirror::Array::DataOffset(element_size).Uint32Value(); if (pos.IsConstant()) { int32_t constant = Int32ConstantFrom(pos); __ Add(base, array, element_size * constant + data_offset); } else { __ Add(base, array, Operand(RegisterFrom(pos), vixl32::LSL, element_size_shift)); __ Add(base, base, data_offset); } } // Compute end address for the System.arraycopy intrinsic in `end`. static void GenSystemArrayCopyEndAddress(ArmVIXLAssembler* assembler, DataType::Type type, const Location& copy_length, const vixl32::Register& base, const vixl32::Register& end) { // This routine is only used by the SystemArrayCopy intrinsic at the // moment. We can allow DataType::Type::kReference as `type` to implement // the SystemArrayCopyChar intrinsic. DCHECK_EQ(type, DataType::Type::kReference); const int32_t element_size = DataType::Size(type); const uint32_t element_size_shift = DataType::SizeShift(type); if (copy_length.IsConstant()) { int32_t constant = Int32ConstantFrom(copy_length); __ Add(end, base, element_size * constant); } else { __ Add(end, base, Operand(RegisterFrom(copy_length), vixl32::LSL, element_size_shift)); } } // Slow path implementing the SystemArrayCopy intrinsic copy loop with read barriers. class ReadBarrierSystemArrayCopySlowPathARMVIXL : public SlowPathCodeARMVIXL { public: explicit ReadBarrierSystemArrayCopySlowPathARMVIXL(HInstruction* instruction) : SlowPathCodeARMVIXL(instruction) { DCHECK(kEmitCompilerReadBarrier); DCHECK(kUseBakerReadBarrier); } void EmitNativeCode(CodeGenerator* codegen) override { CodeGeneratorARMVIXL* arm_codegen = down_cast(codegen); ArmVIXLAssembler* assembler = arm_codegen->GetAssembler(); LocationSummary* locations = instruction_->GetLocations(); DCHECK(locations->CanCall()); DCHECK(instruction_->IsInvokeStaticOrDirect()) << "Unexpected instruction in read barrier arraycopy slow path: " << instruction_->DebugName(); DCHECK(instruction_->GetLocations()->Intrinsified()); DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kSystemArrayCopy); DataType::Type type = DataType::Type::kReference; const int32_t element_size = DataType::Size(type); vixl32::Register dest = InputRegisterAt(instruction_, 2); Location dest_pos = locations->InAt(3); vixl32::Register src_curr_addr = RegisterFrom(locations->GetTemp(0)); vixl32::Register dst_curr_addr = RegisterFrom(locations->GetTemp(1)); vixl32::Register src_stop_addr = RegisterFrom(locations->GetTemp(2)); vixl32::Register tmp = RegisterFrom(locations->GetTemp(3)); __ Bind(GetEntryLabel()); // Compute the base destination address in `dst_curr_addr`. GenSystemArrayCopyBaseAddress(assembler, type, dest, dest_pos, dst_curr_addr); vixl32::Label loop; __ Bind(&loop); __ Ldr(tmp, MemOperand(src_curr_addr, element_size, PostIndex)); assembler->MaybeUnpoisonHeapReference(tmp); // TODO: Inline the mark bit check before calling the runtime? // tmp = ReadBarrier::Mark(tmp); // No need to save live registers; it's taken care of by the // entrypoint. Also, there is no need to update the stack mask, // as this runtime call will not trigger a garbage collection. // (See ReadBarrierMarkSlowPathARM::EmitNativeCode for more // explanations.) DCHECK(!tmp.IsSP()); DCHECK(!tmp.IsLR()); DCHECK(!tmp.IsPC()); // IP is used internally by the ReadBarrierMarkRegX entry point // as a temporary (and not preserved). It thus cannot be used by // any live register in this slow path. DCHECK(!src_curr_addr.Is(ip)); DCHECK(!dst_curr_addr.Is(ip)); DCHECK(!src_stop_addr.Is(ip)); DCHECK(!tmp.Is(ip)); DCHECK(tmp.IsRegister()) << tmp; // TODO: Load the entrypoint once before the loop, instead of // loading it at every iteration. int32_t entry_point_offset = Thread::ReadBarrierMarkEntryPointsOffset(tmp.GetCode()); // This runtime call does not require a stack map. arm_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); assembler->MaybePoisonHeapReference(tmp); __ Str(tmp, MemOperand(dst_curr_addr, element_size, PostIndex)); __ Cmp(src_curr_addr, src_stop_addr); __ B(ne, &loop, /* is_far_target= */ false); __ B(GetExitLabel()); } const char* GetDescription() const override { return "ReadBarrierSystemArrayCopySlowPathARMVIXL"; } private: DISALLOW_COPY_AND_ASSIGN(ReadBarrierSystemArrayCopySlowPathARMVIXL); }; IntrinsicLocationsBuilderARMVIXL::IntrinsicLocationsBuilderARMVIXL(CodeGeneratorARMVIXL* codegen) : allocator_(codegen->GetGraph()->GetAllocator()), codegen_(codegen), assembler_(codegen->GetAssembler()), features_(codegen->GetInstructionSetFeatures()) {} bool IntrinsicLocationsBuilderARMVIXL::TryDispatch(HInvoke* invoke) { Dispatch(invoke); LocationSummary* res = invoke->GetLocations(); if (res == nullptr) { return false; } return res->Intrinsified(); } static void CreateFPToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); } static void CreateIntToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); } static void MoveFPToInt(LocationSummary* locations, bool is64bit, ArmVIXLAssembler* assembler) { Location input = locations->InAt(0); Location output = locations->Out(); if (is64bit) { __ Vmov(LowRegisterFrom(output), HighRegisterFrom(output), DRegisterFrom(input)); } else { __ Vmov(RegisterFrom(output), SRegisterFrom(input)); } } static void MoveIntToFP(LocationSummary* locations, bool is64bit, ArmVIXLAssembler* assembler) { Location input = locations->InAt(0); Location output = locations->Out(); if (is64bit) { __ Vmov(DRegisterFrom(output), LowRegisterFrom(input), HighRegisterFrom(input)); } else { __ Vmov(SRegisterFrom(output), RegisterFrom(input)); } } void IntrinsicLocationsBuilderARMVIXL::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { CreateFPToIntLocations(allocator_, invoke); } void IntrinsicLocationsBuilderARMVIXL::VisitDoubleLongBitsToDouble(HInvoke* invoke) { CreateIntToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { MoveFPToInt(invoke->GetLocations(), /* is64bit= */ true, GetAssembler()); } void IntrinsicCodeGeneratorARMVIXL::VisitDoubleLongBitsToDouble(HInvoke* invoke) { MoveIntToFP(invoke->GetLocations(), /* is64bit= */ true, GetAssembler()); } void IntrinsicLocationsBuilderARMVIXL::VisitFloatFloatToRawIntBits(HInvoke* invoke) { CreateFPToIntLocations(allocator_, invoke); } void IntrinsicLocationsBuilderARMVIXL::VisitFloatIntBitsToFloat(HInvoke* invoke) { CreateIntToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitFloatFloatToRawIntBits(HInvoke* invoke) { MoveFPToInt(invoke->GetLocations(), /* is64bit= */ false, GetAssembler()); } void IntrinsicCodeGeneratorARMVIXL::VisitFloatIntBitsToFloat(HInvoke* invoke) { MoveIntToFP(invoke->GetLocations(), /* is64bit= */ false, GetAssembler()); } static void CreateIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } static void CreateIntIntToIntSlowPathCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); // Force kOutputOverlap; see comments in IntrinsicSlowPath::EmitNativeCode. locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); } static void CreateLongToLongLocationsWithOverlap(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); } static void CreateFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); } static void GenNumberOfLeadingZeros(HInvoke* invoke, DataType::Type type, CodeGeneratorARMVIXL* codegen) { ArmVIXLAssembler* assembler = codegen->GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Location in = locations->InAt(0); vixl32::Register out = RegisterFrom(locations->Out()); DCHECK((type == DataType::Type::kInt32) || (type == DataType::Type::kInt64)); if (type == DataType::Type::kInt64) { vixl32::Register in_reg_lo = LowRegisterFrom(in); vixl32::Register in_reg_hi = HighRegisterFrom(in); vixl32::Label end; vixl32::Label* final_label = codegen->GetFinalLabel(invoke, &end); __ Clz(out, in_reg_hi); __ CompareAndBranchIfNonZero(in_reg_hi, final_label, /* is_far_target= */ false); __ Clz(out, in_reg_lo); __ Add(out, out, 32); if (end.IsReferenced()) { __ Bind(&end); } } else { __ Clz(out, RegisterFrom(in)); } } void IntrinsicLocationsBuilderARMVIXL::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { GenNumberOfLeadingZeros(invoke, DataType::Type::kInt32, codegen_); } void IntrinsicLocationsBuilderARMVIXL::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { CreateLongToLongLocationsWithOverlap(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { GenNumberOfLeadingZeros(invoke, DataType::Type::kInt64, codegen_); } static void GenNumberOfTrailingZeros(HInvoke* invoke, DataType::Type type, CodeGeneratorARMVIXL* codegen) { DCHECK((type == DataType::Type::kInt32) || (type == DataType::Type::kInt64)); ArmVIXLAssembler* assembler = codegen->GetAssembler(); LocationSummary* locations = invoke->GetLocations(); vixl32::Register out = RegisterFrom(locations->Out()); if (type == DataType::Type::kInt64) { vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0)); vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0)); vixl32::Label end; vixl32::Label* final_label = codegen->GetFinalLabel(invoke, &end); __ Rbit(out, in_reg_lo); __ Clz(out, out); __ CompareAndBranchIfNonZero(in_reg_lo, final_label, /* is_far_target= */ false); __ Rbit(out, in_reg_hi); __ Clz(out, out); __ Add(out, out, 32); if (end.IsReferenced()) { __ Bind(&end); } } else { vixl32::Register in = RegisterFrom(locations->InAt(0)); __ Rbit(out, in); __ Clz(out, out); } } void IntrinsicLocationsBuilderARMVIXL::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { GenNumberOfTrailingZeros(invoke, DataType::Type::kInt32, codegen_); } void IntrinsicLocationsBuilderARMVIXL::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { CreateLongToLongLocationsWithOverlap(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { GenNumberOfTrailingZeros(invoke, DataType::Type::kInt64, codegen_); } void IntrinsicLocationsBuilderARMVIXL::VisitMathSqrt(HInvoke* invoke) { CreateFPToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitMathSqrt(HInvoke* invoke) { ArmVIXLAssembler* assembler = GetAssembler(); __ Vsqrt(OutputDRegister(invoke), InputDRegisterAt(invoke, 0)); } void IntrinsicLocationsBuilderARMVIXL::VisitMathRint(HInvoke* invoke) { if (features_.HasARMv8AInstructions()) { CreateFPToFPLocations(allocator_, invoke); } } void IntrinsicCodeGeneratorARMVIXL::VisitMathRint(HInvoke* invoke) { DCHECK(codegen_->GetInstructionSetFeatures().HasARMv8AInstructions()); ArmVIXLAssembler* assembler = GetAssembler(); __ Vrintn(F64, OutputDRegister(invoke), InputDRegisterAt(invoke, 0)); } void IntrinsicLocationsBuilderARMVIXL::VisitMathRoundFloat(HInvoke* invoke) { if (features_.HasARMv8AInstructions()) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); locations->AddTemp(Location::RequiresFpuRegister()); } } void IntrinsicCodeGeneratorARMVIXL::VisitMathRoundFloat(HInvoke* invoke) { DCHECK(codegen_->GetInstructionSetFeatures().HasARMv8AInstructions()); ArmVIXLAssembler* assembler = GetAssembler(); vixl32::SRegister in_reg = InputSRegisterAt(invoke, 0); vixl32::Register out_reg = OutputRegister(invoke); vixl32::SRegister temp1 = LowSRegisterFrom(invoke->GetLocations()->GetTemp(0)); vixl32::SRegister temp2 = HighSRegisterFrom(invoke->GetLocations()->GetTemp(0)); vixl32::Label done; vixl32::Label* final_label = codegen_->GetFinalLabel(invoke, &done); // Round to nearest integer, ties away from zero. __ Vcvta(S32, F32, temp1, in_reg); __ Vmov(out_reg, temp1); // For positive, zero or NaN inputs, rounding is done. __ Cmp(out_reg, 0); __ B(ge, final_label, /* is_far_target= */ false); // Handle input < 0 cases. // If input is negative but not a tie, previous result (round to nearest) is valid. // If input is a negative tie, change rounding direction to positive infinity, out_reg += 1. __ Vrinta(F32, temp1, in_reg); __ Vmov(temp2, 0.5); __ Vsub(F32, temp1, in_reg, temp1); __ Vcmp(F32, temp1, temp2); __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR); { // Use ExactAssemblyScope here because we are using IT. ExactAssemblyScope it_scope(assembler->GetVIXLAssembler(), 2 * kMaxInstructionSizeInBytes, CodeBufferCheckScope::kMaximumSize); __ it(eq); __ add(eq, out_reg, out_reg, 1); } if (done.IsReferenced()) { __ Bind(&done); } } void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekByte(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekByte(HInvoke* invoke) { ArmVIXLAssembler* assembler = GetAssembler(); // Ignore upper 4B of long address. __ Ldrsb(OutputRegister(invoke), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0)))); } void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekIntNative(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekIntNative(HInvoke* invoke) { ArmVIXLAssembler* assembler = GetAssembler(); // Ignore upper 4B of long address. __ Ldr(OutputRegister(invoke), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0)))); } void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekLongNative(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekLongNative(HInvoke* invoke) { ArmVIXLAssembler* assembler = GetAssembler(); // Ignore upper 4B of long address. vixl32::Register addr = LowRegisterFrom(invoke->GetLocations()->InAt(0)); // Worst case: Control register bit SCTLR.A = 0. Then unaligned accesses throw a processor // exception. So we can't use ldrd as addr may be unaligned. vixl32::Register lo = LowRegisterFrom(invoke->GetLocations()->Out()); vixl32::Register hi = HighRegisterFrom(invoke->GetLocations()->Out()); if (addr.Is(lo)) { __ Ldr(hi, MemOperand(addr, 4)); __ Ldr(lo, MemOperand(addr)); } else { __ Ldr(lo, MemOperand(addr)); __ Ldr(hi, MemOperand(addr, 4)); } } void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekShortNative(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekShortNative(HInvoke* invoke) { ArmVIXLAssembler* assembler = GetAssembler(); // Ignore upper 4B of long address. __ Ldrsh(OutputRegister(invoke), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0)))); } static void CreateIntIntToVoidLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); } void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeByte(HInvoke* invoke) { CreateIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeByte(HInvoke* invoke) { ArmVIXLAssembler* assembler = GetAssembler(); __ Strb(InputRegisterAt(invoke, 1), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0)))); } void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeIntNative(HInvoke* invoke) { CreateIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeIntNative(HInvoke* invoke) { ArmVIXLAssembler* assembler = GetAssembler(); __ Str(InputRegisterAt(invoke, 1), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0)))); } void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeLongNative(HInvoke* invoke) { CreateIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeLongNative(HInvoke* invoke) { ArmVIXLAssembler* assembler = GetAssembler(); // Ignore upper 4B of long address. vixl32::Register addr = LowRegisterFrom(invoke->GetLocations()->InAt(0)); // Worst case: Control register bit SCTLR.A = 0. Then unaligned accesses throw a processor // exception. So we can't use ldrd as addr may be unaligned. __ Str(LowRegisterFrom(invoke->GetLocations()->InAt(1)), MemOperand(addr)); __ Str(HighRegisterFrom(invoke->GetLocations()->InAt(1)), MemOperand(addr, 4)); } void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeShortNative(HInvoke* invoke) { CreateIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeShortNative(HInvoke* invoke) { ArmVIXLAssembler* assembler = GetAssembler(); __ Strh(InputRegisterAt(invoke, 1), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0)))); } void IntrinsicLocationsBuilderARMVIXL::VisitThreadCurrentThread(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetOut(Location::RequiresRegister()); } void IntrinsicCodeGeneratorARMVIXL::VisitThreadCurrentThread(HInvoke* invoke) { ArmVIXLAssembler* assembler = GetAssembler(); __ Ldr(OutputRegister(invoke), MemOperand(tr, Thread::PeerOffset().Int32Value())); } void IntrinsicLocationsBuilderARMVIXL::VisitStringCompareTo(HInvoke* invoke) { // The inputs plus one temp. LocationSummary* locations = new (allocator_) LocationSummary(invoke, invoke->InputAt(1)->CanBeNull() ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); // Need temporary registers for String compression's feature. if (mirror::kUseStringCompression) { locations->AddTemp(Location::RequiresRegister()); } locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); } // Forward declaration. // // ART build system imposes a size limit (deviceFrameSizeLimit) on the stack frames generated // by the compiler for every C++ function, and if this function gets inlined in // IntrinsicCodeGeneratorARMVIXL::VisitStringCompareTo, the limit will be exceeded, resulting in a // build failure. That is the reason why NO_INLINE attribute is used. static void NO_INLINE GenerateStringCompareToLoop(ArmVIXLAssembler* assembler, HInvoke* invoke, vixl32::Label* end, vixl32::Label* different_compression); void IntrinsicCodeGeneratorARMVIXL::VisitStringCompareTo(HInvoke* invoke) { ArmVIXLAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); const vixl32::Register str = InputRegisterAt(invoke, 0); const vixl32::Register arg = InputRegisterAt(invoke, 1); const vixl32::Register out = OutputRegister(invoke); const vixl32::Register temp0 = RegisterFrom(locations->GetTemp(0)); const vixl32::Register temp1 = RegisterFrom(locations->GetTemp(1)); const vixl32::Register temp2 = RegisterFrom(locations->GetTemp(2)); vixl32::Register temp3; if (mirror::kUseStringCompression) { temp3 = RegisterFrom(locations->GetTemp(3)); } vixl32::Label end; vixl32::Label different_compression; // Get offsets of count and value fields within a string object. const int32_t count_offset = mirror::String::CountOffset().Int32Value(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); // Take slow path and throw if input can be and is null. SlowPathCodeARMVIXL* slow_path = nullptr; const bool can_slow_path = invoke->InputAt(1)->CanBeNull(); if (can_slow_path) { slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARMVIXL(invoke); codegen_->AddSlowPath(slow_path); __ CompareAndBranchIfZero(arg, slow_path->GetEntryLabel()); } // Reference equality check, return 0 if same reference. __ Subs(out, str, arg); __ B(eq, &end); if (mirror::kUseStringCompression) { // Load `count` fields of this and argument strings. __ Ldr(temp3, MemOperand(str, count_offset)); __ Ldr(temp2, MemOperand(arg, count_offset)); // Extract lengths from the `count` fields. __ Lsr(temp0, temp3, 1u); __ Lsr(temp1, temp2, 1u); } else { // Load lengths of this and argument strings. __ Ldr(temp0, MemOperand(str, count_offset)); __ Ldr(temp1, MemOperand(arg, count_offset)); } // out = length diff. __ Subs(out, temp0, temp1); // temp0 = min(len(str), len(arg)). { ExactAssemblyScope aas(assembler->GetVIXLAssembler(), 2 * kMaxInstructionSizeInBytes, CodeBufferCheckScope::kMaximumSize); __ it(gt); __ mov(gt, temp0, temp1); } // Shorter string is empty? // Note that mirror::kUseStringCompression==true introduces lots of instructions, // which makes &end label far away from this branch and makes it not 'CBZ-encodable'. __ CompareAndBranchIfZero(temp0, &end, mirror::kUseStringCompression); if (mirror::kUseStringCompression) { // Check if both strings using same compression style to use this comparison loop. __ Eors(temp2, temp2, temp3); __ Lsrs(temp2, temp2, 1u); __ B(cs, &different_compression); // For string compression, calculate the number of bytes to compare (not chars). // This could in theory exceed INT32_MAX, so treat temp0 as unsigned. __ Lsls(temp3, temp3, 31u); // Extract purely the compression flag. ExactAssemblyScope aas(assembler->GetVIXLAssembler(), 2 * kMaxInstructionSizeInBytes, CodeBufferCheckScope::kMaximumSize); __ it(ne); __ add(ne, temp0, temp0, temp0); } GenerateStringCompareToLoop(assembler, invoke, &end, &different_compression); __ Bind(&end); if (can_slow_path) { __ Bind(slow_path->GetExitLabel()); } } static void GenerateStringCompareToLoop(ArmVIXLAssembler* assembler, HInvoke* invoke, vixl32::Label* end, vixl32::Label* different_compression) { LocationSummary* locations = invoke->GetLocations(); const vixl32::Register str = InputRegisterAt(invoke, 0); const vixl32::Register arg = InputRegisterAt(invoke, 1); const vixl32::Register out = OutputRegister(invoke); const vixl32::Register temp0 = RegisterFrom(locations->GetTemp(0)); const vixl32::Register temp1 = RegisterFrom(locations->GetTemp(1)); const vixl32::Register temp2 = RegisterFrom(locations->GetTemp(2)); vixl32::Register temp3; if (mirror::kUseStringCompression) { temp3 = RegisterFrom(locations->GetTemp(3)); } vixl32::Label loop; vixl32::Label find_char_diff; const int32_t value_offset = mirror::String::ValueOffset().Int32Value(); // Store offset of string value in preparation for comparison loop. __ Mov(temp1, value_offset); // Assertions that must hold in order to compare multiple characters at a time. CHECK_ALIGNED(value_offset, 8); static_assert(IsAligned<8>(kObjectAlignment), "String data must be 8-byte aligned for unrolled CompareTo loop."); const unsigned char_size = DataType::Size(DataType::Type::kUint16); DCHECK_EQ(char_size, 2u); UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); vixl32::Label find_char_diff_2nd_cmp; // Unrolled loop comparing 4x16-bit chars per iteration (ok because of string data alignment). __ Bind(&loop); vixl32::Register temp_reg = temps.Acquire(); __ Ldr(temp_reg, MemOperand(str, temp1)); __ Ldr(temp2, MemOperand(arg, temp1)); __ Cmp(temp_reg, temp2); __ B(ne, &find_char_diff, /* is_far_target= */ false); __ Add(temp1, temp1, char_size * 2); __ Ldr(temp_reg, MemOperand(str, temp1)); __ Ldr(temp2, MemOperand(arg, temp1)); __ Cmp(temp_reg, temp2); __ B(ne, &find_char_diff_2nd_cmp, /* is_far_target= */ false); __ Add(temp1, temp1, char_size * 2); // With string compression, we have compared 8 bytes, otherwise 4 chars. __ Subs(temp0, temp0, (mirror::kUseStringCompression ? 8 : 4)); __ B(hi, &loop, /* is_far_target= */ false); __ B(end); __ Bind(&find_char_diff_2nd_cmp); if (mirror::kUseStringCompression) { __ Subs(temp0, temp0, 4); // 4 bytes previously compared. __ B(ls, end, /* is_far_target= */ false); // Was the second comparison fully beyond the end? } else { // Without string compression, we can start treating temp0 as signed // and rely on the signed comparison below. __ Sub(temp0, temp0, 2); } // Find the single character difference. __ Bind(&find_char_diff); // Get the bit position of the first character that differs. __ Eor(temp1, temp2, temp_reg); __ Rbit(temp1, temp1); __ Clz(temp1, temp1); // temp0 = number of characters remaining to compare. // (Without string compression, it could be < 1 if a difference is found by the second CMP // in the comparison loop, and after the end of the shorter string data). // Without string compression (temp1 >> 4) = character where difference occurs between the last // two words compared, in the interval [0,1]. // (0 for low half-word different, 1 for high half-word different). // With string compression, (temp1 << 3) = byte where the difference occurs, // in the interval [0,3]. // If temp0 <= (temp1 >> (kUseStringCompression ? 3 : 4)), the difference occurs outside // the remaining string data, so just return length diff (out). // The comparison is unsigned for string compression, otherwise signed. __ Cmp(temp0, Operand(temp1, vixl32::LSR, (mirror::kUseStringCompression ? 3 : 4))); __ B((mirror::kUseStringCompression ? ls : le), end, /* is_far_target= */ false); // Extract the characters and calculate the difference. if (mirror::kUseStringCompression) { // For compressed strings we need to clear 0x7 from temp1, for uncompressed we need to clear // 0xf. We also need to prepare the character extraction mask `uncompressed ? 0xffffu : 0xffu`. // The compression flag is now in the highest bit of temp3, so let's play some tricks. __ Orr(temp3, temp3, 0xffu << 23); // uncompressed ? 0xff800000u : 0x7ff80000u __ Bic(temp1, temp1, Operand(temp3, vixl32::LSR, 31 - 3)); // &= ~(uncompressed ? 0xfu : 0x7u) __ Asr(temp3, temp3, 7u); // uncompressed ? 0xffff0000u : 0xff0000u. __ Lsr(temp2, temp2, temp1); // Extract second character. __ Lsr(temp3, temp3, 16u); // uncompressed ? 0xffffu : 0xffu __ Lsr(out, temp_reg, temp1); // Extract first character. __ And(temp2, temp2, temp3); __ And(out, out, temp3); } else { __ Bic(temp1, temp1, 0xf); __ Lsr(temp2, temp2, temp1); __ Lsr(out, temp_reg, temp1); __ Movt(temp2, 0); __ Movt(out, 0); } __ Sub(out, out, temp2); temps.Release(temp_reg); if (mirror::kUseStringCompression) { __ B(end); __ Bind(different_compression); // Comparison for different compression style. const size_t c_char_size = DataType::Size(DataType::Type::kInt8); DCHECK_EQ(c_char_size, 1u); // We want to free up the temp3, currently holding `str.count`, for comparison. // So, we move it to the bottom bit of the iteration count `temp0` which we tnen // need to treat as unsigned. Start by freeing the bit with an ADD and continue // further down by a LSRS+SBC which will flip the meaning of the flag but allow // `subs temp0, #2; bhi different_compression_loop` to serve as the loop condition. __ Add(temp0, temp0, temp0); // Unlike LSL, this ADD is always 16-bit. // `temp1` will hold the compressed data pointer, `temp2` the uncompressed data pointer. __ Mov(temp1, str); __ Mov(temp2, arg); __ Lsrs(temp3, temp3, 1u); // Continue the move of the compression flag. { ExactAssemblyScope aas(assembler->GetVIXLAssembler(), 3 * kMaxInstructionSizeInBytes, CodeBufferCheckScope::kMaximumSize); __ itt(cs); // Interleave with selection of temp1 and temp2. __ mov(cs, temp1, arg); // Preserves flags. __ mov(cs, temp2, str); // Preserves flags. } __ Sbc(temp0, temp0, 0); // Complete the move of the compression flag. // Adjust temp1 and temp2 from string pointers to data pointers. __ Add(temp1, temp1, value_offset); __ Add(temp2, temp2, value_offset); vixl32::Label different_compression_loop; vixl32::Label different_compression_diff; // Main loop for different compression. temp_reg = temps.Acquire(); __ Bind(&different_compression_loop); __ Ldrb(temp_reg, MemOperand(temp1, c_char_size, PostIndex)); __ Ldrh(temp3, MemOperand(temp2, char_size, PostIndex)); __ Cmp(temp_reg, temp3); __ B(ne, &different_compression_diff, /* is_far_target= */ false); __ Subs(temp0, temp0, 2); __ B(hi, &different_compression_loop, /* is_far_target= */ false); __ B(end); // Calculate the difference. __ Bind(&different_compression_diff); __ Sub(out, temp_reg, temp3); temps.Release(temp_reg); // Flip the difference if the `arg` is compressed. // `temp0` contains inverted `str` compression flag, i.e the same as `arg` compression flag. __ Lsrs(temp0, temp0, 1u); static_assert(static_cast(mirror::StringCompressionFlag::kCompressed) == 0u, "Expecting 0=compressed, 1=uncompressed"); ExactAssemblyScope aas(assembler->GetVIXLAssembler(), 2 * kMaxInstructionSizeInBytes, CodeBufferCheckScope::kMaximumSize); __ it(cc); __ rsb(cc, out, out, 0); } } // The cut off for unrolling the loop in String.equals() intrinsic for const strings. // The normal loop plus the pre-header is 9 instructions (18-26 bytes) without string compression // and 12 instructions (24-32 bytes) with string compression. We can compare up to 4 bytes in 4 // instructions (LDR+LDR+CMP+BNE) and up to 8 bytes in 6 instructions (LDRD+LDRD+CMP+BNE+CMP+BNE). // Allow up to 12 instructions (32 bytes) for the unrolled loop. constexpr size_t kShortConstStringEqualsCutoffInBytes = 16; static const char* GetConstString(HInstruction* candidate, uint32_t* utf16_length) { if (candidate->IsLoadString()) { HLoadString* load_string = candidate->AsLoadString(); const DexFile& dex_file = load_string->GetDexFile(); return dex_file.StringDataAndUtf16LengthByIdx(load_string->GetStringIndex(), utf16_length); } return nullptr; } void IntrinsicLocationsBuilderARMVIXL::VisitStringEquals(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); InvokeRuntimeCallingConventionARMVIXL calling_convention; locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); // Temporary registers to store lengths of strings and for calculations. // Using instruction cbz requires a low register, so explicitly set a temp to be R0. locations->AddTemp(LocationFrom(r0)); // For the generic implementation and for long const strings we need an extra temporary. // We do not need it for short const strings, up to 4 bytes, see code generation below. uint32_t const_string_length = 0u; const char* const_string = GetConstString(invoke->InputAt(0), &const_string_length); if (const_string == nullptr) { const_string = GetConstString(invoke->InputAt(1), &const_string_length); } bool is_compressed = mirror::kUseStringCompression && const_string != nullptr && mirror::String::DexFileStringAllASCII(const_string, const_string_length); if (const_string == nullptr || const_string_length > (is_compressed ? 4u : 2u)) { locations->AddTemp(Location::RequiresRegister()); } // TODO: If the String.equals() is used only for an immediately following HIf, we can // mark it as emitted-at-use-site and emit branches directly to the appropriate blocks. // Then we shall need an extra temporary register instead of the output register. locations->SetOut(Location::RequiresRegister()); } void IntrinsicCodeGeneratorARMVIXL::VisitStringEquals(HInvoke* invoke) { ArmVIXLAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); vixl32::Register str = InputRegisterAt(invoke, 0); vixl32::Register arg = InputRegisterAt(invoke, 1); vixl32::Register out = OutputRegister(invoke); vixl32::Register temp = RegisterFrom(locations->GetTemp(0)); vixl32::Label loop; vixl32::Label end; vixl32::Label return_true; vixl32::Label return_false; vixl32::Label* final_label = codegen_->GetFinalLabel(invoke, &end); // Get offsets of count, value, and class fields within a string object. const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); StringEqualsOptimizations optimizations(invoke); if (!optimizations.GetArgumentNotNull()) { // Check if input is null, return false if it is. __ CompareAndBranchIfZero(arg, &return_false, /* is_far_target= */ false); } // Reference equality check, return true if same reference. __ Cmp(str, arg); __ B(eq, &return_true, /* is_far_target= */ false); if (!optimizations.GetArgumentIsString()) { // Instanceof check for the argument by comparing class fields. // All string objects must have the same type since String cannot be subclassed. // Receiver must be a string object, so its class field is equal to all strings' class fields. // If the argument is a string object, its class field must be equal to receiver's class field. // // As the String class is expected to be non-movable, we can read the class // field from String.equals' arguments without read barriers. AssertNonMovableStringClass(); // /* HeapReference */ temp = str->klass_ __ Ldr(temp, MemOperand(str, class_offset)); // /* HeapReference */ out = arg->klass_ __ Ldr(out, MemOperand(arg, class_offset)); // Also, because we use the previously loaded class references only in the // following comparison, we don't need to unpoison them. __ Cmp(temp, out); __ B(ne, &return_false, /* is_far_target= */ false); } // Check if one of the inputs is a const string. Do not special-case both strings // being const, such cases should be handled by constant folding if needed. uint32_t const_string_length = 0u; const char* const_string = GetConstString(invoke->InputAt(0), &const_string_length); if (const_string == nullptr) { const_string = GetConstString(invoke->InputAt(1), &const_string_length); if (const_string != nullptr) { std::swap(str, arg); // Make sure the const string is in `str`. } } bool is_compressed = mirror::kUseStringCompression && const_string != nullptr && mirror::String::DexFileStringAllASCII(const_string, const_string_length); if (const_string != nullptr) { // Load `count` field of the argument string and check if it matches the const string. // Also compares the compression style, if differs return false. __ Ldr(temp, MemOperand(arg, count_offset)); __ Cmp(temp, Operand(mirror::String::GetFlaggedCount(const_string_length, is_compressed))); __ B(ne, &return_false, /* is_far_target= */ false); } else { // Load `count` fields of this and argument strings. __ Ldr(temp, MemOperand(str, count_offset)); __ Ldr(out, MemOperand(arg, count_offset)); // Check if `count` fields are equal, return false if they're not. // Also compares the compression style, if differs return false. __ Cmp(temp, out); __ B(ne, &return_false, /* is_far_target= */ false); } // Assertions that must hold in order to compare strings 4 bytes at a time. // Ok to do this because strings are zero-padded to kObjectAlignment. DCHECK_ALIGNED(value_offset, 4); static_assert(IsAligned<4>(kObjectAlignment), "String data must be aligned for fast compare."); if (const_string != nullptr && const_string_length <= (is_compressed ? kShortConstStringEqualsCutoffInBytes : kShortConstStringEqualsCutoffInBytes / 2u)) { // Load and compare the contents. Though we know the contents of the short const string // at compile time, materializing constants may be more code than loading from memory. int32_t offset = value_offset; size_t remaining_bytes = RoundUp(is_compressed ? const_string_length : const_string_length * 2u, 4u); while (remaining_bytes > sizeof(uint32_t)) { vixl32::Register temp1 = RegisterFrom(locations->GetTemp(1)); UseScratchRegisterScope scratch_scope(assembler->GetVIXLAssembler()); vixl32::Register temp2 = scratch_scope.Acquire(); __ Ldrd(temp, temp1, MemOperand(str, offset)); __ Ldrd(temp2, out, MemOperand(arg, offset)); __ Cmp(temp, temp2); __ B(ne, &return_false, /* is_far_target= */ false); __ Cmp(temp1, out); __ B(ne, &return_false, /* is_far_target= */ false); offset += 2u * sizeof(uint32_t); remaining_bytes -= 2u * sizeof(uint32_t); } if (remaining_bytes != 0u) { __ Ldr(temp, MemOperand(str, offset)); __ Ldr(out, MemOperand(arg, offset)); __ Cmp(temp, out); __ B(ne, &return_false, /* is_far_target= */ false); } } else { // Return true if both strings are empty. Even with string compression `count == 0` means empty. static_assert(static_cast(mirror::StringCompressionFlag::kCompressed) == 0u, "Expecting 0=compressed, 1=uncompressed"); __ CompareAndBranchIfZero(temp, &return_true, /* is_far_target= */ false); if (mirror::kUseStringCompression) { // For string compression, calculate the number of bytes to compare (not chars). // This could in theory exceed INT32_MAX, so treat temp as unsigned. __ Lsrs(temp, temp, 1u); // Extract length and check compression flag. ExactAssemblyScope aas(assembler->GetVIXLAssembler(), 2 * kMaxInstructionSizeInBytes, CodeBufferCheckScope::kMaximumSize); __ it(cs); // If uncompressed, __ add(cs, temp, temp, temp); // double the byte count. } vixl32::Register temp1 = RegisterFrom(locations->GetTemp(1)); UseScratchRegisterScope scratch_scope(assembler->GetVIXLAssembler()); vixl32::Register temp2 = scratch_scope.Acquire(); // Store offset of string value in preparation for comparison loop. __ Mov(temp1, value_offset); // Loop to compare strings 4 bytes at a time starting at the front of the string. __ Bind(&loop); __ Ldr(out, MemOperand(str, temp1)); __ Ldr(temp2, MemOperand(arg, temp1)); __ Add(temp1, temp1, Operand::From(sizeof(uint32_t))); __ Cmp(out, temp2); __ B(ne, &return_false, /* is_far_target= */ false); // With string compression, we have compared 4 bytes, otherwise 2 chars. __ Subs(temp, temp, mirror::kUseStringCompression ? 4 : 2); __ B(hi, &loop, /* is_far_target= */ false); } // Return true and exit the function. // If loop does not result in returning false, we return true. __ Bind(&return_true); __ Mov(out, 1); __ B(final_label); // Return false and exit the function. __ Bind(&return_false); __ Mov(out, 0); if (end.IsReferenced()) { __ Bind(&end); } } static void GenerateVisitStringIndexOf(HInvoke* invoke, ArmVIXLAssembler* assembler, CodeGeneratorARMVIXL* codegen, bool start_at_zero) { LocationSummary* locations = invoke->GetLocations(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically, // or directly dispatch for a large constant, or omit slow-path for a small constant or a char. SlowPathCodeARMVIXL* slow_path = nullptr; HInstruction* code_point = invoke->InputAt(1); if (code_point->IsIntConstant()) { if (static_cast(Int32ConstantFrom(code_point)) > std::numeric_limits::max()) { // Always needs the slow-path. We could directly dispatch to it, but this case should be // rare, so for simplicity just put the full slow-path down and branch unconditionally. slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathARMVIXL(invoke); codegen->AddSlowPath(slow_path); __ B(slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); return; } } else if (code_point->GetType() != DataType::Type::kUint16) { vixl32::Register char_reg = InputRegisterAt(invoke, 1); // 0xffff is not modified immediate but 0x10000 is, so use `>= 0x10000` instead of `> 0xffff`. __ Cmp(char_reg, static_cast(std::numeric_limits::max()) + 1); slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathARMVIXL(invoke); codegen->AddSlowPath(slow_path); __ B(hs, slow_path->GetEntryLabel()); } if (start_at_zero) { vixl32::Register tmp_reg = RegisterFrom(locations->GetTemp(0)); DCHECK(tmp_reg.Is(r2)); // Start-index = 0. __ Mov(tmp_reg, 0); } codegen->InvokeRuntime(kQuickIndexOf, invoke, invoke->GetDexPc(), slow_path); CheckEntrypointTypes(); if (slow_path != nullptr) { __ Bind(slow_path->GetExitLabel()); } } void IntrinsicLocationsBuilderARMVIXL::VisitStringIndexOf(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary( invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); // We have a hand-crafted assembly stub that follows the runtime calling convention. So it's // best to align the inputs accordingly. InvokeRuntimeCallingConventionARMVIXL calling_convention; locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); locations->SetOut(LocationFrom(r0)); // Need to send start-index=0. locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(2))); } void IntrinsicCodeGeneratorARMVIXL::VisitStringIndexOf(HInvoke* invoke) { GenerateVisitStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero= */ true); } void IntrinsicLocationsBuilderARMVIXL::VisitStringIndexOfAfter(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary( invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); // We have a hand-crafted assembly stub that follows the runtime calling convention. So it's // best to align the inputs accordingly. InvokeRuntimeCallingConventionARMVIXL calling_convention; locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2))); locations->SetOut(LocationFrom(r0)); } void IntrinsicCodeGeneratorARMVIXL::VisitStringIndexOfAfter(HInvoke* invoke) { GenerateVisitStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero= */ false); } void IntrinsicLocationsBuilderARMVIXL::VisitStringNewStringFromBytes(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary( invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); InvokeRuntimeCallingConventionARMVIXL calling_convention; locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2))); locations->SetInAt(3, LocationFrom(calling_convention.GetRegisterAt(3))); locations->SetOut(LocationFrom(r0)); } void IntrinsicCodeGeneratorARMVIXL::VisitStringNewStringFromBytes(HInvoke* invoke) { ArmVIXLAssembler* assembler = GetAssembler(); vixl32::Register byte_array = InputRegisterAt(invoke, 0); __ Cmp(byte_array, 0); SlowPathCodeARMVIXL* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARMVIXL(invoke); codegen_->AddSlowPath(slow_path); __ B(eq, slow_path->GetEntryLabel()); codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc(), slow_path); CheckEntrypointTypes(); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderARMVIXL::VisitStringNewStringFromChars(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); InvokeRuntimeCallingConventionARMVIXL calling_convention; locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2))); locations->SetOut(LocationFrom(r0)); } void IntrinsicCodeGeneratorARMVIXL::VisitStringNewStringFromChars(HInvoke* invoke) { // No need to emit code checking whether `locations->InAt(2)` is a null // pointer, as callers of the native method // // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data) // // all include a null check on `data` before calling that method. codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc()); CheckEntrypointTypes(); } void IntrinsicLocationsBuilderARMVIXL::VisitStringNewStringFromString(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary( invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); InvokeRuntimeCallingConventionARMVIXL calling_convention; locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); locations->SetOut(LocationFrom(r0)); } void IntrinsicCodeGeneratorARMVIXL::VisitStringNewStringFromString(HInvoke* invoke) { ArmVIXLAssembler* assembler = GetAssembler(); vixl32::Register string_to_copy = InputRegisterAt(invoke, 0); __ Cmp(string_to_copy, 0); SlowPathCodeARMVIXL* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARMVIXL(invoke); codegen_->AddSlowPath(slow_path); __ B(eq, slow_path->GetEntryLabel()); codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc(), slow_path); CheckEntrypointTypes(); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderARMVIXL::VisitSystemArrayCopy(HInvoke* invoke) { // The only read barrier implementation supporting the // SystemArrayCopy intrinsic is the Baker-style read barriers. if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) { return; } CodeGenerator::CreateSystemArrayCopyLocationSummary(invoke); LocationSummary* locations = invoke->GetLocations(); if (locations == nullptr) { return; } HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant(); HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant(); HIntConstant* length = invoke->InputAt(4)->AsIntConstant(); if (src_pos != nullptr && !assembler_->ShifterOperandCanAlwaysHold(src_pos->GetValue())) { locations->SetInAt(1, Location::RequiresRegister()); } if (dest_pos != nullptr && !assembler_->ShifterOperandCanAlwaysHold(dest_pos->GetValue())) { locations->SetInAt(3, Location::RequiresRegister()); } if (length != nullptr && !assembler_->ShifterOperandCanAlwaysHold(length->GetValue())) { locations->SetInAt(4, Location::RequiresRegister()); } if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // Temporary register IP cannot be used in // ReadBarrierSystemArrayCopySlowPathARM (because that register // is clobbered by ReadBarrierMarkRegX entry points). Get an extra // temporary register from the register allocator. locations->AddTemp(Location::RequiresRegister()); } } static void CheckPosition(ArmVIXLAssembler* assembler, Location pos, vixl32::Register input, Location length, SlowPathCodeARMVIXL* slow_path, vixl32::Register temp, bool length_is_input_length = false) { // Where is the length in the Array? const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value(); if (pos.IsConstant()) { int32_t pos_const = Int32ConstantFrom(pos); if (pos_const == 0) { if (!length_is_input_length) { // Check that length(input) >= length. __ Ldr(temp, MemOperand(input, length_offset)); if (length.IsConstant()) { __ Cmp(temp, Int32ConstantFrom(length)); } else { __ Cmp(temp, RegisterFrom(length)); } __ B(lt, slow_path->GetEntryLabel()); } } else { // Check that length(input) >= pos. __ Ldr(temp, MemOperand(input, length_offset)); __ Subs(temp, temp, pos_const); __ B(lt, slow_path->GetEntryLabel()); // Check that (length(input) - pos) >= length. if (length.IsConstant()) { __ Cmp(temp, Int32ConstantFrom(length)); } else { __ Cmp(temp, RegisterFrom(length)); } __ B(lt, slow_path->GetEntryLabel()); } } else if (length_is_input_length) { // The only way the copy can succeed is if pos is zero. vixl32::Register pos_reg = RegisterFrom(pos); __ CompareAndBranchIfNonZero(pos_reg, slow_path->GetEntryLabel()); } else { // Check that pos >= 0. vixl32::Register pos_reg = RegisterFrom(pos); __ Cmp(pos_reg, 0); __ B(lt, slow_path->GetEntryLabel()); // Check that pos <= length(input). __ Ldr(temp, MemOperand(input, length_offset)); __ Subs(temp, temp, pos_reg); __ B(lt, slow_path->GetEntryLabel()); // Check that (length(input) - pos) >= length. if (length.IsConstant()) { __ Cmp(temp, Int32ConstantFrom(length)); } else { __ Cmp(temp, RegisterFrom(length)); } __ B(lt, slow_path->GetEntryLabel()); } } void IntrinsicCodeGeneratorARMVIXL::VisitSystemArrayCopy(HInvoke* invoke) { // The only read barrier implementation supporting the // SystemArrayCopy intrinsic is the Baker-style read barriers. DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier); ArmVIXLAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); vixl32::Register src = InputRegisterAt(invoke, 0); Location src_pos = locations->InAt(1); vixl32::Register dest = InputRegisterAt(invoke, 2); Location dest_pos = locations->InAt(3); Location length = locations->InAt(4); Location temp1_loc = locations->GetTemp(0); vixl32::Register temp1 = RegisterFrom(temp1_loc); Location temp2_loc = locations->GetTemp(1); vixl32::Register temp2 = RegisterFrom(temp2_loc); Location temp3_loc = locations->GetTemp(2); vixl32::Register temp3 = RegisterFrom(temp3_loc); SlowPathCodeARMVIXL* intrinsic_slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARMVIXL(invoke); codegen_->AddSlowPath(intrinsic_slow_path); vixl32::Label conditions_on_positions_validated; SystemArrayCopyOptimizations optimizations(invoke); // If source and destination are the same, we go to slow path if we need to do // forward copying. if (src_pos.IsConstant()) { int32_t src_pos_constant = Int32ConstantFrom(src_pos); if (dest_pos.IsConstant()) { int32_t dest_pos_constant = Int32ConstantFrom(dest_pos); if (optimizations.GetDestinationIsSource()) { // Checked when building locations. DCHECK_GE(src_pos_constant, dest_pos_constant); } else if (src_pos_constant < dest_pos_constant) { __ Cmp(src, dest); __ B(eq, intrinsic_slow_path->GetEntryLabel()); } // Checked when building locations. DCHECK(!optimizations.GetDestinationIsSource() || (src_pos_constant >= Int32ConstantFrom(dest_pos))); } else { if (!optimizations.GetDestinationIsSource()) { __ Cmp(src, dest); __ B(ne, &conditions_on_positions_validated, /* is_far_target= */ false); } __ Cmp(RegisterFrom(dest_pos), src_pos_constant); __ B(gt, intrinsic_slow_path->GetEntryLabel()); } } else { if (!optimizations.GetDestinationIsSource()) { __ Cmp(src, dest); __ B(ne, &conditions_on_positions_validated, /* is_far_target= */ false); } if (dest_pos.IsConstant()) { int32_t dest_pos_constant = Int32ConstantFrom(dest_pos); __ Cmp(RegisterFrom(src_pos), dest_pos_constant); } else { __ Cmp(RegisterFrom(src_pos), RegisterFrom(dest_pos)); } __ B(lt, intrinsic_slow_path->GetEntryLabel()); } __ Bind(&conditions_on_positions_validated); if (!optimizations.GetSourceIsNotNull()) { // Bail out if the source is null. __ CompareAndBranchIfZero(src, intrinsic_slow_path->GetEntryLabel()); } if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) { // Bail out if the destination is null. __ CompareAndBranchIfZero(dest, intrinsic_slow_path->GetEntryLabel()); } // If the length is negative, bail out. // We have already checked in the LocationsBuilder for the constant case. if (!length.IsConstant() && !optimizations.GetCountIsSourceLength() && !optimizations.GetCountIsDestinationLength()) { __ Cmp(RegisterFrom(length), 0); __ B(lt, intrinsic_slow_path->GetEntryLabel()); } // Validity checks: source. CheckPosition(assembler, src_pos, src, length, intrinsic_slow_path, temp1, optimizations.GetCountIsSourceLength()); // Validity checks: dest. CheckPosition(assembler, dest_pos, dest, length, intrinsic_slow_path, temp1, optimizations.GetCountIsDestinationLength()); if (!optimizations.GetDoesNotNeedTypeCheck()) { // Check whether all elements of the source array are assignable to the component // type of the destination array. We do two checks: the classes are the same, // or the destination is Object[]. If none of these checks succeed, we go to the // slow path. if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { if (!optimizations.GetSourceIsNonPrimitiveArray()) { // /* HeapReference */ temp1 = src->klass_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp1_loc, src, class_offset, temp2_loc, /* needs_null_check= */ false); // Bail out if the source is not a non primitive array. // /* HeapReference */ temp1 = temp1->component_type_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp1_loc, temp1, component_offset, temp2_loc, /* needs_null_check= */ false); __ CompareAndBranchIfZero(temp1, intrinsic_slow_path->GetEntryLabel()); // If heap poisoning is enabled, `temp1` has been unpoisoned // by the the previous call to GenerateFieldLoadWithBakerReadBarrier. // /* uint16_t */ temp1 = static_cast(temp1->primitive_type_); __ Ldrh(temp1, MemOperand(temp1, primitive_offset)); static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); __ CompareAndBranchIfNonZero(temp1, intrinsic_slow_path->GetEntryLabel()); } // /* HeapReference */ temp1 = dest->klass_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp1_loc, dest, class_offset, temp2_loc, /* needs_null_check= */ false); if (!optimizations.GetDestinationIsNonPrimitiveArray()) { // Bail out if the destination is not a non primitive array. // // Register `temp1` is not trashed by the read barrier emitted // by GenerateFieldLoadWithBakerReadBarrier below, as that // method produces a call to a ReadBarrierMarkRegX entry point, // which saves all potentially live registers, including // temporaries such a `temp1`. // /* HeapReference */ temp2 = temp1->component_type_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp2_loc, temp1, component_offset, temp3_loc, /* needs_null_check= */ false); __ CompareAndBranchIfZero(temp2, intrinsic_slow_path->GetEntryLabel()); // If heap poisoning is enabled, `temp2` has been unpoisoned // by the the previous call to GenerateFieldLoadWithBakerReadBarrier. // /* uint16_t */ temp2 = static_cast(temp2->primitive_type_); __ Ldrh(temp2, MemOperand(temp2, primitive_offset)); static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); __ CompareAndBranchIfNonZero(temp2, intrinsic_slow_path->GetEntryLabel()); } // For the same reason given earlier, `temp1` is not trashed by the // read barrier emitted by GenerateFieldLoadWithBakerReadBarrier below. // /* HeapReference */ temp2 = src->klass_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp2_loc, src, class_offset, temp3_loc, /* needs_null_check= */ false); // Note: if heap poisoning is on, we are comparing two unpoisoned references here. __ Cmp(temp1, temp2); if (optimizations.GetDestinationIsTypedObjectArray()) { vixl32::Label do_copy; __ B(eq, &do_copy, /* is_far_target= */ false); // /* HeapReference */ temp1 = temp1->component_type_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp1_loc, temp1, component_offset, temp2_loc, /* needs_null_check= */ false); // /* HeapReference */ temp1 = temp1->super_class_ // We do not need to emit a read barrier for the following // heap reference load, as `temp1` is only used in a // comparison with null below, and this reference is not // kept afterwards. __ Ldr(temp1, MemOperand(temp1, super_offset)); __ CompareAndBranchIfNonZero(temp1, intrinsic_slow_path->GetEntryLabel()); __ Bind(&do_copy); } else { __ B(ne, intrinsic_slow_path->GetEntryLabel()); } } else { // Non read barrier code. // /* HeapReference */ temp1 = dest->klass_ __ Ldr(temp1, MemOperand(dest, class_offset)); // /* HeapReference */ temp2 = src->klass_ __ Ldr(temp2, MemOperand(src, class_offset)); bool did_unpoison = false; if (!optimizations.GetDestinationIsNonPrimitiveArray() || !optimizations.GetSourceIsNonPrimitiveArray()) { // One or two of the references need to be unpoisoned. Unpoison them // both to make the identity check valid. assembler->MaybeUnpoisonHeapReference(temp1); assembler->MaybeUnpoisonHeapReference(temp2); did_unpoison = true; } if (!optimizations.GetDestinationIsNonPrimitiveArray()) { // Bail out if the destination is not a non primitive array. // /* HeapReference */ temp3 = temp1->component_type_ __ Ldr(temp3, MemOperand(temp1, component_offset)); __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel()); assembler->MaybeUnpoisonHeapReference(temp3); // /* uint16_t */ temp3 = static_cast(temp3->primitive_type_); __ Ldrh(temp3, MemOperand(temp3, primitive_offset)); static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); __ CompareAndBranchIfNonZero(temp3, intrinsic_slow_path->GetEntryLabel()); } if (!optimizations.GetSourceIsNonPrimitiveArray()) { // Bail out if the source is not a non primitive array. // /* HeapReference */ temp3 = temp2->component_type_ __ Ldr(temp3, MemOperand(temp2, component_offset)); __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel()); assembler->MaybeUnpoisonHeapReference(temp3); // /* uint16_t */ temp3 = static_cast(temp3->primitive_type_); __ Ldrh(temp3, MemOperand(temp3, primitive_offset)); static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); __ CompareAndBranchIfNonZero(temp3, intrinsic_slow_path->GetEntryLabel()); } __ Cmp(temp1, temp2); if (optimizations.GetDestinationIsTypedObjectArray()) { vixl32::Label do_copy; __ B(eq, &do_copy, /* is_far_target= */ false); if (!did_unpoison) { assembler->MaybeUnpoisonHeapReference(temp1); } // /* HeapReference */ temp1 = temp1->component_type_ __ Ldr(temp1, MemOperand(temp1, component_offset)); assembler->MaybeUnpoisonHeapReference(temp1); // /* HeapReference */ temp1 = temp1->super_class_ __ Ldr(temp1, MemOperand(temp1, super_offset)); // No need to unpoison the result, we're comparing against null. __ CompareAndBranchIfNonZero(temp1, intrinsic_slow_path->GetEntryLabel()); __ Bind(&do_copy); } else { __ B(ne, intrinsic_slow_path->GetEntryLabel()); } } } else if (!optimizations.GetSourceIsNonPrimitiveArray()) { DCHECK(optimizations.GetDestinationIsNonPrimitiveArray()); // Bail out if the source is not a non primitive array. if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // /* HeapReference */ temp1 = src->klass_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp1_loc, src, class_offset, temp2_loc, /* needs_null_check= */ false); // /* HeapReference */ temp3 = temp1->component_type_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp3_loc, temp1, component_offset, temp2_loc, /* needs_null_check= */ false); __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel()); // If heap poisoning is enabled, `temp3` has been unpoisoned // by the the previous call to GenerateFieldLoadWithBakerReadBarrier. } else { // /* HeapReference */ temp1 = src->klass_ __ Ldr(temp1, MemOperand(src, class_offset)); assembler->MaybeUnpoisonHeapReference(temp1); // /* HeapReference */ temp3 = temp1->component_type_ __ Ldr(temp3, MemOperand(temp1, component_offset)); __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel()); assembler->MaybeUnpoisonHeapReference(temp3); } // /* uint16_t */ temp3 = static_cast(temp3->primitive_type_); __ Ldrh(temp3, MemOperand(temp3, primitive_offset)); static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); __ CompareAndBranchIfNonZero(temp3, intrinsic_slow_path->GetEntryLabel()); } if (length.IsConstant() && Int32ConstantFrom(length) == 0) { // Null constant length: not need to emit the loop code at all. } else { vixl32::Label done; const DataType::Type type = DataType::Type::kReference; const int32_t element_size = DataType::Size(type); if (length.IsRegister()) { // Don't enter the copy loop if the length is null. __ CompareAndBranchIfZero(RegisterFrom(length), &done, /* is_far_target= */ false); } if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // TODO: Also convert this intrinsic to the IsGcMarking strategy? // SystemArrayCopy implementation for Baker read barriers (see // also CodeGeneratorARMVIXL::GenerateReferenceLoadWithBakerReadBarrier): // // uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState(); // lfence; // Load fence or artificial data dependency to prevent load-load reordering // bool is_gray = (rb_state == ReadBarrier::GrayState()); // if (is_gray) { // // Slow-path copy. // do { // *dest_ptr++ = MaybePoison(ReadBarrier::Mark(MaybeUnpoison(*src_ptr++))); // } while (src_ptr != end_ptr) // } else { // // Fast-path copy. // do { // *dest_ptr++ = *src_ptr++; // } while (src_ptr != end_ptr) // } // /* int32_t */ monitor = src->monitor_ __ Ldr(temp2, MemOperand(src, monitor_offset)); // /* LockWord */ lock_word = LockWord(monitor) static_assert(sizeof(LockWord) == sizeof(int32_t), "art::LockWord and int32_t have different sizes."); // Introduce a dependency on the lock_word including the rb_state, // which shall prevent load-load reordering without using // a memory barrier (which would be more expensive). // `src` is unchanged by this operation, but its value now depends // on `temp2`. __ Add(src, src, Operand(temp2, vixl32::LSR, 32)); // Compute the base source address in `temp1`. // Note that `temp1` (the base source address) is computed from // `src` (and `src_pos`) here, and thus honors the artificial // dependency of `src` on `temp2`. GenSystemArrayCopyBaseAddress(GetAssembler(), type, src, src_pos, temp1); // Compute the end source address in `temp3`. GenSystemArrayCopyEndAddress(GetAssembler(), type, length, temp1, temp3); // The base destination address is computed later, as `temp2` is // used for intermediate computations. // Slow path used to copy array when `src` is gray. // Note that the base destination address is computed in `temp2` // by the slow path code. SlowPathCodeARMVIXL* read_barrier_slow_path = new (codegen_->GetScopedAllocator()) ReadBarrierSystemArrayCopySlowPathARMVIXL(invoke); codegen_->AddSlowPath(read_barrier_slow_path); // Given the numeric representation, it's enough to check the low bit of the // rb_state. We do that by shifting the bit out of the lock word with LSRS // which can be a 16-bit instruction unlike the TST immediate. static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0"); static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); __ Lsrs(temp2, temp2, LockWord::kReadBarrierStateShift + 1); // Carry flag is the last bit shifted out by LSRS. __ B(cs, read_barrier_slow_path->GetEntryLabel()); // Fast-path copy. // Compute the base destination address in `temp2`. GenSystemArrayCopyBaseAddress(GetAssembler(), type, dest, dest_pos, temp2); // Iterate over the arrays and do a raw copy of the objects. We don't need to // poison/unpoison. vixl32::Label loop; __ Bind(&loop); { UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); const vixl32::Register temp_reg = temps.Acquire(); __ Ldr(temp_reg, MemOperand(temp1, element_size, PostIndex)); __ Str(temp_reg, MemOperand(temp2, element_size, PostIndex)); } __ Cmp(temp1, temp3); __ B(ne, &loop, /* is_far_target= */ false); __ Bind(read_barrier_slow_path->GetExitLabel()); } else { // Non read barrier code. // Compute the base source address in `temp1`. GenSystemArrayCopyBaseAddress(GetAssembler(), type, src, src_pos, temp1); // Compute the base destination address in `temp2`. GenSystemArrayCopyBaseAddress(GetAssembler(), type, dest, dest_pos, temp2); // Compute the end source address in `temp3`. GenSystemArrayCopyEndAddress(GetAssembler(), type, length, temp1, temp3); // Iterate over the arrays and do a raw copy of the objects. We don't need to // poison/unpoison. vixl32::Label loop; __ Bind(&loop); { UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); const vixl32::Register temp_reg = temps.Acquire(); __ Ldr(temp_reg, MemOperand(temp1, element_size, PostIndex)); __ Str(temp_reg, MemOperand(temp2, element_size, PostIndex)); } __ Cmp(temp1, temp3); __ B(ne, &loop, /* is_far_target= */ false); } __ Bind(&done); } // We only need one card marking on the destination array. codegen_->MarkGCCard(temp1, temp2, dest, NoReg, /* value_can_be_null= */ false); __ Bind(intrinsic_slow_path->GetExitLabel()); } static void CreateFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { // If the graph is debuggable, all callee-saved floating-point registers are blocked by // the code generator. Furthermore, the register allocator creates fixed live intervals // for all caller-saved registers because we are doing a function call. As a result, if // the input and output locations are unallocated, the register allocator runs out of // registers and fails; however, a debuggable graph is not the common case. if (invoke->GetBlock()->GetGraph()->IsDebuggable()) { return; } DCHECK_EQ(invoke->GetNumberOfArguments(), 1U); DCHECK_EQ(invoke->InputAt(0)->GetType(), DataType::Type::kFloat64); DCHECK_EQ(invoke->GetType(), DataType::Type::kFloat64); LocationSummary* const locations = new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); const InvokeRuntimeCallingConventionARMVIXL calling_convention; locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister()); // Native code uses the soft float ABI. locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(0))); locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(1))); } static void CreateFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { // If the graph is debuggable, all callee-saved floating-point registers are blocked by // the code generator. Furthermore, the register allocator creates fixed live intervals // for all caller-saved registers because we are doing a function call. As a result, if // the input and output locations are unallocated, the register allocator runs out of // registers and fails; however, a debuggable graph is not the common case. if (invoke->GetBlock()->GetGraph()->IsDebuggable()) { return; } DCHECK_EQ(invoke->GetNumberOfArguments(), 2U); DCHECK_EQ(invoke->InputAt(0)->GetType(), DataType::Type::kFloat64); DCHECK_EQ(invoke->InputAt(1)->GetType(), DataType::Type::kFloat64); DCHECK_EQ(invoke->GetType(), DataType::Type::kFloat64); LocationSummary* const locations = new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); const InvokeRuntimeCallingConventionARMVIXL calling_convention; locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister()); // Native code uses the soft float ABI. locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(0))); locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(1))); locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(2))); locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(3))); } static void GenFPToFPCall(HInvoke* invoke, ArmVIXLAssembler* assembler, CodeGeneratorARMVIXL* codegen, QuickEntrypointEnum entry) { LocationSummary* const locations = invoke->GetLocations(); DCHECK_EQ(invoke->GetNumberOfArguments(), 1U); DCHECK(locations->WillCall() && locations->Intrinsified()); // Native code uses the soft float ABI. __ Vmov(RegisterFrom(locations->GetTemp(0)), RegisterFrom(locations->GetTemp(1)), InputDRegisterAt(invoke, 0)); codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc()); __ Vmov(OutputDRegister(invoke), RegisterFrom(locations->GetTemp(0)), RegisterFrom(locations->GetTemp(1))); } static void GenFPFPToFPCall(HInvoke* invoke, ArmVIXLAssembler* assembler, CodeGeneratorARMVIXL* codegen, QuickEntrypointEnum entry) { LocationSummary* const locations = invoke->GetLocations(); DCHECK_EQ(invoke->GetNumberOfArguments(), 2U); DCHECK(locations->WillCall() && locations->Intrinsified()); // Native code uses the soft float ABI. __ Vmov(RegisterFrom(locations->GetTemp(0)), RegisterFrom(locations->GetTemp(1)), InputDRegisterAt(invoke, 0)); __ Vmov(RegisterFrom(locations->GetTemp(2)), RegisterFrom(locations->GetTemp(3)), InputDRegisterAt(invoke, 1)); codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc()); __ Vmov(OutputDRegister(invoke), RegisterFrom(locations->GetTemp(0)), RegisterFrom(locations->GetTemp(1))); } void IntrinsicLocationsBuilderARMVIXL::VisitMathCos(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitMathCos(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCos); } void IntrinsicLocationsBuilderARMVIXL::VisitMathSin(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitMathSin(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickSin); } void IntrinsicLocationsBuilderARMVIXL::VisitMathAcos(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitMathAcos(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAcos); } void IntrinsicLocationsBuilderARMVIXL::VisitMathAsin(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitMathAsin(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAsin); } void IntrinsicLocationsBuilderARMVIXL::VisitMathAtan(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitMathAtan(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAtan); } void IntrinsicLocationsBuilderARMVIXL::VisitMathCbrt(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitMathCbrt(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCbrt); } void IntrinsicLocationsBuilderARMVIXL::VisitMathCosh(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitMathCosh(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCosh); } void IntrinsicLocationsBuilderARMVIXL::VisitMathExp(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitMathExp(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickExp); } void IntrinsicLocationsBuilderARMVIXL::VisitMathExpm1(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitMathExpm1(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickExpm1); } void IntrinsicLocationsBuilderARMVIXL::VisitMathLog(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitMathLog(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickLog); } void IntrinsicLocationsBuilderARMVIXL::VisitMathLog10(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitMathLog10(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickLog10); } void IntrinsicLocationsBuilderARMVIXL::VisitMathSinh(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitMathSinh(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickSinh); } void IntrinsicLocationsBuilderARMVIXL::VisitMathTan(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitMathTan(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickTan); } void IntrinsicLocationsBuilderARMVIXL::VisitMathTanh(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitMathTanh(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickTanh); } void IntrinsicLocationsBuilderARMVIXL::VisitMathAtan2(HInvoke* invoke) { CreateFPFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitMathAtan2(HInvoke* invoke) { GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAtan2); } void IntrinsicLocationsBuilderARMVIXL::VisitMathPow(HInvoke* invoke) { CreateFPFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitMathPow(HInvoke* invoke) { GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickPow); } void IntrinsicLocationsBuilderARMVIXL::VisitMathHypot(HInvoke* invoke) { CreateFPFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitMathHypot(HInvoke* invoke) { GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickHypot); } void IntrinsicLocationsBuilderARMVIXL::VisitMathNextAfter(HInvoke* invoke) { CreateFPFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitMathNextAfter(HInvoke* invoke) { GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickNextAfter); } void IntrinsicLocationsBuilderARMVIXL::VisitIntegerReverse(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitIntegerReverse(HInvoke* invoke) { ArmVIXLAssembler* assembler = GetAssembler(); __ Rbit(OutputRegister(invoke), InputRegisterAt(invoke, 0)); } void IntrinsicLocationsBuilderARMVIXL::VisitLongReverse(HInvoke* invoke) { CreateLongToLongLocationsWithOverlap(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitLongReverse(HInvoke* invoke) { ArmVIXLAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0)); vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0)); vixl32::Register out_reg_lo = LowRegisterFrom(locations->Out()); vixl32::Register out_reg_hi = HighRegisterFrom(locations->Out()); __ Rbit(out_reg_lo, in_reg_hi); __ Rbit(out_reg_hi, in_reg_lo); } static void GenerateReverseBytesInPlaceForEachWord(ArmVIXLAssembler* assembler, Location pair) { DCHECK(pair.IsRegisterPair()); __ Rev(LowRegisterFrom(pair), LowRegisterFrom(pair)); __ Rev(HighRegisterFrom(pair), HighRegisterFrom(pair)); } static void GenerateReverseBytes(ArmVIXLAssembler* assembler, DataType::Type type, Location in, Location out) { switch (type) { case DataType::Type::kUint16: __ Rev16(RegisterFrom(out), RegisterFrom(in)); break; case DataType::Type::kInt16: __ Revsh(RegisterFrom(out), RegisterFrom(in)); break; case DataType::Type::kInt32: __ Rev(RegisterFrom(out), RegisterFrom(in)); break; case DataType::Type::kInt64: DCHECK(!LowRegisterFrom(out).Is(LowRegisterFrom(in))); __ Rev(LowRegisterFrom(out), HighRegisterFrom(in)); __ Rev(HighRegisterFrom(out), LowRegisterFrom(in)); break; case DataType::Type::kFloat32: __ Rev(RegisterFrom(in), RegisterFrom(in)); // Note: Clobbers `in`. __ Vmov(SRegisterFrom(out), RegisterFrom(in)); break; case DataType::Type::kFloat64: GenerateReverseBytesInPlaceForEachWord(assembler, in); // Note: Clobbers `in`. __ Vmov(DRegisterFrom(out), HighRegisterFrom(in), LowRegisterFrom(in)); // Swap high/low. break; default: LOG(FATAL) << "Unexpected type for reverse-bytes: " << type; UNREACHABLE(); } } void IntrinsicLocationsBuilderARMVIXL::VisitIntegerReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitIntegerReverseBytes(HInvoke* invoke) { ArmVIXLAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); GenerateReverseBytes(assembler, DataType::Type::kInt32, locations->InAt(0), locations->Out()); } void IntrinsicLocationsBuilderARMVIXL::VisitLongReverseBytes(HInvoke* invoke) { CreateLongToLongLocationsWithOverlap(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitLongReverseBytes(HInvoke* invoke) { ArmVIXLAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); GenerateReverseBytes(assembler, DataType::Type::kInt64, locations->InAt(0), locations->Out()); } void IntrinsicLocationsBuilderARMVIXL::VisitShortReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitShortReverseBytes(HInvoke* invoke) { ArmVIXLAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); GenerateReverseBytes(assembler, DataType::Type::kInt16, locations->InAt(0), locations->Out()); } static void GenBitCount(HInvoke* instr, DataType::Type type, ArmVIXLAssembler* assembler) { DCHECK(DataType::IsIntOrLongType(type)) << type; DCHECK_EQ(instr->GetType(), DataType::Type::kInt32); DCHECK_EQ(DataType::Kind(instr->InputAt(0)->GetType()), type); bool is_long = type == DataType::Type::kInt64; LocationSummary* locations = instr->GetLocations(); Location in = locations->InAt(0); vixl32::Register src_0 = is_long ? LowRegisterFrom(in) : RegisterFrom(in); vixl32::Register src_1 = is_long ? HighRegisterFrom(in) : src_0; vixl32::SRegister tmp_s = LowSRegisterFrom(locations->GetTemp(0)); vixl32::DRegister tmp_d = DRegisterFrom(locations->GetTemp(0)); vixl32::Register out_r = OutputRegister(instr); // Move data from core register(s) to temp D-reg for bit count calculation, then move back. // According to Cortex A57 and A72 optimization guides, compared to transferring to full D-reg, // transferring data from core reg to upper or lower half of vfp D-reg requires extra latency, // That's why for integer bit count, we use 'vmov d0, r0, r0' instead of 'vmov d0[0], r0'. __ Vmov(tmp_d, src_1, src_0); // Temp DReg |--src_1|--src_0| __ Vcnt(Untyped8, tmp_d, tmp_d); // Temp DReg |c|c|c|c|c|c|c|c| __ Vpaddl(U8, tmp_d, tmp_d); // Temp DReg |--c|--c|--c|--c| __ Vpaddl(U16, tmp_d, tmp_d); // Temp DReg |------c|------c| if (is_long) { __ Vpaddl(U32, tmp_d, tmp_d); // Temp DReg |--------------c| } __ Vmov(out_r, tmp_s); } void IntrinsicLocationsBuilderARMVIXL::VisitIntegerBitCount(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); invoke->GetLocations()->AddTemp(Location::RequiresFpuRegister()); } void IntrinsicCodeGeneratorARMVIXL::VisitIntegerBitCount(HInvoke* invoke) { GenBitCount(invoke, DataType::Type::kInt32, GetAssembler()); } void IntrinsicLocationsBuilderARMVIXL::VisitLongBitCount(HInvoke* invoke) { VisitIntegerBitCount(invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitLongBitCount(HInvoke* invoke) { GenBitCount(invoke, DataType::Type::kInt64, GetAssembler()); } static void GenHighestOneBit(HInvoke* invoke, DataType::Type type, CodeGeneratorARMVIXL* codegen) { DCHECK(DataType::IsIntOrLongType(type)); ArmVIXLAssembler* assembler = codegen->GetAssembler(); UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); const vixl32::Register temp = temps.Acquire(); if (type == DataType::Type::kInt64) { LocationSummary* locations = invoke->GetLocations(); Location in = locations->InAt(0); Location out = locations->Out(); vixl32::Register in_reg_lo = LowRegisterFrom(in); vixl32::Register in_reg_hi = HighRegisterFrom(in); vixl32::Register out_reg_lo = LowRegisterFrom(out); vixl32::Register out_reg_hi = HighRegisterFrom(out); __ Mov(temp, 0x80000000); // Modified immediate. __ Clz(out_reg_lo, in_reg_lo); __ Clz(out_reg_hi, in_reg_hi); __ Lsr(out_reg_lo, temp, out_reg_lo); __ Lsrs(out_reg_hi, temp, out_reg_hi); // Discard result for lowest 32 bits if highest 32 bits are not zero. // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8, // we check that the output is in a low register, so that a 16-bit MOV // encoding can be used. If output is in a high register, then we generate // 4 more bytes of code to avoid a branch. Operand mov_src(0); if (!out_reg_lo.IsLow()) { __ Mov(LeaveFlags, temp, 0); mov_src = Operand(temp); } ExactAssemblyScope it_scope(codegen->GetVIXLAssembler(), 2 * vixl32::k16BitT32InstructionSizeInBytes, CodeBufferCheckScope::kExactSize); __ it(ne); __ mov(ne, out_reg_lo, mov_src); } else { vixl32::Register out = OutputRegister(invoke); vixl32::Register in = InputRegisterAt(invoke, 0); __ Mov(temp, 0x80000000); // Modified immediate. __ Clz(out, in); __ Lsr(out, temp, out); } } void IntrinsicLocationsBuilderARMVIXL::VisitIntegerHighestOneBit(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitIntegerHighestOneBit(HInvoke* invoke) { GenHighestOneBit(invoke, DataType::Type::kInt32, codegen_); } void IntrinsicLocationsBuilderARMVIXL::VisitLongHighestOneBit(HInvoke* invoke) { CreateLongToLongLocationsWithOverlap(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitLongHighestOneBit(HInvoke* invoke) { GenHighestOneBit(invoke, DataType::Type::kInt64, codegen_); } static void GenLowestOneBit(HInvoke* invoke, DataType::Type type, CodeGeneratorARMVIXL* codegen) { DCHECK(DataType::IsIntOrLongType(type)); ArmVIXLAssembler* assembler = codegen->GetAssembler(); UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); const vixl32::Register temp = temps.Acquire(); if (type == DataType::Type::kInt64) { LocationSummary* locations = invoke->GetLocations(); Location in = locations->InAt(0); Location out = locations->Out(); vixl32::Register in_reg_lo = LowRegisterFrom(in); vixl32::Register in_reg_hi = HighRegisterFrom(in); vixl32::Register out_reg_lo = LowRegisterFrom(out); vixl32::Register out_reg_hi = HighRegisterFrom(out); __ Rsb(out_reg_hi, in_reg_hi, 0); __ Rsb(out_reg_lo, in_reg_lo, 0); __ And(out_reg_hi, out_reg_hi, in_reg_hi); // The result of this operation is 0 iff in_reg_lo is 0 __ Ands(out_reg_lo, out_reg_lo, in_reg_lo); // Discard result for highest 32 bits if lowest 32 bits are not zero. // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8, // we check that the output is in a low register, so that a 16-bit MOV // encoding can be used. If output is in a high register, then we generate // 4 more bytes of code to avoid a branch. Operand mov_src(0); if (!out_reg_lo.IsLow()) { __ Mov(LeaveFlags, temp, 0); mov_src = Operand(temp); } ExactAssemblyScope it_scope(codegen->GetVIXLAssembler(), 2 * vixl32::k16BitT32InstructionSizeInBytes, CodeBufferCheckScope::kExactSize); __ it(ne); __ mov(ne, out_reg_hi, mov_src); } else { vixl32::Register out = OutputRegister(invoke); vixl32::Register in = InputRegisterAt(invoke, 0); __ Rsb(temp, in, 0); __ And(out, temp, in); } } void IntrinsicLocationsBuilderARMVIXL::VisitIntegerLowestOneBit(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitIntegerLowestOneBit(HInvoke* invoke) { GenLowestOneBit(invoke, DataType::Type::kInt32, codegen_); } void IntrinsicLocationsBuilderARMVIXL::VisitLongLowestOneBit(HInvoke* invoke) { CreateLongToLongLocationsWithOverlap(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitLongLowestOneBit(HInvoke* invoke) { GenLowestOneBit(invoke, DataType::Type::kInt64, codegen_); } void IntrinsicLocationsBuilderARMVIXL::VisitStringGetCharsNoCheck(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RequiresRegister()); locations->SetInAt(4, Location::RequiresRegister()); // Temporary registers to store lengths of strings and for calculations. locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } void IntrinsicCodeGeneratorARMVIXL::VisitStringGetCharsNoCheck(HInvoke* invoke) { ArmVIXLAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); // Check assumption that sizeof(Char) is 2 (used in scaling below). const size_t char_size = DataType::Size(DataType::Type::kUint16); DCHECK_EQ(char_size, 2u); // Location of data in char array buffer. const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value(); // Location of char array data in string. const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); // void getCharsNoCheck(int srcBegin, int srcEnd, char[] dst, int dstBegin); // Since getChars() calls getCharsNoCheck() - we use registers rather than constants. vixl32::Register srcObj = InputRegisterAt(invoke, 0); vixl32::Register srcBegin = InputRegisterAt(invoke, 1); vixl32::Register srcEnd = InputRegisterAt(invoke, 2); vixl32::Register dstObj = InputRegisterAt(invoke, 3); vixl32::Register dstBegin = InputRegisterAt(invoke, 4); vixl32::Register num_chr = RegisterFrom(locations->GetTemp(0)); vixl32::Register src_ptr = RegisterFrom(locations->GetTemp(1)); vixl32::Register dst_ptr = RegisterFrom(locations->GetTemp(2)); vixl32::Label done, compressed_string_loop; vixl32::Label* final_label = codegen_->GetFinalLabel(invoke, &done); // dst to be copied. __ Add(dst_ptr, dstObj, data_offset); __ Add(dst_ptr, dst_ptr, Operand(dstBegin, vixl32::LSL, 1)); __ Subs(num_chr, srcEnd, srcBegin); // Early out for valid zero-length retrievals. __ B(eq, final_label, /* is_far_target= */ false); // src range to copy. __ Add(src_ptr, srcObj, value_offset); UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); vixl32::Register temp; vixl32::Label compressed_string_preloop; if (mirror::kUseStringCompression) { // Location of count in string. const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); temp = temps.Acquire(); // String's length. __ Ldr(temp, MemOperand(srcObj, count_offset)); __ Tst(temp, 1); temps.Release(temp); __ B(eq, &compressed_string_preloop, /* is_far_target= */ false); } __ Add(src_ptr, src_ptr, Operand(srcBegin, vixl32::LSL, 1)); // Do the copy. vixl32::Label loop, remainder; temp = temps.Acquire(); // Save repairing the value of num_chr on the < 4 character path. __ Subs(temp, num_chr, 4); __ B(lt, &remainder, /* is_far_target= */ false); // Keep the result of the earlier subs, we are going to fetch at least 4 characters. __ Mov(num_chr, temp); // Main loop used for longer fetches loads and stores 4x16-bit characters at a time. // (LDRD/STRD fault on unaligned addresses and it's not worth inlining extra code // to rectify these everywhere this intrinsic applies.) __ Bind(&loop); __ Ldr(temp, MemOperand(src_ptr, char_size * 2)); __ Subs(num_chr, num_chr, 4); __ Str(temp, MemOperand(dst_ptr, char_size * 2)); __ Ldr(temp, MemOperand(src_ptr, char_size * 4, PostIndex)); __ Str(temp, MemOperand(dst_ptr, char_size * 4, PostIndex)); temps.Release(temp); __ B(ge, &loop, /* is_far_target= */ false); __ Adds(num_chr, num_chr, 4); __ B(eq, final_label, /* is_far_target= */ false); // Main loop for < 4 character case and remainder handling. Loads and stores one // 16-bit Java character at a time. __ Bind(&remainder); temp = temps.Acquire(); __ Ldrh(temp, MemOperand(src_ptr, char_size, PostIndex)); __ Subs(num_chr, num_chr, 1); __ Strh(temp, MemOperand(dst_ptr, char_size, PostIndex)); temps.Release(temp); __ B(gt, &remainder, /* is_far_target= */ false); if (mirror::kUseStringCompression) { __ B(final_label); const size_t c_char_size = DataType::Size(DataType::Type::kInt8); DCHECK_EQ(c_char_size, 1u); // Copy loop for compressed src, copying 1 character (8-bit) to (16-bit) at a time. __ Bind(&compressed_string_preloop); __ Add(src_ptr, src_ptr, srcBegin); __ Bind(&compressed_string_loop); temp = temps.Acquire(); __ Ldrb(temp, MemOperand(src_ptr, c_char_size, PostIndex)); __ Strh(temp, MemOperand(dst_ptr, char_size, PostIndex)); temps.Release(temp); __ Subs(num_chr, num_chr, 1); __ B(gt, &compressed_string_loop, /* is_far_target= */ false); } if (done.IsReferenced()) { __ Bind(&done); } } void IntrinsicLocationsBuilderARMVIXL::VisitFloatIsInfinite(HInvoke* invoke) { CreateFPToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitFloatIsInfinite(HInvoke* invoke) { ArmVIXLAssembler* const assembler = GetAssembler(); const vixl32::Register out = OutputRegister(invoke); // Shifting left by 1 bit makes the value encodable as an immediate operand; // we don't care about the sign bit anyway. constexpr uint32_t infinity = kPositiveInfinityFloat << 1U; __ Vmov(out, InputSRegisterAt(invoke, 0)); // We don't care about the sign bit, so shift left. __ Lsl(out, out, 1); __ Eor(out, out, infinity); codegen_->GenerateConditionWithZero(kCondEQ, out, out); } void IntrinsicLocationsBuilderARMVIXL::VisitDoubleIsInfinite(HInvoke* invoke) { CreateFPToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitDoubleIsInfinite(HInvoke* invoke) { ArmVIXLAssembler* const assembler = GetAssembler(); const vixl32::Register out = OutputRegister(invoke); UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); const vixl32::Register temp = temps.Acquire(); // The highest 32 bits of double precision positive infinity separated into // two constants encodable as immediate operands. constexpr uint32_t infinity_high = 0x7f000000U; constexpr uint32_t infinity_high2 = 0x00f00000U; static_assert((infinity_high | infinity_high2) == static_cast(kPositiveInfinityDouble >> 32U), "The constants do not add up to the high 32 bits of double " "precision positive infinity."); __ Vmov(temp, out, InputDRegisterAt(invoke, 0)); __ Eor(out, out, infinity_high); __ Eor(out, out, infinity_high2); // We don't care about the sign bit, so shift left. __ Orr(out, temp, Operand(out, vixl32::LSL, 1)); codegen_->GenerateConditionWithZero(kCondEQ, out, out); } void IntrinsicLocationsBuilderARMVIXL::VisitMathCeil(HInvoke* invoke) { if (features_.HasARMv8AInstructions()) { CreateFPToFPLocations(allocator_, invoke); } } void IntrinsicCodeGeneratorARMVIXL::VisitMathCeil(HInvoke* invoke) { ArmVIXLAssembler* assembler = GetAssembler(); DCHECK(codegen_->GetInstructionSetFeatures().HasARMv8AInstructions()); __ Vrintp(F64, OutputDRegister(invoke), InputDRegisterAt(invoke, 0)); } void IntrinsicLocationsBuilderARMVIXL::VisitMathFloor(HInvoke* invoke) { if (features_.HasARMv8AInstructions()) { CreateFPToFPLocations(allocator_, invoke); } } void IntrinsicCodeGeneratorARMVIXL::VisitMathFloor(HInvoke* invoke) { ArmVIXLAssembler* assembler = GetAssembler(); DCHECK(codegen_->GetInstructionSetFeatures().HasARMv8AInstructions()); __ Vrintm(F64, OutputDRegister(invoke), InputDRegisterAt(invoke, 0)); } void IntrinsicLocationsBuilderARMVIXL::VisitIntegerValueOf(HInvoke* invoke) { InvokeRuntimeCallingConventionARMVIXL calling_convention; IntrinsicVisitor::ComputeIntegerValueOfLocations( invoke, codegen_, LocationFrom(r0), LocationFrom(calling_convention.GetRegisterAt(0))); } void IntrinsicCodeGeneratorARMVIXL::VisitIntegerValueOf(HInvoke* invoke) { IntrinsicVisitor::IntegerValueOfInfo info = IntrinsicVisitor::ComputeIntegerValueOfInfo(invoke, codegen_->GetCompilerOptions()); LocationSummary* locations = invoke->GetLocations(); ArmVIXLAssembler* const assembler = GetAssembler(); vixl32::Register out = RegisterFrom(locations->Out()); UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); vixl32::Register temp = temps.Acquire(); auto allocate_instance = [&]() { DCHECK(out.Is(InvokeRuntimeCallingConventionARMVIXL().GetRegisterAt(0))); codegen_->LoadIntrinsicDeclaringClass(out, invoke); codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc()); CheckEntrypointTypes(); }; if (invoke->InputAt(0)->IsConstant()) { int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue(); if (static_cast(value - info.low) < info.length) { // Just embed the j.l.Integer in the code. DCHECK_NE(info.value_boot_image_reference, IntegerValueOfInfo::kInvalidReference); codegen_->LoadBootImageAddress(out, info.value_boot_image_reference); } else { DCHECK(locations->CanCall()); // Allocate and initialize a new j.l.Integer. // TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the // JIT object table. allocate_instance(); __ Mov(temp, value); assembler->StoreToOffset(kStoreWord, temp, out, info.value_offset); // Class pointer and `value` final field stores require a barrier before publication. codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore); } } else { DCHECK(locations->CanCall()); vixl32::Register in = RegisterFrom(locations->InAt(0)); // Check bounds of our cache. __ Add(out, in, -info.low); __ Cmp(out, info.length); vixl32::Label allocate, done; __ B(hs, &allocate, /* is_far_target= */ false); // If the value is within the bounds, load the j.l.Integer directly from the array. codegen_->LoadBootImageAddress(temp, info.array_data_boot_image_reference); codegen_->LoadFromShiftedRegOffset(DataType::Type::kReference, locations->Out(), temp, out); assembler->MaybeUnpoisonHeapReference(out); __ B(&done); __ Bind(&allocate); // Otherwise allocate and initialize a new j.l.Integer. allocate_instance(); assembler->StoreToOffset(kStoreWord, in, out, info.value_offset); // Class pointer and `value` final field stores require a barrier before publication. codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore); __ Bind(&done); } } void IntrinsicLocationsBuilderARMVIXL::VisitReferenceGetReferent(HInvoke* invoke) { IntrinsicVisitor::CreateReferenceGetReferentLocations(invoke, codegen_); } void IntrinsicCodeGeneratorARMVIXL::VisitReferenceGetReferent(HInvoke* invoke) { ArmVIXLAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Location obj = locations->InAt(0); Location out = locations->Out(); SlowPathCodeARMVIXL* slow_path = new (GetAllocator()) IntrinsicSlowPathARMVIXL(invoke); codegen_->AddSlowPath(slow_path); if (kEmitCompilerReadBarrier) { // Check self->GetWeakRefAccessEnabled(). UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); vixl32::Register temp = temps.Acquire(); __ Ldr(temp, MemOperand(tr, Thread::WeakRefAccessEnabledOffset().Uint32Value())); __ Cmp(temp, 0); __ B(eq, slow_path->GetEntryLabel()); } { // Load the java.lang.ref.Reference class. UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); vixl32::Register temp = temps.Acquire(); codegen_->LoadIntrinsicDeclaringClass(temp, invoke); // Check static fields java.lang.ref.Reference.{disableIntrinsic,slowPathEnabled} together. MemberOffset disable_intrinsic_offset = IntrinsicVisitor::GetReferenceDisableIntrinsicOffset(); DCHECK_ALIGNED(disable_intrinsic_offset.Uint32Value(), 2u); DCHECK_EQ(disable_intrinsic_offset.Uint32Value() + 1u, IntrinsicVisitor::GetReferenceSlowPathEnabledOffset().Uint32Value()); __ Ldrh(temp, MemOperand(temp, disable_intrinsic_offset.Uint32Value())); __ Cmp(temp, 0); __ B(ne, slow_path->GetEntryLabel()); } // Load the value from the field. uint32_t referent_offset = mirror::Reference::ReferentOffset().Uint32Value(); if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke, out, RegisterFrom(obj), referent_offset, /*maybe_temp=*/ Location::NoLocation(), /*needs_null_check=*/ true); codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); // `referent` is volatile. } else { { vixl::EmissionCheckScope guard(codegen_->GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); __ Ldr(RegisterFrom(out), MemOperand(RegisterFrom(obj), referent_offset)); codegen_->MaybeRecordImplicitNullCheck(invoke); } codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); // `referent` is volatile. codegen_->MaybeGenerateReadBarrierSlow(invoke, out, out, obj, referent_offset); } __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderARMVIXL::VisitReferenceRefersTo(HInvoke* invoke) { IntrinsicVisitor::CreateReferenceRefersToLocations(invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitReferenceRefersTo(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); ArmVIXLAssembler* assembler = GetAssembler(); UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); vixl32::Register obj = RegisterFrom(locations->InAt(0)); vixl32::Register other = RegisterFrom(locations->InAt(1)); vixl32::Register out = RegisterFrom(locations->Out()); vixl32::Register tmp = temps.Acquire(); uint32_t referent_offset = mirror::Reference::ReferentOffset().Uint32Value(); uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); { // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. // Loading scratch register always uses 32-bit encoding. vixl::ExactAssemblyScope eas(assembler->GetVIXLAssembler(), vixl32::k32BitT32InstructionSizeInBytes); __ ldr(tmp, MemOperand(obj, referent_offset)); codegen_->MaybeRecordImplicitNullCheck(invoke); } assembler->MaybeUnpoisonHeapReference(tmp); codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); // `referent` is volatile. if (kEmitCompilerReadBarrier) { DCHECK(kUseBakerReadBarrier); vixl32::Label calculate_result; __ Subs(out, tmp, other); __ B(eq, &calculate_result); // `out` is 0 if taken. // Check if the loaded reference is null. __ Cmp(tmp, 0); __ B(eq, &calculate_result); // `out` is not 0 if taken. // For correct memory visibility, we need a barrier before loading the lock word // but we already have the barrier emitted for volatile load above which is sufficient. // Load the lockword and check if it is a forwarding address. static_assert(LockWord::kStateShift == 30u); static_assert(LockWord::kStateForwardingAddress == 3u); __ Ldr(tmp, MemOperand(tmp, monitor_offset)); __ Cmp(tmp, Operand(0xc0000000)); __ B(lo, &calculate_result); // `out` is not 0 if taken. // Extract the forwarding address and subtract from `other`. __ Sub(out, other, Operand(tmp, LSL, LockWord::kForwardingAddressShift)); __ Bind(&calculate_result); } else { DCHECK(!kEmitCompilerReadBarrier); __ Sub(out, tmp, other); } // Convert 0 to 1 and non-zero to 0 for the Boolean result (`out = (out == 0)`). __ Clz(out, out); __ Lsr(out, out, WhichPowerOf2(out.GetSizeInBits())); } void IntrinsicLocationsBuilderARMVIXL::VisitThreadInterrupted(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetOut(Location::RequiresRegister()); } void IntrinsicCodeGeneratorARMVIXL::VisitThreadInterrupted(HInvoke* invoke) { ArmVIXLAssembler* assembler = GetAssembler(); vixl32::Register out = RegisterFrom(invoke->GetLocations()->Out()); int32_t offset = Thread::InterruptedOffset().Int32Value(); __ Ldr(out, MemOperand(tr, offset)); UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); vixl32::Register temp = temps.Acquire(); vixl32::Label done; vixl32::Label* const final_label = codegen_->GetFinalLabel(invoke, &done); __ CompareAndBranchIfZero(out, final_label, /* is_far_target= */ false); __ Dmb(vixl32::ISH); __ Mov(temp, 0); assembler->StoreToOffset(kStoreWord, temp, tr, offset); __ Dmb(vixl32::ISH); if (done.IsReferenced()) { __ Bind(&done); } } void IntrinsicLocationsBuilderARMVIXL::VisitReachabilityFence(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::Any()); } void IntrinsicCodeGeneratorARMVIXL::VisitReachabilityFence(HInvoke* invoke ATTRIBUTE_UNUSED) { } void IntrinsicLocationsBuilderARMVIXL::VisitIntegerDivideUnsigned(HInvoke* invoke) { CreateIntIntToIntSlowPathCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitIntegerDivideUnsigned(HInvoke* invoke) { ArmVIXLAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); vixl32::Register dividend = RegisterFrom(locations->InAt(0)); vixl32::Register divisor = RegisterFrom(locations->InAt(1)); vixl32::Register out = RegisterFrom(locations->Out()); // Check if divisor is zero, bail to managed implementation to handle. SlowPathCodeARMVIXL* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARMVIXL(invoke); codegen_->AddSlowPath(slow_path); __ CompareAndBranchIfZero(divisor, slow_path->GetEntryLabel()); __ Udiv(out, dividend, divisor); __ Bind(slow_path->GetExitLabel()); } static inline bool Use64BitExclusiveLoadStore(bool atomic, CodeGeneratorARMVIXL* codegen) { return atomic && !codegen->GetInstructionSetFeatures().HasAtomicLdrdAndStrd(); } static void GenerateIntrinsicGet(HInvoke* invoke, CodeGeneratorARMVIXL* codegen, DataType::Type type, std::memory_order order, bool atomic, vixl32::Register base, vixl32::Register offset, Location out, Location maybe_temp, Location maybe_temp2, Location maybe_temp3) { bool seq_cst_barrier = (order == std::memory_order_seq_cst); bool acquire_barrier = seq_cst_barrier || (order == std::memory_order_acquire); DCHECK(acquire_barrier || order == std::memory_order_relaxed); DCHECK(atomic || order == std::memory_order_relaxed); ArmVIXLAssembler* assembler = codegen->GetAssembler(); MemOperand address(base, offset); switch (type) { case DataType::Type::kBool: __ Ldrb(RegisterFrom(out), address); break; case DataType::Type::kInt8: __ Ldrsb(RegisterFrom(out), address); break; case DataType::Type::kUint16: __ Ldrh(RegisterFrom(out), address); break; case DataType::Type::kInt16: __ Ldrsh(RegisterFrom(out), address); break; case DataType::Type::kInt32: __ Ldr(RegisterFrom(out), address); break; case DataType::Type::kInt64: if (Use64BitExclusiveLoadStore(atomic, codegen)) { vixl32::Register strexd_tmp = RegisterFrom(maybe_temp); UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); const vixl32::Register temp_reg = temps.Acquire(); __ Add(temp_reg, base, offset); vixl32::Label loop; __ Bind(&loop); __ Ldrexd(LowRegisterFrom(out), HighRegisterFrom(out), MemOperand(temp_reg)); __ Strexd(strexd_tmp, LowRegisterFrom(out), HighRegisterFrom(out), MemOperand(temp_reg)); __ Cmp(strexd_tmp, 0); __ B(ne, &loop); } else { __ Ldrd(LowRegisterFrom(out), HighRegisterFrom(out), address); } break; case DataType::Type::kReference: if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // Piggy-back on the field load path using introspection for the Baker read barrier. vixl32::Register temp = RegisterFrom(maybe_temp); __ Add(temp, base, offset); codegen->GenerateFieldLoadWithBakerReadBarrier( invoke, out, base, MemOperand(temp), /* needs_null_check= */ false); } else { __ Ldr(RegisterFrom(out), address); } break; case DataType::Type::kFloat32: { UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); const vixl32::Register temp_reg = temps.Acquire(); __ Add(temp_reg, base, offset); __ Vldr(SRegisterFrom(out), MemOperand(temp_reg)); break; } case DataType::Type::kFloat64: { UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); const vixl32::Register temp_reg = temps.Acquire(); __ Add(temp_reg, base, offset); if (Use64BitExclusiveLoadStore(atomic, codegen)) { vixl32::Register lo = RegisterFrom(maybe_temp); vixl32::Register hi = RegisterFrom(maybe_temp2); vixl32::Register strexd_tmp = RegisterFrom(maybe_temp3); vixl32::Label loop; __ Bind(&loop); __ Ldrexd(lo, hi, MemOperand(temp_reg)); __ Strexd(strexd_tmp, lo, hi, MemOperand(temp_reg)); __ Cmp(strexd_tmp, 0); __ B(ne, &loop); __ Vmov(DRegisterFrom(out), lo, hi); } else { __ Vldr(DRegisterFrom(out), MemOperand(temp_reg)); } break; } default: LOG(FATAL) << "Unexpected type " << type; UNREACHABLE(); } if (acquire_barrier) { codegen->GenerateMemoryBarrier( seq_cst_barrier ? MemBarrierKind::kAnyAny : MemBarrierKind::kLoadAny); } if (type == DataType::Type::kReference && !(kEmitCompilerReadBarrier && kUseBakerReadBarrier)) { Location base_loc = LocationFrom(base); Location index_loc = LocationFrom(offset); codegen->MaybeGenerateReadBarrierSlow(invoke, out, out, base_loc, /* offset=*/ 0u, index_loc); } } static void CreateUnsafeGetLocations(HInvoke* invoke, CodeGeneratorARMVIXL* codegen, DataType::Type type, bool atomic) { bool can_call = kEmitCompilerReadBarrier && (invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject || invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile); ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator(); LocationSummary* locations = new (allocator) LocationSummary(invoke, can_call ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall, kIntrinsified); if (can_call && kUseBakerReadBarrier) { locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. } locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), (can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap)); if ((kEmitCompilerReadBarrier && kUseBakerReadBarrier && type == DataType::Type::kReference) || (type == DataType::Type::kInt64 && Use64BitExclusiveLoadStore(atomic, codegen))) { // We need a temporary register for the read barrier marking slow // path in CodeGeneratorARMVIXL::GenerateReferenceLoadWithBakerReadBarrier, // or the STREXD result for LDREXD/STREXD sequence when LDRD is non-atomic. locations->AddTemp(Location::RequiresRegister()); } } static void GenUnsafeGet(HInvoke* invoke, CodeGeneratorARMVIXL* codegen, DataType::Type type, std::memory_order order, bool atomic) { LocationSummary* locations = invoke->GetLocations(); vixl32::Register base = InputRegisterAt(invoke, 1); // Object pointer. vixl32::Register offset = LowRegisterFrom(locations->InAt(2)); // Long offset, lo part only. Location out = locations->Out(); Location maybe_temp = Location::NoLocation(); if ((kEmitCompilerReadBarrier && kUseBakerReadBarrier && type == DataType::Type::kReference) || (type == DataType::Type::kInt64 && Use64BitExclusiveLoadStore(atomic, codegen))) { maybe_temp = locations->GetTemp(0); } GenerateIntrinsicGet(invoke, codegen, type, order, atomic, base, offset, out, maybe_temp, /*maybe_temp2=*/ Location::NoLocation(), /*maybe_temp3=*/ Location::NoLocation()); } void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGet(HInvoke* invoke) { CreateUnsafeGetLocations(invoke, codegen_, DataType::Type::kInt32, /*atomic=*/ false); } void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGet(HInvoke* invoke) { GenUnsafeGet( invoke, codegen_, DataType::Type::kInt32, std::memory_order_relaxed, /*atomic=*/ false); } void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetVolatile(HInvoke* invoke) { CreateUnsafeGetLocations(invoke, codegen_, DataType::Type::kInt32, /*atomic=*/ true); } void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetVolatile(HInvoke* invoke) { GenUnsafeGet( invoke, codegen_, DataType::Type::kInt32, std::memory_order_seq_cst, /*atomic=*/ true); } void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetLong(HInvoke* invoke) { CreateUnsafeGetLocations(invoke, codegen_, DataType::Type::kInt64, /*atomic=*/ false); } void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetLong(HInvoke* invoke) { GenUnsafeGet( invoke, codegen_, DataType::Type::kInt64, std::memory_order_relaxed, /*atomic=*/ false); } void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetLongVolatile(HInvoke* invoke) { CreateUnsafeGetLocations(invoke, codegen_, DataType::Type::kInt64, /*atomic=*/ true); } void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetLongVolatile(HInvoke* invoke) { GenUnsafeGet( invoke, codegen_, DataType::Type::kInt64, std::memory_order_seq_cst, /*atomic=*/ true); } void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetObject(HInvoke* invoke) { CreateUnsafeGetLocations(invoke, codegen_, DataType::Type::kReference, /*atomic=*/ false); } void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetObject(HInvoke* invoke) { GenUnsafeGet( invoke, codegen_, DataType::Type::kReference, std::memory_order_relaxed, /*atomic=*/ false); } void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { CreateUnsafeGetLocations(invoke, codegen_, DataType::Type::kReference, /*atomic=*/ true); } void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { GenUnsafeGet( invoke, codegen_, DataType::Type::kReference, std::memory_order_seq_cst, /*atomic=*/ true); } static void GenerateIntrinsicSet(CodeGeneratorARMVIXL* codegen, DataType::Type type, std::memory_order order, bool atomic, vixl32::Register base, vixl32::Register offset, Location value, Location maybe_temp, Location maybe_temp2, Location maybe_temp3) { bool seq_cst_barrier = (order == std::memory_order_seq_cst); bool release_barrier = seq_cst_barrier || (order == std::memory_order_release); DCHECK(release_barrier || order == std::memory_order_relaxed); DCHECK(atomic || order == std::memory_order_relaxed); ArmVIXLAssembler* assembler = codegen->GetAssembler(); if (release_barrier) { codegen->GenerateMemoryBarrier(MemBarrierKind::kAnyStore); } UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); if (kPoisonHeapReferences && type == DataType::Type::kReference) { vixl32::Register temp = temps.Acquire(); __ Mov(temp, RegisterFrom(value)); assembler->PoisonHeapReference(temp); value = LocationFrom(temp); } MemOperand address = offset.IsValid() ? MemOperand(base, offset) : MemOperand(base); if (offset.IsValid() && (DataType::Is64BitType(type) || type == DataType::Type::kFloat32)) { const vixl32::Register temp_reg = temps.Acquire(); __ Add(temp_reg, base, offset); address = MemOperand(temp_reg); } switch (type) { case DataType::Type::kBool: case DataType::Type::kInt8: __ Strb(RegisterFrom(value), address); break; case DataType::Type::kUint16: case DataType::Type::kInt16: __ Strh(RegisterFrom(value), address); break; case DataType::Type::kReference: case DataType::Type::kInt32: __ Str(RegisterFrom(value), address); break; case DataType::Type::kInt64: if (Use64BitExclusiveLoadStore(atomic, codegen)) { vixl32::Register lo_tmp = RegisterFrom(maybe_temp); vixl32::Register hi_tmp = RegisterFrom(maybe_temp2); vixl32::Label loop; __ Bind(&loop); __ Ldrexd(lo_tmp, hi_tmp, address); // Ignore the retrieved value. __ Strexd(lo_tmp, LowRegisterFrom(value), HighRegisterFrom(value), address); __ Cmp(lo_tmp, 0); __ B(ne, &loop); } else { __ Strd(LowRegisterFrom(value), HighRegisterFrom(value), address); } break; case DataType::Type::kFloat32: __ Vstr(SRegisterFrom(value), address); break; case DataType::Type::kFloat64: if (Use64BitExclusiveLoadStore(atomic, codegen)) { vixl32::Register lo_tmp = RegisterFrom(maybe_temp); vixl32::Register hi_tmp = RegisterFrom(maybe_temp2); vixl32::Register strexd_tmp = RegisterFrom(maybe_temp3); vixl32::Label loop; __ Bind(&loop); __ Ldrexd(lo_tmp, hi_tmp, address); // Ignore the retrieved value. __ Vmov(lo_tmp, hi_tmp, DRegisterFrom(value)); __ Strexd(strexd_tmp, lo_tmp, hi_tmp, address); __ Cmp(strexd_tmp, 0); __ B(ne, &loop); } else { __ Vstr(DRegisterFrom(value), address); } break; default: LOG(FATAL) << "Unexpected type " << type; UNREACHABLE(); } if (seq_cst_barrier) { codegen->GenerateMemoryBarrier(MemBarrierKind::kAnyAny); } } static void CreateUnsafePutLocations(HInvoke* invoke, CodeGeneratorARMVIXL* codegen, DataType::Type type, bool atomic) { ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator(); LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RequiresRegister()); if (type == DataType::Type::kInt64) { // Potentially need temps for ldrexd-strexd loop. if (Use64BitExclusiveLoadStore(atomic, codegen)) { locations->AddTemp(Location::RequiresRegister()); // Temp_lo. locations->AddTemp(Location::RequiresRegister()); // Temp_hi. } } else if (type == DataType::Type::kReference) { // Temp for card-marking. locations->AddTemp(Location::RequiresRegister()); // Temp. } } static void GenUnsafePut(HInvoke* invoke, DataType::Type type, std::memory_order order, bool atomic, CodeGeneratorARMVIXL* codegen) { ArmVIXLAssembler* assembler = codegen->GetAssembler(); LocationSummary* locations = invoke->GetLocations(); vixl32::Register base = RegisterFrom(locations->InAt(1)); // Object pointer. vixl32::Register offset = LowRegisterFrom(locations->InAt(2)); // Long offset, lo part only. Location value = locations->InAt(3); Location maybe_temp = Location::NoLocation(); Location maybe_temp2 = Location::NoLocation(); if (type == DataType::Type::kInt64 && Use64BitExclusiveLoadStore(atomic, codegen)) { maybe_temp = locations->GetTemp(0); maybe_temp2 = locations->GetTemp(1); } GenerateIntrinsicSet(codegen, type, order, atomic, base, offset, value, maybe_temp, maybe_temp2, /*maybe_temp3=*/ Location::NoLocation()); if (type == DataType::Type::kReference) { vixl32::Register temp = RegisterFrom(locations->GetTemp(0)); UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); vixl32::Register card = temps.Acquire(); bool value_can_be_null = true; // TODO: Worth finding out this information? codegen->MarkGCCard(temp, card, base, RegisterFrom(value), value_can_be_null); } } void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePut(HInvoke* invoke) { CreateUnsafePutLocations(invoke, codegen_, DataType::Type::kInt32, /*atomic=*/ false); } void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePut(HInvoke* invoke) { GenUnsafePut(invoke, DataType::Type::kInt32, std::memory_order_relaxed, /*atomic=*/ false, codegen_); } void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutOrdered(HInvoke* invoke) { CreateUnsafePutLocations(invoke, codegen_, DataType::Type::kInt32, /*atomic=*/ true); } void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutOrdered(HInvoke* invoke) { GenUnsafePut(invoke, DataType::Type::kInt32, std::memory_order_release, /*atomic=*/ true, codegen_); } void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutVolatile(HInvoke* invoke) { CreateUnsafePutLocations(invoke, codegen_, DataType::Type::kInt32, /*atomic=*/ true); } void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutVolatile(HInvoke* invoke) { GenUnsafePut(invoke, DataType::Type::kInt32, std::memory_order_seq_cst, /*atomic=*/ true, codegen_); } void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutObject(HInvoke* invoke) { CreateUnsafePutLocations(invoke, codegen_, DataType::Type::kReference, /*atomic=*/ false); } void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutObject(HInvoke* invoke) { GenUnsafePut(invoke, DataType::Type::kReference, std::memory_order_relaxed, /*atomic=*/ false, codegen_); } void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutObjectOrdered(HInvoke* invoke) { CreateUnsafePutLocations(invoke, codegen_, DataType::Type::kReference, /*atomic=*/ true); } void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutObjectOrdered(HInvoke* invoke) { GenUnsafePut(invoke, DataType::Type::kReference, std::memory_order_release, /*atomic=*/ true, codegen_); } void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutObjectVolatile(HInvoke* invoke) { CreateUnsafePutLocations(invoke, codegen_, DataType::Type::kReference, /*atomic=*/ true); } void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutObjectVolatile(HInvoke* invoke) { GenUnsafePut(invoke, DataType::Type::kReference, std::memory_order_seq_cst, /*atomic=*/ true, codegen_); } void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutLong(HInvoke* invoke) { CreateUnsafePutLocations(invoke, codegen_, DataType::Type::kInt64, /*atomic=*/ false); } void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutLong(HInvoke* invoke) { GenUnsafePut(invoke, DataType::Type::kInt64, std::memory_order_relaxed, /*atomic=*/ false, codegen_); } void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutLongOrdered(HInvoke* invoke) { CreateUnsafePutLocations(invoke, codegen_, DataType::Type::kInt64, /*atomic=*/ true); } void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutLongOrdered(HInvoke* invoke) { GenUnsafePut(invoke, DataType::Type::kInt64, std::memory_order_release, /*atomic=*/ true, codegen_); } void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutLongVolatile(HInvoke* invoke) { CreateUnsafePutLocations(invoke, codegen_, DataType::Type::kInt64, /*atomic=*/ true); } void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutLongVolatile(HInvoke* invoke) { GenUnsafePut(invoke, DataType::Type::kInt64, std::memory_order_seq_cst, /*atomic=*/ true, codegen_); } static void EmitLoadExclusive(CodeGeneratorARMVIXL* codegen, DataType::Type type, vixl32::Register ptr, Location old_value) { ArmVIXLAssembler* assembler = codegen->GetAssembler(); switch (type) { case DataType::Type::kBool: case DataType::Type::kInt8: __ Ldrexb(RegisterFrom(old_value), MemOperand(ptr)); break; case DataType::Type::kUint16: case DataType::Type::kInt16: __ Ldrexh(RegisterFrom(old_value), MemOperand(ptr)); break; case DataType::Type::kInt32: case DataType::Type::kReference: __ Ldrex(RegisterFrom(old_value), MemOperand(ptr)); break; case DataType::Type::kInt64: __ Ldrexd(LowRegisterFrom(old_value), HighRegisterFrom(old_value), MemOperand(ptr)); break; default: LOG(FATAL) << "Unexpected type: " << type; UNREACHABLE(); } switch (type) { case DataType::Type::kInt8: __ Sxtb(RegisterFrom(old_value), RegisterFrom(old_value)); break; case DataType::Type::kInt16: __ Sxth(RegisterFrom(old_value), RegisterFrom(old_value)); break; case DataType::Type::kReference: assembler->MaybeUnpoisonHeapReference(RegisterFrom(old_value)); break; default: break; } } static void EmitStoreExclusive(CodeGeneratorARMVIXL* codegen, DataType::Type type, vixl32::Register ptr, vixl32::Register store_result, Location new_value) { ArmVIXLAssembler* assembler = codegen->GetAssembler(); if (type == DataType::Type::kReference) { assembler->MaybePoisonHeapReference(RegisterFrom(new_value)); } switch (type) { case DataType::Type::kBool: case DataType::Type::kInt8: __ Strexb(store_result, RegisterFrom(new_value), MemOperand(ptr)); break; case DataType::Type::kUint16: case DataType::Type::kInt16: __ Strexh(store_result, RegisterFrom(new_value), MemOperand(ptr)); break; case DataType::Type::kInt32: case DataType::Type::kReference: __ Strex(store_result, RegisterFrom(new_value), MemOperand(ptr)); break; case DataType::Type::kInt64: __ Strexd( store_result, LowRegisterFrom(new_value), HighRegisterFrom(new_value), MemOperand(ptr)); break; default: LOG(FATAL) << "Unexpected type: " << type; UNREACHABLE(); } if (type == DataType::Type::kReference) { assembler->MaybeUnpoisonHeapReference(RegisterFrom(new_value)); } } static void GenerateCompareAndSet(CodeGeneratorARMVIXL* codegen, DataType::Type type, bool strong, vixl32::Label* cmp_failure, bool cmp_failure_is_far_target, vixl32::Register ptr, Location expected, Location new_value, Location old_value, vixl32::Register store_result, vixl32::Register success) { // For kReference, the `expected` shall be a register pair when called from a read barrier // slow path, specifying both the original `expected` as well as the unmarked old value from // the main path attempt to emit CAS when it matched `expected` after marking. // Otherwise the type of `expected` shall match the type of `new_value` and `old_value`. if (type == DataType::Type::kInt64) { DCHECK(expected.IsRegisterPair()); DCHECK(new_value.IsRegisterPair()); DCHECK(old_value.IsRegisterPair()); } else { DCHECK(expected.IsRegister() || (type == DataType::Type::kReference && expected.IsRegisterPair())); DCHECK(new_value.IsRegister()); DCHECK(old_value.IsRegister()); } ArmVIXLAssembler* assembler = codegen->GetAssembler(); // do { // old_value = [ptr]; // Load exclusive. // if (old_value != expected) goto cmp_failure; // store_result = failed([ptr] <- new_value); // Store exclusive. // } while (strong && store_result); // // If `success` is a valid register, there are additional instructions in the above code // to report success with value 1 and failure with value 0 in that register. vixl32::Label loop_head; if (strong) { __ Bind(&loop_head); } EmitLoadExclusive(codegen, type, ptr, old_value); // We do not need to initialize the failure code for comparison failure if the // branch goes to the read barrier slow path that clobbers `success` anyway. bool init_failure_for_cmp = success.IsValid() && !(kEmitCompilerReadBarrier && type == DataType::Type::kReference && expected.IsRegister()); // Instruction scheduling: Loading a constant between LDREX* and using the loaded value // is essentially free, so prepare the failure value here if we can. bool init_failure_for_cmp_early = init_failure_for_cmp && !old_value.Contains(LocationFrom(success)); if (init_failure_for_cmp_early) { __ Mov(success, 0); // Indicate failure if the comparison fails. } if (type == DataType::Type::kInt64) { __ Cmp(LowRegisterFrom(old_value), LowRegisterFrom(expected)); ExactAssemblyScope aas(assembler->GetVIXLAssembler(), 2 * k16BitT32InstructionSizeInBytes); __ it(eq); __ cmp(eq, HighRegisterFrom(old_value), HighRegisterFrom(expected)); } else if (expected.IsRegisterPair()) { DCHECK_EQ(type, DataType::Type::kReference); // Check if the loaded value matches any of the two registers in `expected`. __ Cmp(RegisterFrom(old_value), LowRegisterFrom(expected)); ExactAssemblyScope aas(assembler->GetVIXLAssembler(), 2 * k16BitT32InstructionSizeInBytes); __ it(ne); __ cmp(ne, RegisterFrom(old_value), HighRegisterFrom(expected)); } else { __ Cmp(RegisterFrom(old_value), RegisterFrom(expected)); } if (init_failure_for_cmp && !init_failure_for_cmp_early) { __ Mov(LeaveFlags, success, 0); // Indicate failure if the comparison fails. } __ B(ne, cmp_failure, /*is_far_target=*/ cmp_failure_is_far_target); EmitStoreExclusive(codegen, type, ptr, store_result, new_value); if (strong) { // Instruction scheduling: Loading a constant between STREX* and using its result // is essentially free, so prepare the success value here if needed. if (success.IsValid()) { DCHECK(!success.Is(store_result)); __ Mov(success, 1); // Indicate success if the store succeeds. } __ Cmp(store_result, 0); __ B(ne, &loop_head, /*is_far_target=*/ false); } else { // Weak CAS (VarHandle.CompareAndExchange variants) always indicates success. DCHECK(success.IsValid()); // Flip the `store_result` to indicate success by 1 and failure by 0. __ Eor(success, store_result, 1); } } class ReadBarrierCasSlowPathARMVIXL : public SlowPathCodeARMVIXL { public: explicit ReadBarrierCasSlowPathARMVIXL(HInvoke* invoke, bool strong, vixl32::Register base, vixl32::Register offset, vixl32::Register expected, vixl32::Register new_value, vixl32::Register old_value, vixl32::Register old_value_temp, vixl32::Register store_result, vixl32::Register success, CodeGeneratorARMVIXL* arm_codegen) : SlowPathCodeARMVIXL(invoke), strong_(strong), base_(base), offset_(offset), expected_(expected), new_value_(new_value), old_value_(old_value), old_value_temp_(old_value_temp), store_result_(store_result), success_(success), mark_old_value_slow_path_(nullptr), update_old_value_slow_path_(nullptr) { if (!kUseBakerReadBarrier) { // We need to add the slow path now, it is too late when emitting slow path code. mark_old_value_slow_path_ = arm_codegen->AddReadBarrierSlowPath( invoke, Location::RegisterLocation(old_value_temp.GetCode()), Location::RegisterLocation(old_value.GetCode()), Location::RegisterLocation(base.GetCode()), /*offset=*/ 0u, /*index=*/ Location::RegisterLocation(offset.GetCode())); if (!success.IsValid()) { update_old_value_slow_path_ = arm_codegen->AddReadBarrierSlowPath( invoke, Location::RegisterLocation(old_value.GetCode()), Location::RegisterLocation(old_value_temp.GetCode()), Location::RegisterLocation(base.GetCode()), /*offset=*/ 0u, /*index=*/ Location::RegisterLocation(offset.GetCode())); } } } const char* GetDescription() const override { return "ReadBarrierCasSlowPathARMVIXL"; } void EmitNativeCode(CodeGenerator* codegen) override { CodeGeneratorARMVIXL* arm_codegen = down_cast(codegen); ArmVIXLAssembler* assembler = arm_codegen->GetAssembler(); __ Bind(GetEntryLabel()); // Mark the `old_value_` from the main path and compare with `expected_`. if (kUseBakerReadBarrier) { DCHECK(mark_old_value_slow_path_ == nullptr); arm_codegen->GenerateIntrinsicCasMoveWithBakerReadBarrier(old_value_temp_, old_value_); } else { DCHECK(mark_old_value_slow_path_ != nullptr); __ B(mark_old_value_slow_path_->GetEntryLabel()); __ Bind(mark_old_value_slow_path_->GetExitLabel()); } __ Cmp(old_value_temp_, expected_); if (success_.IsValid()) { __ Mov(LeaveFlags, success_, 0); // Indicate failure if we take the branch out. } else { // In case of failure, update the `old_value_` with the marked reference. ExactAssemblyScope aas(assembler->GetVIXLAssembler(), 2 * k16BitT32InstructionSizeInBytes); __ it(ne); __ mov(ne, old_value_, old_value_temp_); } __ B(ne, GetExitLabel()); // The old value we have read did not match `expected` (which is always a to-space // reference) but after the read barrier the marked to-space value matched, so the // old value must be a from-space reference to the same object. Do the same CAS loop // as the main path but check for both `expected` and the unmarked old value // representing the to-space and from-space references for the same object. UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); vixl32::Register tmp_ptr = temps.Acquire(); // Recalculate the `tmp_ptr` clobbered above. __ Add(tmp_ptr, base_, offset_); vixl32::Label mark_old_value; GenerateCompareAndSet(arm_codegen, DataType::Type::kReference, strong_, /*cmp_failure=*/ success_.IsValid() ? GetExitLabel() : &mark_old_value, /*cmp_failure_is_far_target=*/ success_.IsValid(), tmp_ptr, /*expected=*/ LocationFrom(expected_, old_value_), /*new_value=*/ LocationFrom(new_value_), /*old_value=*/ LocationFrom(old_value_temp_), store_result_, success_); if (!success_.IsValid()) { // To reach this point, the `old_value_temp_` must be either a from-space or a to-space // reference of the `expected_` object. Update the `old_value_` to the to-space reference. __ Mov(old_value_, expected_); } __ B(GetExitLabel()); if (!success_.IsValid()) { __ Bind(&mark_old_value); if (kUseBakerReadBarrier) { DCHECK(update_old_value_slow_path_ == nullptr); arm_codegen->GenerateIntrinsicCasMoveWithBakerReadBarrier(old_value_, old_value_temp_); } else { // Note: We could redirect the `failure` above directly to the entry label and bind // the exit label in the main path, but the main path would need to access the // `update_old_value_slow_path_`. To keep the code simple, keep the extra jumps. DCHECK(update_old_value_slow_path_ != nullptr); __ B(update_old_value_slow_path_->GetEntryLabel()); __ Bind(update_old_value_slow_path_->GetExitLabel()); } __ B(GetExitLabel()); } } private: bool strong_; vixl32::Register base_; vixl32::Register offset_; vixl32::Register expected_; vixl32::Register new_value_; vixl32::Register old_value_; vixl32::Register old_value_temp_; vixl32::Register store_result_; vixl32::Register success_; SlowPathCodeARMVIXL* mark_old_value_slow_path_; SlowPathCodeARMVIXL* update_old_value_slow_path_; }; static void CreateUnsafeCASLocations(ArenaAllocator* allocator, HInvoke* invoke) { bool can_call = kEmitCompilerReadBarrier && (invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject); LocationSummary* locations = new (allocator) LocationSummary(invoke, can_call ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall, kIntrinsified); if (can_call && kUseBakerReadBarrier) { locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. } locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RequiresRegister()); locations->SetInAt(4, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); // Temporary register used in CAS. In the object case (UnsafeCASObject intrinsic), // this is also used for card-marking, and possibly for read barrier. locations->AddTemp(Location::RequiresRegister()); } static void GenUnsafeCas(HInvoke* invoke, DataType::Type type, CodeGeneratorARMVIXL* codegen) { DCHECK_NE(type, DataType::Type::kInt64); ArmVIXLAssembler* assembler = codegen->GetAssembler(); LocationSummary* locations = invoke->GetLocations(); vixl32::Register out = OutputRegister(invoke); // Boolean result. vixl32::Register base = InputRegisterAt(invoke, 1); // Object pointer. vixl32::Register offset = LowRegisterFrom(locations->InAt(2)); // Offset (discard high 4B). vixl32::Register expected = InputRegisterAt(invoke, 3); // Expected. vixl32::Register new_value = InputRegisterAt(invoke, 4); // New value. vixl32::Register tmp = RegisterFrom(locations->GetTemp(0)); // Temporary. UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); vixl32::Register tmp_ptr = temps.Acquire(); if (type == DataType::Type::kReference) { // Mark card for object assuming new value is stored. Worst case we will mark an unchanged // object and scan the receiver at the next GC for nothing. bool value_can_be_null = true; // TODO: Worth finding out this information? codegen->MarkGCCard(tmp_ptr, tmp, base, new_value, value_can_be_null); } vixl32::Label exit_loop_label; vixl32::Label* exit_loop = &exit_loop_label; vixl32::Label* cmp_failure = &exit_loop_label; if (kEmitCompilerReadBarrier && type == DataType::Type::kReference) { // If marking, check if the stored reference is a from-space reference to the same // object as the to-space reference `expected`. If so, perform a custom CAS loop. ReadBarrierCasSlowPathARMVIXL* slow_path = new (codegen->GetScopedAllocator()) ReadBarrierCasSlowPathARMVIXL( invoke, /*strong=*/ true, base, offset, expected, new_value, /*old_value=*/ tmp, /*old_value_temp=*/ out, /*store_result=*/ tmp, /*success=*/ out, codegen); codegen->AddSlowPath(slow_path); exit_loop = slow_path->GetExitLabel(); cmp_failure = slow_path->GetEntryLabel(); } // Unsafe CAS operations have std::memory_order_seq_cst semantics. codegen->GenerateMemoryBarrier(MemBarrierKind::kAnyAny); __ Add(tmp_ptr, base, offset); GenerateCompareAndSet(codegen, type, /*strong=*/ true, cmp_failure, /*cmp_failure_is_far_target=*/ cmp_failure != &exit_loop_label, tmp_ptr, /*expected=*/ LocationFrom(expected), // TODO: Int64 /*new_value=*/ LocationFrom(new_value), // TODO: Int64 /*old_value=*/ LocationFrom(tmp), // TODO: Int64 /*store_result=*/ tmp, /*success=*/ out); __ Bind(exit_loop); codegen->GenerateMemoryBarrier(MemBarrierKind::kAnyAny); if (type == DataType::Type::kReference) { codegen->MaybeGenerateMarkingRegisterCheck(/*code=*/ 128, /*temp_loc=*/ LocationFrom(tmp_ptr)); } } void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeCASInt(HInvoke* invoke) { CreateUnsafeCASLocations(allocator_, invoke); } void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeCASObject(HInvoke* invoke) { // The only read barrier implementation supporting the // UnsafeCASObject intrinsic is the Baker-style read barriers. b/173104084 if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) { return; } CreateUnsafeCASLocations(allocator_, invoke); } void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeCASInt(HInvoke* invoke) { GenUnsafeCas(invoke, DataType::Type::kInt32, codegen_); } void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeCASObject(HInvoke* invoke) { GenUnsafeCas(invoke, DataType::Type::kReference, codegen_); } enum class GetAndUpdateOp { kSet, kAdd, kAddWithByteSwap, kAnd, kOr, kXor }; static void GenerateGetAndUpdate(CodeGeneratorARMVIXL* codegen, GetAndUpdateOp get_and_update_op, DataType::Type load_store_type, vixl32::Register ptr, Location arg, Location old_value, vixl32::Register store_result, Location maybe_temp, Location maybe_vreg_temp) { ArmVIXLAssembler* assembler = codegen->GetAssembler(); Location loaded_value; Location new_value; switch (get_and_update_op) { case GetAndUpdateOp::kSet: loaded_value = old_value; new_value = arg; break; case GetAndUpdateOp::kAddWithByteSwap: if (old_value.IsRegisterPair()) { // To avoid register overlap when reversing bytes, load into temps. DCHECK(maybe_temp.IsRegisterPair()); loaded_value = maybe_temp; new_value = loaded_value; // Use the same temporaries for the new value. break; } FALLTHROUGH_INTENDED; case GetAndUpdateOp::kAdd: if (old_value.IsFpuRegisterPair()) { DCHECK(maybe_temp.IsRegisterPair()); loaded_value = maybe_temp; new_value = loaded_value; // Use the same temporaries for the new value. break; } if (old_value.IsFpuRegister()) { DCHECK(maybe_temp.IsRegister()); loaded_value = maybe_temp; new_value = loaded_value; // Use the same temporary for the new value. break; } FALLTHROUGH_INTENDED; case GetAndUpdateOp::kAnd: case GetAndUpdateOp::kOr: case GetAndUpdateOp::kXor: loaded_value = old_value; new_value = maybe_temp; break; } vixl32::Label loop_label; __ Bind(&loop_label); EmitLoadExclusive(codegen, load_store_type, ptr, loaded_value); switch (get_and_update_op) { case GetAndUpdateOp::kSet: break; case GetAndUpdateOp::kAddWithByteSwap: if (arg.IsFpuRegisterPair()) { GenerateReverseBytes(assembler, DataType::Type::kFloat64, loaded_value, old_value); vixl32::DRegister sum = DRegisterFrom(maybe_vreg_temp); __ Vadd(sum, DRegisterFrom(old_value), DRegisterFrom(arg)); __ Vmov(HighRegisterFrom(new_value), LowRegisterFrom(new_value), sum); // Swap low/high. } else if (arg.IsFpuRegister()) { GenerateReverseBytes(assembler, DataType::Type::kFloat32, loaded_value, old_value); vixl32::SRegister sum = LowSRegisterFrom(maybe_vreg_temp); // The temporary is a pair. __ Vadd(sum, SRegisterFrom(old_value), SRegisterFrom(arg)); __ Vmov(RegisterFrom(new_value), sum); } else if (load_store_type == DataType::Type::kInt64) { GenerateReverseBytes(assembler, DataType::Type::kInt64, loaded_value, old_value); // Swap low/high registers for the addition results. __ Adds(HighRegisterFrom(new_value), LowRegisterFrom(old_value), LowRegisterFrom(arg)); __ Adc(LowRegisterFrom(new_value), HighRegisterFrom(old_value), HighRegisterFrom(arg)); } else { GenerateReverseBytes(assembler, DataType::Type::kInt32, loaded_value, old_value); __ Add(RegisterFrom(new_value), RegisterFrom(old_value), RegisterFrom(arg)); } if (load_store_type == DataType::Type::kInt64) { // The `new_value` already has the high and low word swapped. Reverse bytes in each. GenerateReverseBytesInPlaceForEachWord(assembler, new_value); } else { GenerateReverseBytes(assembler, load_store_type, new_value, new_value); } break; case GetAndUpdateOp::kAdd: if (arg.IsFpuRegisterPair()) { vixl32::DRegister old_value_vreg = DRegisterFrom(old_value); vixl32::DRegister sum = DRegisterFrom(maybe_vreg_temp); __ Vmov(old_value_vreg, LowRegisterFrom(loaded_value), HighRegisterFrom(loaded_value)); __ Vadd(sum, old_value_vreg, DRegisterFrom(arg)); __ Vmov(LowRegisterFrom(new_value), HighRegisterFrom(new_value), sum); } else if (arg.IsFpuRegister()) { vixl32::SRegister old_value_vreg = SRegisterFrom(old_value); vixl32::SRegister sum = LowSRegisterFrom(maybe_vreg_temp); // The temporary is a pair. __ Vmov(old_value_vreg, RegisterFrom(loaded_value)); __ Vadd(sum, old_value_vreg, SRegisterFrom(arg)); __ Vmov(RegisterFrom(new_value), sum); } else if (load_store_type == DataType::Type::kInt64) { __ Adds(LowRegisterFrom(new_value), LowRegisterFrom(loaded_value), LowRegisterFrom(arg)); __ Adc(HighRegisterFrom(new_value), HighRegisterFrom(loaded_value), HighRegisterFrom(arg)); } else { __ Add(RegisterFrom(new_value), RegisterFrom(loaded_value), RegisterFrom(arg)); } break; case GetAndUpdateOp::kAnd: if (load_store_type == DataType::Type::kInt64) { __ And(LowRegisterFrom(new_value), LowRegisterFrom(loaded_value), LowRegisterFrom(arg)); __ And(HighRegisterFrom(new_value), HighRegisterFrom(loaded_value), HighRegisterFrom(arg)); } else { __ And(RegisterFrom(new_value), RegisterFrom(loaded_value), RegisterFrom(arg)); } break; case GetAndUpdateOp::kOr: if (load_store_type == DataType::Type::kInt64) { __ Orr(LowRegisterFrom(new_value), LowRegisterFrom(loaded_value), LowRegisterFrom(arg)); __ Orr(HighRegisterFrom(new_value), HighRegisterFrom(loaded_value), HighRegisterFrom(arg)); } else { __ Orr(RegisterFrom(new_value), RegisterFrom(loaded_value), RegisterFrom(arg)); } break; case GetAndUpdateOp::kXor: if (load_store_type == DataType::Type::kInt64) { __ Eor(LowRegisterFrom(new_value), LowRegisterFrom(loaded_value), LowRegisterFrom(arg)); __ Eor(HighRegisterFrom(new_value), HighRegisterFrom(loaded_value), HighRegisterFrom(arg)); } else { __ Eor(RegisterFrom(new_value), RegisterFrom(loaded_value), RegisterFrom(arg)); } break; } EmitStoreExclusive(codegen, load_store_type, ptr, store_result, new_value); __ Cmp(store_result, 0); __ B(ne, &loop_label); } class VarHandleSlowPathARMVIXL : public IntrinsicSlowPathARMVIXL { public: VarHandleSlowPathARMVIXL(HInvoke* invoke, std::memory_order order) : IntrinsicSlowPathARMVIXL(invoke), order_(order), atomic_(false), return_success_(false), strong_(false), get_and_update_op_(GetAndUpdateOp::kAdd) { } vixl32::Label* GetByteArrayViewCheckLabel() { return &byte_array_view_check_label_; } vixl32::Label* GetNativeByteOrderLabel() { return &native_byte_order_label_; } void SetAtomic(bool atomic) { DCHECK(GetAccessModeTemplate() == mirror::VarHandle::AccessModeTemplate::kGet || GetAccessModeTemplate() == mirror::VarHandle::AccessModeTemplate::kSet); atomic_ = atomic; } void SetCompareAndSetOrExchangeArgs(bool return_success, bool strong) { if (return_success) { DCHECK(GetAccessModeTemplate() == mirror::VarHandle::AccessModeTemplate::kCompareAndSet); } else { DCHECK(GetAccessModeTemplate() == mirror::VarHandle::AccessModeTemplate::kCompareAndExchange); } return_success_ = return_success; strong_ = strong; } void SetGetAndUpdateOp(GetAndUpdateOp get_and_update_op) { DCHECK(GetAccessModeTemplate() == mirror::VarHandle::AccessModeTemplate::kGetAndUpdate); get_and_update_op_ = get_and_update_op; } void EmitNativeCode(CodeGenerator* codegen_in) override { if (GetByteArrayViewCheckLabel()->IsReferenced()) { EmitByteArrayViewCode(codegen_in); } IntrinsicSlowPathARMVIXL::EmitNativeCode(codegen_in); } private: HInvoke* GetInvoke() const { return GetInstruction()->AsInvoke(); } mirror::VarHandle::AccessModeTemplate GetAccessModeTemplate() const { return mirror::VarHandle::GetAccessModeTemplateByIntrinsic(GetInvoke()->GetIntrinsic()); } void EmitByteArrayViewCode(CodeGenerator* codegen_in); vixl32::Label byte_array_view_check_label_; vixl32::Label native_byte_order_label_; // Shared parameter for all VarHandle intrinsics. std::memory_order order_; // Extra argument for GenerateVarHandleGet() and GenerateVarHandleSet(). bool atomic_; // Extra arguments for GenerateVarHandleCompareAndSetOrExchange(). bool return_success_; bool strong_; // Extra argument for GenerateVarHandleGetAndUpdate(). GetAndUpdateOp get_and_update_op_; }; // Generate subtype check without read barriers. static void GenerateSubTypeObjectCheckNoReadBarrier(CodeGeneratorARMVIXL* codegen, SlowPathCodeARMVIXL* slow_path, vixl32::Register object, vixl32::Register type, bool object_can_be_null = true) { ArmVIXLAssembler* assembler = codegen->GetAssembler(); const MemberOffset class_offset = mirror::Object::ClassOffset(); const MemberOffset super_class_offset = mirror::Class::SuperClassOffset(); vixl32::Label success; if (object_can_be_null) { __ CompareAndBranchIfZero(object, &success, /*is_far_target=*/ false); } UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); vixl32::Register temp = temps.Acquire(); __ Ldr(temp, MemOperand(object, class_offset.Int32Value())); assembler->MaybeUnpoisonHeapReference(temp); vixl32::Label loop; __ Bind(&loop); __ Cmp(type, temp); __ B(eq, &success, /*is_far_target=*/ false); __ Ldr(temp, MemOperand(temp, super_class_offset.Int32Value())); assembler->MaybeUnpoisonHeapReference(temp); __ Cmp(temp, 0); __ B(eq, slow_path->GetEntryLabel()); __ B(&loop); __ Bind(&success); } // Check access mode and the primitive type from VarHandle.varType. // Check reference arguments against the VarHandle.varType; for references this is a subclass // check without read barrier, so it can have false negatives which we handle in the slow path. static void GenerateVarHandleAccessModeAndVarTypeChecks(HInvoke* invoke, CodeGeneratorARMVIXL* codegen, SlowPathCodeARMVIXL* slow_path, DataType::Type type) { mirror::VarHandle::AccessMode access_mode = mirror::VarHandle::GetAccessModeByIntrinsic(invoke->GetIntrinsic()); Primitive::Type primitive_type = DataTypeToPrimitive(type); ArmVIXLAssembler* assembler = codegen->GetAssembler(); vixl32::Register varhandle = InputRegisterAt(invoke, 0); const MemberOffset var_type_offset = mirror::VarHandle::VarTypeOffset(); const MemberOffset access_mode_bit_mask_offset = mirror::VarHandle::AccessModesBitMaskOffset(); const MemberOffset primitive_type_offset = mirror::Class::PrimitiveTypeOffset(); // Use the temporary register reserved for offset. It is not used yet at this point. size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); vixl32::Register var_type_no_rb = RegisterFrom(invoke->GetLocations()->GetTemp(expected_coordinates_count == 0u ? 1u : 0u)); // Check that the operation is permitted and the primitive type of varhandle.varType. // We do not need a read barrier when loading a reference only for loading constant // primitive field through the reference. Use LDRD to load the fields together. { UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); vixl32::Register temp2 = temps.Acquire(); DCHECK_EQ(var_type_offset.Int32Value() + 4, access_mode_bit_mask_offset.Int32Value()); __ Ldrd(var_type_no_rb, temp2, MemOperand(varhandle, var_type_offset.Int32Value())); assembler->MaybeUnpoisonHeapReference(var_type_no_rb); __ Tst(temp2, 1u << static_cast(access_mode)); __ B(eq, slow_path->GetEntryLabel()); __ Ldrh(temp2, MemOperand(var_type_no_rb, primitive_type_offset.Int32Value())); __ Cmp(temp2, static_cast(primitive_type)); __ B(ne, slow_path->GetEntryLabel()); } if (type == DataType::Type::kReference) { // Check reference arguments against the varType. // False negatives due to varType being an interface or array type // or due to the missing read barrier are handled by the slow path. uint32_t arguments_start = /* VarHandle object */ 1u + expected_coordinates_count; uint32_t number_of_arguments = invoke->GetNumberOfArguments(); for (size_t arg_index = arguments_start; arg_index != number_of_arguments; ++arg_index) { HInstruction* arg = invoke->InputAt(arg_index); DCHECK_EQ(arg->GetType(), DataType::Type::kReference); if (!arg->IsNullConstant()) { vixl32::Register arg_reg = RegisterFrom(invoke->GetLocations()->InAt(arg_index)); GenerateSubTypeObjectCheckNoReadBarrier(codegen, slow_path, arg_reg, var_type_no_rb); } } } } static void GenerateVarHandleStaticFieldCheck(HInvoke* invoke, CodeGeneratorARMVIXL* codegen, SlowPathCodeARMVIXL* slow_path) { ArmVIXLAssembler* assembler = codegen->GetAssembler(); vixl32::Register varhandle = InputRegisterAt(invoke, 0); const MemberOffset coordinate_type0_offset = mirror::VarHandle::CoordinateType0Offset(); UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); vixl32::Register temp = temps.Acquire(); // Check that the VarHandle references a static field by checking that coordinateType0 == null. // Do not emit read barrier (or unpoison the reference) for comparing to null. __ Ldr(temp, MemOperand(varhandle, coordinate_type0_offset.Int32Value())); __ Cmp(temp, 0); __ B(ne, slow_path->GetEntryLabel()); } static void GenerateVarHandleInstanceFieldChecks(HInvoke* invoke, CodeGeneratorARMVIXL* codegen, SlowPathCodeARMVIXL* slow_path) { ArmVIXLAssembler* assembler = codegen->GetAssembler(); vixl32::Register varhandle = InputRegisterAt(invoke, 0); vixl32::Register object = InputRegisterAt(invoke, 1); const MemberOffset coordinate_type0_offset = mirror::VarHandle::CoordinateType0Offset(); const MemberOffset coordinate_type1_offset = mirror::VarHandle::CoordinateType1Offset(); // Null-check the object. __ Cmp(object, 0); __ B(eq, slow_path->GetEntryLabel()); // Use the first temporary register, whether it's for the declaring class or the offset. // It is not used yet at this point. vixl32::Register temp = RegisterFrom(invoke->GetLocations()->GetTemp(0u)); // Check that the VarHandle references an instance field by checking that // coordinateType1 == null. coordinateType0 should not be null, but this is handled by the // type compatibility check with the source object's type, which will fail for null. { UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); vixl32::Register temp2 = temps.Acquire(); DCHECK_EQ(coordinate_type0_offset.Int32Value() + 4, coordinate_type1_offset.Int32Value()); __ Ldrd(temp, temp2, MemOperand(varhandle, coordinate_type0_offset.Int32Value())); assembler->MaybeUnpoisonHeapReference(temp); // No need for read barrier or unpoisoning of coordinateType1 for comparison with null. __ Cmp(temp2, 0); __ B(ne, slow_path->GetEntryLabel()); } // Check that the object has the correct type. // We deliberately avoid the read barrier, letting the slow path handle the false negatives. GenerateSubTypeObjectCheckNoReadBarrier( codegen, slow_path, object, temp, /*object_can_be_null=*/ false); } static DataType::Type GetVarHandleExpectedValueType(HInvoke* invoke, size_t expected_coordinates_count) { DCHECK_EQ(expected_coordinates_count, GetExpectedVarHandleCoordinatesCount(invoke)); uint32_t number_of_arguments = invoke->GetNumberOfArguments(); DCHECK_GE(number_of_arguments, /* VarHandle object */ 1u + expected_coordinates_count); if (number_of_arguments == /* VarHandle object */ 1u + expected_coordinates_count) { return invoke->GetType(); } else { return GetDataTypeFromShorty(invoke, number_of_arguments - 1u); } } static void GenerateVarHandleArrayChecks(HInvoke* invoke, CodeGeneratorARMVIXL* codegen, VarHandleSlowPathARMVIXL* slow_path) { ArmVIXLAssembler* assembler = codegen->GetAssembler(); vixl32::Register varhandle = InputRegisterAt(invoke, 0); vixl32::Register object = InputRegisterAt(invoke, 1); vixl32::Register index = InputRegisterAt(invoke, 2); DataType::Type value_type = GetVarHandleExpectedValueType(invoke, /*expected_coordinates_count=*/ 2u); Primitive::Type primitive_type = DataTypeToPrimitive(value_type); const MemberOffset coordinate_type0_offset = mirror::VarHandle::CoordinateType0Offset(); const MemberOffset coordinate_type1_offset = mirror::VarHandle::CoordinateType1Offset(); const MemberOffset component_type_offset = mirror::Class::ComponentTypeOffset(); const MemberOffset primitive_type_offset = mirror::Class::PrimitiveTypeOffset(); const MemberOffset class_offset = mirror::Object::ClassOffset(); const MemberOffset array_length_offset = mirror::Array::LengthOffset(); // Null-check the object. __ Cmp(object, 0); __ B(eq, slow_path->GetEntryLabel()); // Use the offset temporary register. It is not used yet at this point. vixl32::Register temp = RegisterFrom(invoke->GetLocations()->GetTemp(0u)); UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); vixl32::Register temp2 = temps.Acquire(); // Check that the VarHandle references an array, byte array view or ByteBuffer by checking // that coordinateType1 != null. If that's true, coordinateType1 shall be int.class and // coordinateType0 shall not be null but we do not explicitly verify that. DCHECK_EQ(coordinate_type0_offset.Int32Value() + 4, coordinate_type1_offset.Int32Value()); __ Ldrd(temp, temp2, MemOperand(varhandle, coordinate_type0_offset.Int32Value())); codegen->GetAssembler()->MaybeUnpoisonHeapReference(temp); // No need for read barrier or unpoisoning of coordinateType1 for comparison with null. __ Cmp(temp2, 0); __ B(eq, slow_path->GetEntryLabel()); // Check object class against componentType0. // // This is an exact check and we defer other cases to the runtime. This includes // conversion to array of superclass references, which is valid but subsequently // requires all update operations to check that the value can indeed be stored. // We do not want to perform such extra checks in the intrinsified code. // // We do this check without read barrier, so there can be false negatives which we // defer to the slow path. There shall be no false negatives for array classes in the // boot image (including Object[] and primitive arrays) because they are non-movable. __ Ldr(temp2, MemOperand(object, class_offset.Int32Value())); codegen->GetAssembler()->MaybeUnpoisonHeapReference(temp2); __ Cmp(temp, temp2); __ B(ne, slow_path->GetEntryLabel()); // Check that the coordinateType0 is an array type. We do not need a read barrier // for loading constant reference fields (or chains of them) for comparison with null, // nor for finally loading a constant primitive field (primitive type) below. __ Ldr(temp2, MemOperand(temp, component_type_offset.Int32Value())); codegen->GetAssembler()->MaybeUnpoisonHeapReference(temp2); __ Cmp(temp2, 0); __ B(eq, slow_path->GetEntryLabel()); // Check that the array component type matches the primitive type. // With the exception of `kPrimNot`, `kPrimByte` and `kPrimBoolean`, // we shall check for a byte array view in the slow path. // The check requires the ByteArrayViewVarHandle.class to be in the boot image, // so we cannot emit that if we're JITting without boot image. bool boot_image_available = codegen->GetCompilerOptions().IsBootImage() || !Runtime::Current()->GetHeap()->GetBootImageSpaces().empty(); DCHECK(boot_image_available || codegen->GetCompilerOptions().IsJitCompiler()); size_t can_be_view = ((value_type != DataType::Type::kReference) && (DataType::Size(value_type) != 1u)) && boot_image_available; vixl32::Label* slow_path_label = can_be_view ? slow_path->GetByteArrayViewCheckLabel() : slow_path->GetEntryLabel(); __ Ldrh(temp2, MemOperand(temp2, primitive_type_offset.Int32Value())); __ Cmp(temp2, static_cast(primitive_type)); __ B(ne, slow_path_label); // Check for array index out of bounds. __ Ldr(temp, MemOperand(object, array_length_offset.Int32Value())); __ Cmp(index, temp); __ B(hs, slow_path->GetEntryLabel()); } static void GenerateVarHandleCoordinateChecks(HInvoke* invoke, CodeGeneratorARMVIXL* codegen, VarHandleSlowPathARMVIXL* slow_path) { size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); if (expected_coordinates_count == 0u) { GenerateVarHandleStaticFieldCheck(invoke, codegen, slow_path); } else if (expected_coordinates_count == 1u) { GenerateVarHandleInstanceFieldChecks(invoke, codegen, slow_path); } else { DCHECK_EQ(expected_coordinates_count, 2u); GenerateVarHandleArrayChecks(invoke, codegen, slow_path); } } static VarHandleSlowPathARMVIXL* GenerateVarHandleChecks(HInvoke* invoke, CodeGeneratorARMVIXL* codegen, std::memory_order order, DataType::Type type) { VarHandleSlowPathARMVIXL* slow_path = new (codegen->GetScopedAllocator()) VarHandleSlowPathARMVIXL(invoke, order); codegen->AddSlowPath(slow_path); GenerateVarHandleAccessModeAndVarTypeChecks(invoke, codegen, slow_path, type); GenerateVarHandleCoordinateChecks(invoke, codegen, slow_path); return slow_path; } struct VarHandleTarget { vixl32::Register object; // The object holding the value to operate on. vixl32::Register offset; // The offset of the value to operate on. }; static VarHandleTarget GetVarHandleTarget(HInvoke* invoke) { size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); LocationSummary* locations = invoke->GetLocations(); VarHandleTarget target; // The temporary allocated for loading the offset. target.offset = RegisterFrom(locations->GetTemp(0u)); // The reference to the object that holds the value to operate on. target.object = (expected_coordinates_count == 0u) ? RegisterFrom(locations->GetTemp(1u)) : InputRegisterAt(invoke, 1); return target; } static void GenerateVarHandleTarget(HInvoke* invoke, const VarHandleTarget& target, CodeGeneratorARMVIXL* codegen) { ArmVIXLAssembler* assembler = codegen->GetAssembler(); vixl32::Register varhandle = InputRegisterAt(invoke, 0); size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); if (expected_coordinates_count <= 1u) { // For static fields, we need to fill the `target.object` with the declaring class, // so we can use `target.object` as temporary for the `ArtMethod*`. For instance fields, // we do not need the declaring class, so we can forget the `ArtMethod*` when // we load the `target.offset`, so use the `target.offset` to hold the `ArtMethod*`. vixl32::Register method = (expected_coordinates_count == 0) ? target.object : target.offset; const MemberOffset art_field_offset = mirror::FieldVarHandle::ArtFieldOffset(); const MemberOffset offset_offset = ArtField::OffsetOffset(); // Load the ArtField, the offset and, if needed, declaring class. __ Ldr(method, MemOperand(varhandle, art_field_offset.Int32Value())); __ Ldr(target.offset, MemOperand(method, offset_offset.Int32Value())); if (expected_coordinates_count == 0u) { codegen->GenerateGcRootFieldLoad(invoke, LocationFrom(target.object), method, ArtField::DeclaringClassOffset().Int32Value(), kCompilerReadBarrierOption); } } else { DCHECK_EQ(expected_coordinates_count, 2u); DataType::Type value_type = GetVarHandleExpectedValueType(invoke, /*expected_coordinates_count=*/ 2u); uint32_t size_shift = DataType::SizeShift(value_type); MemberOffset data_offset = mirror::Array::DataOffset(DataType::Size(value_type)); vixl32::Register index = InputRegisterAt(invoke, 2); vixl32::Register shifted_index = index; if (size_shift != 0u) { shifted_index = target.offset; __ Lsl(shifted_index, index, size_shift); } __ Add(target.offset, shifted_index, data_offset.Int32Value()); } } static bool HasVarHandleIntrinsicImplementation(HInvoke* invoke) { size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); if (expected_coordinates_count > 2u) { // Invalid coordinate count. This invoke shall throw at runtime. return false; } if (expected_coordinates_count != 0u && invoke->InputAt(1)->GetType() != DataType::Type::kReference) { // Except for static fields (no coordinates), the first coordinate must be a reference. return false; } if (expected_coordinates_count == 2u) { // For arrays and views, the second coordinate must be convertible to `int`. // In this context, `boolean` is not convertible but we have to look at the shorty // as compiler transformations can give the invoke a valid boolean input. DataType::Type index_type = GetDataTypeFromShorty(invoke, 2); if (index_type == DataType::Type::kBool || DataType::Kind(index_type) != DataType::Type::kInt32) { return false; } } uint32_t number_of_arguments = invoke->GetNumberOfArguments(); DataType::Type return_type = invoke->GetType(); mirror::VarHandle::AccessModeTemplate access_mode_template = mirror::VarHandle::GetAccessModeTemplateByIntrinsic(invoke->GetIntrinsic()); switch (access_mode_template) { case mirror::VarHandle::AccessModeTemplate::kGet: // The return type should be the same as varType, so it shouldn't be void. if (return_type == DataType::Type::kVoid) { return false; } break; case mirror::VarHandle::AccessModeTemplate::kSet: if (return_type != DataType::Type::kVoid) { return false; } break; case mirror::VarHandle::AccessModeTemplate::kCompareAndSet: { if (return_type != DataType::Type::kBool) { return false; } uint32_t expected_value_index = number_of_arguments - 2; uint32_t new_value_index = number_of_arguments - 1; DataType::Type expected_value_type = GetDataTypeFromShorty(invoke, expected_value_index); DataType::Type new_value_type = GetDataTypeFromShorty(invoke, new_value_index); if (expected_value_type != new_value_type) { return false; } break; } case mirror::VarHandle::AccessModeTemplate::kCompareAndExchange: { uint32_t expected_value_index = number_of_arguments - 2; uint32_t new_value_index = number_of_arguments - 1; DataType::Type expected_value_type = GetDataTypeFromShorty(invoke, expected_value_index); DataType::Type new_value_type = GetDataTypeFromShorty(invoke, new_value_index); if (expected_value_type != new_value_type || return_type != expected_value_type) { return false; } break; } case mirror::VarHandle::AccessModeTemplate::kGetAndUpdate: { DataType::Type value_type = GetDataTypeFromShorty(invoke, number_of_arguments - 1); if (IsVarHandleGetAndAdd(invoke) && (value_type == DataType::Type::kReference || value_type == DataType::Type::kBool)) { // We should only add numerical types. return false; } else if (IsVarHandleGetAndBitwiseOp(invoke) && !DataType::IsIntegralType(value_type)) { // We can only apply operators to bitwise integral types. // Note that bitwise VarHandle operations accept a non-integral boolean type and // perform the appropriate logical operation. However, the result is the same as // using the bitwise operation on our boolean representation and this fits well // with DataType::IsIntegralType() treating the compiler type kBool as integral. return false; } if (value_type != return_type) { return false; } break; } } return true; } static LocationSummary* CreateVarHandleCommonLocations(HInvoke* invoke) { size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); DataType::Type return_type = invoke->GetType(); ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator(); LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); // Require coordinates in registers. These are the object holding the value // to operate on (except for static fields) and index (for arrays and views). for (size_t i = 0; i != expected_coordinates_count; ++i) { locations->SetInAt(/* VarHandle object */ 1u + i, Location::RequiresRegister()); } if (return_type != DataType::Type::kVoid) { if (DataType::IsFloatingPointType(return_type)) { locations->SetOut(Location::RequiresFpuRegister()); } else { locations->SetOut(Location::RequiresRegister()); } } uint32_t arguments_start = /* VarHandle object */ 1u + expected_coordinates_count; uint32_t number_of_arguments = invoke->GetNumberOfArguments(); for (size_t arg_index = arguments_start; arg_index != number_of_arguments; ++arg_index) { HInstruction* arg = invoke->InputAt(arg_index); if (DataType::IsFloatingPointType(arg->GetType())) { locations->SetInAt(arg_index, Location::RequiresFpuRegister()); } else { locations->SetInAt(arg_index, Location::RequiresRegister()); } } // Add a temporary for offset. if ((kEmitCompilerReadBarrier && !kUseBakerReadBarrier) && GetExpectedVarHandleCoordinatesCount(invoke) == 0u) { // For static fields. // To preserve the offset value across the non-Baker read barrier slow path // for loading the declaring class, use a fixed callee-save register. constexpr int first_callee_save = CTZ(kArmCalleeSaveRefSpills); locations->AddTemp(Location::RegisterLocation(first_callee_save)); } else { locations->AddTemp(Location::RequiresRegister()); } if (expected_coordinates_count == 0u) { // Add a temporary to hold the declaring class. locations->AddTemp(Location::RequiresRegister()); } return locations; } static void CreateVarHandleGetLocations(HInvoke* invoke, CodeGeneratorARMVIXL* codegen, bool atomic) { if (!HasVarHandleIntrinsicImplementation(invoke)) { return; } if ((kEmitCompilerReadBarrier && !kUseBakerReadBarrier) && invoke->GetType() == DataType::Type::kReference && invoke->GetIntrinsic() != Intrinsics::kVarHandleGet && invoke->GetIntrinsic() != Intrinsics::kVarHandleGetOpaque) { // Unsupported for non-Baker read barrier because the artReadBarrierSlow() ignores // the passed reference and reloads it from the field. This gets the memory visibility // wrong for Acquire/Volatile operations. b/173104084 return; } LocationSummary* locations = CreateVarHandleCommonLocations(invoke); DataType::Type type = invoke->GetType(); if (type == DataType::Type::kFloat64 && Use64BitExclusiveLoadStore(atomic, codegen)) { // We need 3 temporaries for GenerateIntrinsicGet() but we can reuse the // declaring class (if present) and offset temporary. DCHECK_EQ(locations->GetTempCount(), (GetExpectedVarHandleCoordinatesCount(invoke) == 0) ? 2u : 1u); locations->AddRegisterTemps(3u - locations->GetTempCount()); } } static void GenerateVarHandleGet(HInvoke* invoke, CodeGeneratorARMVIXL* codegen, std::memory_order order, bool atomic, bool byte_swap = false) { DataType::Type type = invoke->GetType(); DCHECK_NE(type, DataType::Type::kVoid); LocationSummary* locations = invoke->GetLocations(); ArmVIXLAssembler* assembler = codegen->GetAssembler(); Location out = locations->Out(); VarHandleTarget target = GetVarHandleTarget(invoke); VarHandleSlowPathARMVIXL* slow_path = nullptr; if (!byte_swap) { slow_path = GenerateVarHandleChecks(invoke, codegen, order, type); slow_path->SetAtomic(atomic); GenerateVarHandleTarget(invoke, target, codegen); __ Bind(slow_path->GetNativeByteOrderLabel()); } Location maybe_temp = Location::NoLocation(); Location maybe_temp2 = Location::NoLocation(); Location maybe_temp3 = Location::NoLocation(); if (kEmitCompilerReadBarrier && kUseBakerReadBarrier && type == DataType::Type::kReference) { // Reuse the offset temporary. maybe_temp = LocationFrom(target.offset); } else if (DataType::Is64BitType(type) && Use64BitExclusiveLoadStore(atomic, codegen)) { // Reuse the offset temporary and declaring class (if present). // The address shall be constructed in the scratch register before they are clobbered. maybe_temp = LocationFrom(target.offset); DCHECK(maybe_temp.Equals(locations->GetTemp(0))); if (type == DataType::Type::kFloat64) { maybe_temp2 = locations->GetTemp(1); maybe_temp3 = locations->GetTemp(2); } } UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); Location loaded_value = out; DataType::Type load_type = type; if (byte_swap) { if (type == DataType::Type::kFloat64) { if (Use64BitExclusiveLoadStore(atomic, codegen)) { // Change load type to Int64 and promote `maybe_temp2` and `maybe_temp3` to `loaded_value`. loaded_value = LocationFrom(RegisterFrom(maybe_temp2), RegisterFrom(maybe_temp3)); maybe_temp2 = Location::NoLocation(); maybe_temp3 = Location::NoLocation(); } else { // Use the offset temporary and the scratch register. loaded_value = LocationFrom(target.offset, temps.Acquire()); } load_type = DataType::Type::kInt64; } else if (type == DataType::Type::kFloat32) { // Reuse the offset temporary. loaded_value = LocationFrom(target.offset); load_type = DataType::Type::kInt32; } else if (type == DataType::Type::kInt64) { // Swap the high and low registers and reverse the bytes in each after the load. loaded_value = LocationFrom(HighRegisterFrom(out), LowRegisterFrom(out)); } } GenerateIntrinsicGet(invoke, codegen, load_type, order, atomic, target.object, target.offset, loaded_value, maybe_temp, maybe_temp2, maybe_temp3); if (byte_swap) { if (type == DataType::Type::kInt64) { GenerateReverseBytesInPlaceForEachWord(assembler, loaded_value); } else { GenerateReverseBytes(assembler, type, loaded_value, out); } } if (!byte_swap) { __ Bind(slow_path->GetExitLabel()); } } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleGet(HInvoke* invoke) { CreateVarHandleGetLocations(invoke, codegen_, /*atomic=*/ false); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleGet(HInvoke* invoke) { GenerateVarHandleGet(invoke, codegen_, std::memory_order_relaxed, /*atomic=*/ false); } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleGetOpaque(HInvoke* invoke) { CreateVarHandleGetLocations(invoke, codegen_, /*atomic=*/ true); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleGetOpaque(HInvoke* invoke) { GenerateVarHandleGet(invoke, codegen_, std::memory_order_relaxed, /*atomic=*/ true); } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleGetAcquire(HInvoke* invoke) { CreateVarHandleGetLocations(invoke, codegen_, /*atomic=*/ true); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleGetAcquire(HInvoke* invoke) { GenerateVarHandleGet(invoke, codegen_, std::memory_order_acquire, /*atomic=*/ true); } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleGetVolatile(HInvoke* invoke) { CreateVarHandleGetLocations(invoke, codegen_, /*atomic=*/ true); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleGetVolatile(HInvoke* invoke) { GenerateVarHandleGet(invoke, codegen_, std::memory_order_seq_cst, /*atomic=*/ true); } static void CreateVarHandleSetLocations(HInvoke* invoke, CodeGeneratorARMVIXL* codegen, bool atomic) { if (!HasVarHandleIntrinsicImplementation(invoke)) { return; } LocationSummary* locations = CreateVarHandleCommonLocations(invoke); uint32_t number_of_arguments = invoke->GetNumberOfArguments(); DataType::Type value_type = GetDataTypeFromShorty(invoke, number_of_arguments - 1u); if (DataType::Is64BitType(value_type)) { size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); DCHECK_EQ(locations->GetTempCount(), (expected_coordinates_count == 0) ? 2u : 1u); HInstruction* arg = invoke->InputAt(number_of_arguments - 1u); bool has_reverse_bytes_slow_path = (expected_coordinates_count == 2u) && !(arg->IsConstant() && arg->AsConstant()->IsZeroBitPattern()); if (Use64BitExclusiveLoadStore(atomic, codegen)) { // We need 4 temporaries in the byte array view slow path. Otherwise, we need // 2 or 3 temporaries for GenerateIntrinsicSet() depending on the value type. // We can reuse the offset temporary and declaring class (if present). size_t temps_needed = has_reverse_bytes_slow_path ? 4u : ((value_type == DataType::Type::kFloat64) ? 3u : 2u); locations->AddRegisterTemps(temps_needed - locations->GetTempCount()); } else if (has_reverse_bytes_slow_path) { // We need 2 temps for the value with reversed bytes in the byte array view slow path. // We can reuse the offset temporary. DCHECK_EQ(locations->GetTempCount(), 1u); locations->AddTemp(Location::RequiresRegister()); } } } static void GenerateVarHandleSet(HInvoke* invoke, CodeGeneratorARMVIXL* codegen, std::memory_order order, bool atomic, bool byte_swap = false) { uint32_t value_index = invoke->GetNumberOfArguments() - 1; DataType::Type value_type = GetDataTypeFromShorty(invoke, value_index); ArmVIXLAssembler* assembler = codegen->GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Location value = locations->InAt(value_index); VarHandleTarget target = GetVarHandleTarget(invoke); VarHandleSlowPathARMVIXL* slow_path = nullptr; if (!byte_swap) { slow_path = GenerateVarHandleChecks(invoke, codegen, order, value_type); slow_path->SetAtomic(atomic); GenerateVarHandleTarget(invoke, target, codegen); __ Bind(slow_path->GetNativeByteOrderLabel()); } Location maybe_temp = Location::NoLocation(); Location maybe_temp2 = Location::NoLocation(); Location maybe_temp3 = Location::NoLocation(); if (DataType::Is64BitType(value_type) && Use64BitExclusiveLoadStore(atomic, codegen)) { // Reuse the offset temporary and declaring class (if present). // The address shall be constructed in the scratch register before they are clobbered. maybe_temp = locations->GetTemp(0); maybe_temp2 = locations->GetTemp(1); if (value_type == DataType::Type::kFloat64) { maybe_temp3 = locations->GetTemp(2); } } UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); if (byte_swap) { if (DataType::Is64BitType(value_type) || value_type == DataType::Type::kFloat32) { // Calculate the address in scratch register, so that we can use the offset temporary. vixl32::Register base = temps.Acquire(); __ Add(base, target.object, target.offset); target.object = base; target.offset = vixl32::Register(); } Location original_value = value; if (DataType::Is64BitType(value_type)) { size_t temp_start = 0u; if (Use64BitExclusiveLoadStore(atomic, codegen)) { // Clear `maybe_temp3` which was initialized above for Float64. DCHECK(value_type != DataType::Type::kFloat64 || maybe_temp3.Equals(locations->GetTemp(2))); maybe_temp3 = Location::NoLocation(); temp_start = 2u; } value = LocationFrom(RegisterFrom(locations->GetTemp(temp_start)), RegisterFrom(locations->GetTemp(temp_start + 1u))); if (value_type == DataType::Type::kFloat64) { __ Vmov(HighRegisterFrom(value), LowRegisterFrom(value), DRegisterFrom(original_value)); GenerateReverseBytesInPlaceForEachWord(assembler, value); value_type = DataType::Type::kInt64; } else { GenerateReverseBytes(assembler, value_type, original_value, value); } } else if (value_type == DataType::Type::kFloat32) { value = locations->GetTemp(0); // Use the offset temporary which was freed above. __ Vmov(RegisterFrom(value), SRegisterFrom(original_value)); GenerateReverseBytes(assembler, DataType::Type::kInt32, value, value); value_type = DataType::Type::kInt32; } else { value = LocationFrom(temps.Acquire()); GenerateReverseBytes(assembler, value_type, original_value, value); } } GenerateIntrinsicSet(codegen, value_type, order, atomic, target.object, target.offset, value, maybe_temp, maybe_temp2, maybe_temp3); if (CodeGenerator::StoreNeedsWriteBarrier(value_type, invoke->InputAt(value_index))) { // Reuse the offset temporary for MarkGCCard. vixl32::Register temp = target.offset; vixl32::Register card = temps.Acquire(); vixl32::Register value_reg = RegisterFrom(value); codegen->MarkGCCard(temp, card, target.object, value_reg, /*value_can_be_null=*/ true); } if (!byte_swap) { __ Bind(slow_path->GetExitLabel()); } } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleSet(HInvoke* invoke) { CreateVarHandleSetLocations(invoke, codegen_, /*atomic=*/ false); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleSet(HInvoke* invoke) { GenerateVarHandleSet(invoke, codegen_, std::memory_order_relaxed, /*atomic=*/ false); } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleSetOpaque(HInvoke* invoke) { CreateVarHandleSetLocations(invoke, codegen_, /*atomic=*/ true); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleSetOpaque(HInvoke* invoke) { GenerateVarHandleSet(invoke, codegen_, std::memory_order_relaxed, /*atomic=*/ true); } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleSetRelease(HInvoke* invoke) { CreateVarHandleSetLocations(invoke, codegen_, /*atomic=*/ true); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleSetRelease(HInvoke* invoke) { GenerateVarHandleSet(invoke, codegen_, std::memory_order_release, /*atomic=*/ true); } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleSetVolatile(HInvoke* invoke) { CreateVarHandleSetLocations(invoke, codegen_, /*atomic=*/ true); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleSetVolatile(HInvoke* invoke) { // ARM store-release instructions are implicitly sequentially consistent. GenerateVarHandleSet(invoke, codegen_, std::memory_order_seq_cst, /*atomic=*/ true); } static void CreateVarHandleCompareAndSetOrExchangeLocations(HInvoke* invoke, bool return_success) { if (!HasVarHandleIntrinsicImplementation(invoke)) { return; } uint32_t number_of_arguments = invoke->GetNumberOfArguments(); DataType::Type value_type = GetDataTypeFromShorty(invoke, number_of_arguments - 1u); if ((kEmitCompilerReadBarrier && !kUseBakerReadBarrier) && value_type == DataType::Type::kReference) { // Unsupported for non-Baker read barrier because the artReadBarrierSlow() ignores // the passed reference and reloads it from the field. This breaks the read barriers // in slow path in different ways. The marked old value may not actually be a to-space // reference to the same object as `old_value`, breaking slow path assumptions. And // for CompareAndExchange, marking the old value after comparison failure may actually // return the reference to `expected`, erroneously indicating success even though we // did not set the new value. (And it also gets the memory visibility wrong.) b/173104084 return; } LocationSummary* locations = CreateVarHandleCommonLocations(invoke); if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) { // We need callee-save registers for both the class object and offset instead of // the temporaries reserved in CreateVarHandleCommonLocations(). static_assert(POPCOUNT(kArmCalleeSaveRefSpills) >= 2u); constexpr int first_callee_save = CTZ(kArmCalleeSaveRefSpills); constexpr int second_callee_save = CTZ(kArmCalleeSaveRefSpills ^ (1u << first_callee_save)); if (GetExpectedVarHandleCoordinatesCount(invoke) == 0u) { // For static fields. DCHECK_EQ(locations->GetTempCount(), 2u); DCHECK(locations->GetTemp(0u).Equals(Location::RequiresRegister())); DCHECK(locations->GetTemp(1u).Equals(Location::RegisterLocation(first_callee_save))); locations->SetTempAt(0u, Location::RegisterLocation(second_callee_save)); } else { DCHECK_EQ(locations->GetTempCount(), 1u); DCHECK(locations->GetTemp(0u).Equals(Location::RequiresRegister())); locations->SetTempAt(0u, Location::RegisterLocation(first_callee_save)); } } if (DataType::IsFloatingPointType(value_type)) { // We can reuse the declaring class (if present) and offset temporary. DCHECK_EQ(locations->GetTempCount(), (GetExpectedVarHandleCoordinatesCount(invoke) == 0) ? 2u : 1u); size_t temps_needed = (value_type == DataType::Type::kFloat64) ? (return_success ? 5u : 7u) : (return_success ? 3u : 4u); locations->AddRegisterTemps(temps_needed - locations->GetTempCount()); } else if (GetExpectedVarHandleCoordinatesCount(invoke) == 2u) { // Add temps for the byte-reversed `expected` and `new_value` in the byte array view slow path. DCHECK_EQ(locations->GetTempCount(), 1u); if (value_type == DataType::Type::kInt64) { // We would ideally add 4 temps for Int64 but that would simply run out of registers, // so we instead need to reverse bytes in actual arguments and undo it at the end. } else { locations->AddRegisterTemps(2u); } } if (kEmitCompilerReadBarrier && value_type == DataType::Type::kReference) { // Add a temporary for store result, also used for the `old_value_temp` in slow path. locations->AddTemp(Location::RequiresRegister()); } } static void GenerateVarHandleCompareAndSetOrExchange(HInvoke* invoke, CodeGeneratorARMVIXL* codegen, std::memory_order order, bool return_success, bool strong, bool byte_swap = false) { DCHECK(return_success || strong); uint32_t expected_index = invoke->GetNumberOfArguments() - 2; uint32_t new_value_index = invoke->GetNumberOfArguments() - 1; DataType::Type value_type = GetDataTypeFromShorty(invoke, new_value_index); DCHECK_EQ(value_type, GetDataTypeFromShorty(invoke, expected_index)); ArmVIXLAssembler* assembler = codegen->GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Location expected = locations->InAt(expected_index); Location new_value = locations->InAt(new_value_index); Location out = locations->Out(); VarHandleTarget target = GetVarHandleTarget(invoke); VarHandleSlowPathARMVIXL* slow_path = nullptr; if (!byte_swap) { slow_path = GenerateVarHandleChecks(invoke, codegen, order, value_type); slow_path->SetCompareAndSetOrExchangeArgs(return_success, strong); GenerateVarHandleTarget(invoke, target, codegen); __ Bind(slow_path->GetNativeByteOrderLabel()); } bool seq_cst_barrier = (order == std::memory_order_seq_cst); bool release_barrier = seq_cst_barrier || (order == std::memory_order_release); bool acquire_barrier = seq_cst_barrier || (order == std::memory_order_acquire); DCHECK(release_barrier || acquire_barrier || order == std::memory_order_relaxed); if (release_barrier) { codegen->GenerateMemoryBarrier( seq_cst_barrier ? MemBarrierKind::kAnyAny : MemBarrierKind::kAnyStore); } // Calculate the pointer to the value. UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); vixl32::Register tmp_ptr = temps.Acquire(); __ Add(tmp_ptr, target.object, target.offset); // Move floating point values to temporaries and prepare output registers. // Note that float/double CAS uses bitwise comparison, rather than the operator==. // Reuse the declaring class (if present) and offset temporary for non-reference types, // the address has already been constructed in the scratch register. We are more careful // for references due to read and write barrier, see below. Location old_value; vixl32::Register store_result; vixl32::Register success = return_success ? RegisterFrom(out) : vixl32::Register(); DataType::Type cas_type = value_type; if (value_type == DataType::Type::kFloat64) { vixl32::DRegister expected_vreg = DRegisterFrom(expected); vixl32::DRegister new_value_vreg = DRegisterFrom(new_value); expected = LocationFrom(RegisterFrom(locations->GetTemp(0)), RegisterFrom(locations->GetTemp(1))); new_value = LocationFrom(RegisterFrom(locations->GetTemp(2)), RegisterFrom(locations->GetTemp(3))); store_result = RegisterFrom(locations->GetTemp(4)); old_value = return_success ? LocationFrom(success, store_result) : LocationFrom(RegisterFrom(locations->GetTemp(5)), RegisterFrom(locations->GetTemp(6))); if (byte_swap) { __ Vmov(HighRegisterFrom(expected), LowRegisterFrom(expected), expected_vreg); __ Vmov(HighRegisterFrom(new_value), LowRegisterFrom(new_value), new_value_vreg); GenerateReverseBytesInPlaceForEachWord(assembler, expected); GenerateReverseBytesInPlaceForEachWord(assembler, new_value); } else { __ Vmov(LowRegisterFrom(expected), HighRegisterFrom(expected), expected_vreg); __ Vmov(LowRegisterFrom(new_value), HighRegisterFrom(new_value), new_value_vreg); } cas_type = DataType::Type::kInt64; } else if (value_type == DataType::Type::kFloat32) { vixl32::SRegister expected_vreg = SRegisterFrom(expected); vixl32::SRegister new_value_vreg = SRegisterFrom(new_value); expected = locations->GetTemp(0); new_value = locations->GetTemp(1); store_result = RegisterFrom(locations->GetTemp(2)); old_value = return_success ? LocationFrom(store_result) : locations->GetTemp(3); __ Vmov(RegisterFrom(expected), expected_vreg); __ Vmov(RegisterFrom(new_value), new_value_vreg); if (byte_swap) { GenerateReverseBytes(assembler, DataType::Type::kInt32, expected, expected); GenerateReverseBytes(assembler, DataType::Type::kInt32, new_value, new_value); } cas_type = DataType::Type::kInt32; } else if (value_type == DataType::Type::kInt64) { store_result = RegisterFrom(locations->GetTemp(0)); old_value = return_success ? LocationFrom(success, store_result) // If swapping bytes, swap the high/low regs and reverse the bytes in each after the load. : byte_swap ? LocationFrom(HighRegisterFrom(out), LowRegisterFrom(out)) : out; if (byte_swap) { // Due to lack of registers, reverse bytes in `expected` and `new_value` and undo that later. GenerateReverseBytesInPlaceForEachWord(assembler, expected); expected = LocationFrom(HighRegisterFrom(expected), LowRegisterFrom(expected)); GenerateReverseBytesInPlaceForEachWord(assembler, new_value); new_value = LocationFrom(HighRegisterFrom(new_value), LowRegisterFrom(new_value)); } } else { // Use the last temp. For references with read barriers, this is an extra temporary // allocated to avoid overwriting the temporaries for declaring class (if present) // and offset as they are needed in the slow path. Otherwise, this is the offset // temporary which also works for references without read barriers that need the // object register preserved for the write barrier. store_result = RegisterFrom(locations->GetTemp(locations->GetTempCount() - 1u)); old_value = return_success ? LocationFrom(store_result) : out; if (byte_swap) { DCHECK_EQ(locations->GetTempCount(), 3u); Location original_expected = expected; Location original_new_value = new_value; expected = locations->GetTemp(0); new_value = locations->GetTemp(1); GenerateReverseBytes(assembler, value_type, original_expected, expected); GenerateReverseBytes(assembler, value_type, original_new_value, new_value); } } vixl32::Label exit_loop_label; vixl32::Label* exit_loop = &exit_loop_label; vixl32::Label* cmp_failure = &exit_loop_label; if (kEmitCompilerReadBarrier && value_type == DataType::Type::kReference) { // The `old_value_temp` is used first for the marked `old_value` and then for the unmarked // reloaded old value for subsequent CAS in the slow path. vixl32::Register old_value_temp = store_result; ReadBarrierCasSlowPathARMVIXL* rb_slow_path = new (codegen->GetScopedAllocator()) ReadBarrierCasSlowPathARMVIXL( invoke, strong, target.object, target.offset, RegisterFrom(expected), RegisterFrom(new_value), RegisterFrom(old_value), old_value_temp, store_result, success, codegen); codegen->AddSlowPath(rb_slow_path); exit_loop = rb_slow_path->GetExitLabel(); cmp_failure = rb_slow_path->GetEntryLabel(); } GenerateCompareAndSet(codegen, cas_type, strong, cmp_failure, /*cmp_failure_is_far_target=*/ cmp_failure != &exit_loop_label, tmp_ptr, expected, new_value, old_value, store_result, success); __ Bind(exit_loop); if (acquire_barrier) { codegen->GenerateMemoryBarrier( seq_cst_barrier ? MemBarrierKind::kAnyAny : MemBarrierKind::kLoadAny); } if (!return_success) { if (byte_swap) { if (value_type == DataType::Type::kInt64) { GenerateReverseBytesInPlaceForEachWord(assembler, old_value); // Undo byte swapping in `expected` and `new_value`. We do not have the // information whether the value in these registers shall be needed later. GenerateReverseBytesInPlaceForEachWord(assembler, expected); GenerateReverseBytesInPlaceForEachWord(assembler, new_value); } else { GenerateReverseBytes(assembler, value_type, old_value, out); } } else if (value_type == DataType::Type::kFloat64) { __ Vmov(DRegisterFrom(out), LowRegisterFrom(old_value), HighRegisterFrom(old_value)); } else if (value_type == DataType::Type::kFloat32) { __ Vmov(SRegisterFrom(out), RegisterFrom(old_value)); } } if (CodeGenerator::StoreNeedsWriteBarrier(value_type, invoke->InputAt(new_value_index))) { // Reuse the offset temporary and scratch register for MarkGCCard. vixl32::Register temp = target.offset; vixl32::Register card = tmp_ptr; // Mark card for object assuming new value is stored. bool new_value_can_be_null = true; // TODO: Worth finding out this information? codegen->MarkGCCard(temp, card, target.object, RegisterFrom(new_value), new_value_can_be_null); } if (!byte_swap) { __ Bind(slow_path->GetExitLabel()); } } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleCompareAndExchange(HInvoke* invoke) { CreateVarHandleCompareAndSetOrExchangeLocations(invoke, /*return_success=*/ false); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleCompareAndExchange(HInvoke* invoke) { GenerateVarHandleCompareAndSetOrExchange( invoke, codegen_, std::memory_order_seq_cst, /*return_success=*/ false, /*strong=*/ true); } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleCompareAndExchangeAcquire(HInvoke* invoke) { CreateVarHandleCompareAndSetOrExchangeLocations(invoke, /*return_success=*/ false); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleCompareAndExchangeAcquire(HInvoke* invoke) { GenerateVarHandleCompareAndSetOrExchange( invoke, codegen_, std::memory_order_acquire, /*return_success=*/ false, /*strong=*/ true); } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleCompareAndExchangeRelease(HInvoke* invoke) { CreateVarHandleCompareAndSetOrExchangeLocations(invoke, /*return_success=*/ false); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleCompareAndExchangeRelease(HInvoke* invoke) { GenerateVarHandleCompareAndSetOrExchange( invoke, codegen_, std::memory_order_release, /*return_success=*/ false, /*strong=*/ true); } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleCompareAndSet(HInvoke* invoke) { CreateVarHandleCompareAndSetOrExchangeLocations(invoke, /*return_success=*/ true); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleCompareAndSet(HInvoke* invoke) { GenerateVarHandleCompareAndSetOrExchange( invoke, codegen_, std::memory_order_seq_cst, /*return_success=*/ true, /*strong=*/ true); } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleWeakCompareAndSet(HInvoke* invoke) { CreateVarHandleCompareAndSetOrExchangeLocations(invoke, /*return_success=*/ true); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleWeakCompareAndSet(HInvoke* invoke) { GenerateVarHandleCompareAndSetOrExchange( invoke, codegen_, std::memory_order_seq_cst, /*return_success=*/ true, /*strong=*/ false); } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleWeakCompareAndSetAcquire(HInvoke* invoke) { CreateVarHandleCompareAndSetOrExchangeLocations(invoke, /*return_success=*/ true); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleWeakCompareAndSetAcquire(HInvoke* invoke) { GenerateVarHandleCompareAndSetOrExchange( invoke, codegen_, std::memory_order_acquire, /*return_success=*/ true, /*strong=*/ false); } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleWeakCompareAndSetPlain(HInvoke* invoke) { CreateVarHandleCompareAndSetOrExchangeLocations(invoke, /*return_success=*/ true); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleWeakCompareAndSetPlain(HInvoke* invoke) { GenerateVarHandleCompareAndSetOrExchange( invoke, codegen_, std::memory_order_relaxed, /*return_success=*/ true, /*strong=*/ false); } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleWeakCompareAndSetRelease(HInvoke* invoke) { CreateVarHandleCompareAndSetOrExchangeLocations(invoke, /*return_success=*/ true); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleWeakCompareAndSetRelease(HInvoke* invoke) { GenerateVarHandleCompareAndSetOrExchange( invoke, codegen_, std::memory_order_release, /*return_success=*/ true, /*strong=*/ false); } static void CreateVarHandleGetAndUpdateLocations(HInvoke* invoke, GetAndUpdateOp get_and_update_op) { if (!HasVarHandleIntrinsicImplementation(invoke)) { return; } if ((kEmitCompilerReadBarrier && !kUseBakerReadBarrier) && invoke->GetType() == DataType::Type::kReference) { // Unsupported for non-Baker read barrier because the artReadBarrierSlow() ignores // the passed reference and reloads it from the field, thus seeing the new value // that we have just stored. (And it also gets the memory visibility wrong.) b/173104084 return; } LocationSummary* locations = CreateVarHandleCommonLocations(invoke); // We can reuse the declaring class (if present) and offset temporary, except for // non-Baker read barriers that need them for the slow path. DCHECK_EQ(locations->GetTempCount(), (GetExpectedVarHandleCoordinatesCount(invoke) == 0) ? 2u : 1u); DataType::Type value_type = invoke->GetType(); if (get_and_update_op == GetAndUpdateOp::kSet) { if (DataType::IsFloatingPointType(value_type)) { // Add temps needed to do the GenerateGetAndUpdate() with core registers. size_t temps_needed = (value_type == DataType::Type::kFloat64) ? 5u : 3u; locations->AddRegisterTemps(temps_needed - locations->GetTempCount()); } else if ((kEmitCompilerReadBarrier && !kUseBakerReadBarrier) && value_type == DataType::Type::kReference) { // We need to preserve the declaring class (if present) and offset for read barrier // slow paths, so we must use a separate temporary for the exclusive store result. locations->AddTemp(Location::RequiresRegister()); } else if (GetExpectedVarHandleCoordinatesCount(invoke) == 2u) { // Add temps for the byte-reversed `arg` in the byte array view slow path. DCHECK_EQ(locations->GetTempCount(), 1u); locations->AddRegisterTemps((value_type == DataType::Type::kInt64) ? 2u : 1u); } } else { // We need temporaries for the new value and exclusive store result. size_t temps_needed = DataType::Is64BitType(value_type) ? 3u : 2u; if (get_and_update_op != GetAndUpdateOp::kAdd && GetExpectedVarHandleCoordinatesCount(invoke) == 2u) { // Add temps for the byte-reversed `arg` in the byte array view slow path. if (value_type == DataType::Type::kInt64) { // We would ideally add 2 temps for Int64 but that would simply run out of registers, // so we instead need to reverse bytes in the actual argument and undo it at the end. } else { temps_needed += 1u; } } locations->AddRegisterTemps(temps_needed - locations->GetTempCount()); if (DataType::IsFloatingPointType(value_type)) { // Note: This shall allocate a D register. There is no way to request an S register. locations->AddTemp(Location::RequiresFpuRegister()); } } } static void GenerateVarHandleGetAndUpdate(HInvoke* invoke, CodeGeneratorARMVIXL* codegen, GetAndUpdateOp get_and_update_op, std::memory_order order, bool byte_swap = false) { uint32_t arg_index = invoke->GetNumberOfArguments() - 1; DataType::Type value_type = GetDataTypeFromShorty(invoke, arg_index); ArmVIXLAssembler* assembler = codegen->GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Location arg = locations->InAt(arg_index); Location out = locations->Out(); VarHandleTarget target = GetVarHandleTarget(invoke); VarHandleSlowPathARMVIXL* slow_path = nullptr; if (!byte_swap) { slow_path = GenerateVarHandleChecks(invoke, codegen, order, value_type); slow_path->SetGetAndUpdateOp(get_and_update_op); GenerateVarHandleTarget(invoke, target, codegen); __ Bind(slow_path->GetNativeByteOrderLabel()); } bool seq_cst_barrier = (order == std::memory_order_seq_cst); bool release_barrier = seq_cst_barrier || (order == std::memory_order_release); bool acquire_barrier = seq_cst_barrier || (order == std::memory_order_acquire); DCHECK(release_barrier || acquire_barrier || order == std::memory_order_relaxed); if (release_barrier) { codegen->GenerateMemoryBarrier( seq_cst_barrier ? MemBarrierKind::kAnyAny : MemBarrierKind::kAnyStore); } // Use the scratch register for the pointer to the target location. UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); vixl32::Register tmp_ptr = temps.Acquire(); __ Add(tmp_ptr, target.object, target.offset); // Use the offset temporary for the exclusive store result. vixl32::Register store_result = target.offset; // The load/store type is never floating point. DataType::Type load_store_type = DataType::IsFloatingPointType(value_type) ? ((value_type == DataType::Type::kFloat32) ? DataType::Type::kInt32 : DataType::Type::kInt64) : value_type; // Prepare register for old value and temporaries if any. Location old_value = out; Location maybe_temp = Location::NoLocation(); Location maybe_vreg_temp = Location::NoLocation(); if (get_and_update_op == GetAndUpdateOp::kSet) { // For floating point GetAndSet, do the GenerateGetAndUpdate() with core registers, // rather than moving between core and FP registers in the loop. if (value_type == DataType::Type::kFloat64) { vixl32::DRegister arg_vreg = DRegisterFrom(arg); DCHECK_EQ(locations->GetTempCount(), 5u); // `store_result` and the four here. old_value = LocationFrom(RegisterFrom(locations->GetTemp(1)), RegisterFrom(locations->GetTemp(2))); arg = LocationFrom(RegisterFrom(locations->GetTemp(3)), RegisterFrom(locations->GetTemp(4))); if (byte_swap) { __ Vmov(HighRegisterFrom(arg), LowRegisterFrom(arg), arg_vreg); GenerateReverseBytesInPlaceForEachWord(assembler, arg); } else { __ Vmov(LowRegisterFrom(arg), HighRegisterFrom(arg), arg_vreg); } } else if (value_type == DataType::Type::kFloat32) { vixl32::SRegister arg_vreg = SRegisterFrom(arg); DCHECK_EQ(locations->GetTempCount(), 3u); // `store_result` and the two here. old_value = locations->GetTemp(1); arg = locations->GetTemp(2); __ Vmov(RegisterFrom(arg), arg_vreg); if (byte_swap) { GenerateReverseBytes(assembler, DataType::Type::kInt32, arg, arg); } } else if (kEmitCompilerReadBarrier && value_type == DataType::Type::kReference) { if (kUseBakerReadBarrier) { // Load the old value initially to a temporary register. // We shall move it to `out` later with a read barrier. old_value = LocationFrom(store_result); store_result = RegisterFrom(out); // Use the `out` for the exclusive store result. } else { // The store_result is a separate temporary. DCHECK(!store_result.Is(target.object)); DCHECK(!store_result.Is(target.offset)); } } else if (byte_swap) { Location original_arg = arg; arg = locations->GetTemp(1); if (value_type == DataType::Type::kInt64) { arg = LocationFrom(RegisterFrom(arg), RegisterFrom(locations->GetTemp(2))); // Swap the high/low regs and reverse the bytes in each after the load. old_value = LocationFrom(HighRegisterFrom(out), LowRegisterFrom(out)); } GenerateReverseBytes(assembler, value_type, original_arg, arg); } } else { maybe_temp = DataType::Is64BitType(value_type) ? LocationFrom(RegisterFrom(locations->GetTemp(1)), RegisterFrom(locations->GetTemp(2))) : locations->GetTemp(1); DCHECK(!maybe_temp.Contains(LocationFrom(store_result))); if (DataType::IsFloatingPointType(value_type)) { maybe_vreg_temp = locations->GetTemp(locations->GetTempCount() - 1u); DCHECK(maybe_vreg_temp.IsFpuRegisterPair()); } if (byte_swap) { if (get_and_update_op == GetAndUpdateOp::kAdd) { // We need to do the byte swapping in the CAS loop for GetAndAdd. get_and_update_op = GetAndUpdateOp::kAddWithByteSwap; } else if (value_type == DataType::Type::kInt64) { // Swap the high/low regs and reverse the bytes in each after the load. old_value = LocationFrom(HighRegisterFrom(out), LowRegisterFrom(out)); // Due to lack of registers, reverse bytes in `arg` and undo that later. GenerateReverseBytesInPlaceForEachWord(assembler, arg); arg = LocationFrom(HighRegisterFrom(arg), LowRegisterFrom(arg)); } else { DCHECK(!DataType::IsFloatingPointType(value_type)); Location original_arg = arg; arg = locations->GetTemp(2); DCHECK(!arg.Contains(LocationFrom(store_result))); GenerateReverseBytes(assembler, value_type, original_arg, arg); } } } GenerateGetAndUpdate(codegen, get_and_update_op, load_store_type, tmp_ptr, arg, old_value, store_result, maybe_temp, maybe_vreg_temp); if (acquire_barrier) { codegen->GenerateMemoryBarrier( seq_cst_barrier ? MemBarrierKind::kAnyAny : MemBarrierKind::kLoadAny); } if (byte_swap && get_and_update_op != GetAndUpdateOp::kAddWithByteSwap) { if (value_type == DataType::Type::kInt64) { GenerateReverseBytesInPlaceForEachWord(assembler, old_value); if (get_and_update_op != GetAndUpdateOp::kSet) { // Undo byte swapping in `arg`. We do not have the information // whether the value in these registers shall be needed later. GenerateReverseBytesInPlaceForEachWord(assembler, arg); } } else { GenerateReverseBytes(assembler, value_type, old_value, out); } } else if (get_and_update_op == GetAndUpdateOp::kSet && DataType::IsFloatingPointType(value_type)) { if (value_type == DataType::Type::kFloat64) { __ Vmov(DRegisterFrom(out), LowRegisterFrom(old_value), HighRegisterFrom(old_value)); } else { __ Vmov(SRegisterFrom(out), RegisterFrom(old_value)); } } else if (kEmitCompilerReadBarrier && value_type == DataType::Type::kReference) { if (kUseBakerReadBarrier) { codegen->GenerateIntrinsicCasMoveWithBakerReadBarrier(RegisterFrom(out), RegisterFrom(old_value)); } else { codegen->GenerateReadBarrierSlow( invoke, Location::RegisterLocation(RegisterFrom(out).GetCode()), Location::RegisterLocation(RegisterFrom(old_value).GetCode()), Location::RegisterLocation(target.object.GetCode()), /*offset=*/ 0u, /*index=*/ Location::RegisterLocation(target.offset.GetCode())); } } if (CodeGenerator::StoreNeedsWriteBarrier(value_type, invoke->InputAt(arg_index))) { // Reuse the offset temporary and scratch register for MarkGCCard. vixl32::Register temp = target.offset; vixl32::Register card = tmp_ptr; // Mark card for object assuming new value is stored. bool new_value_can_be_null = true; // TODO: Worth finding out this information? codegen->MarkGCCard(temp, card, target.object, RegisterFrom(arg), new_value_can_be_null); } if (!byte_swap) { __ Bind(slow_path->GetExitLabel()); } } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleGetAndSet(HInvoke* invoke) { CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kSet); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleGetAndSet(HInvoke* invoke) { GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kSet, std::memory_order_seq_cst); } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleGetAndSetAcquire(HInvoke* invoke) { CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kSet); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleGetAndSetAcquire(HInvoke* invoke) { GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kSet, std::memory_order_acquire); } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleGetAndSetRelease(HInvoke* invoke) { CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kSet); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleGetAndSetRelease(HInvoke* invoke) { GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kSet, std::memory_order_release); } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleGetAndAdd(HInvoke* invoke) { CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kAdd); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleGetAndAdd(HInvoke* invoke) { GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kAdd, std::memory_order_seq_cst); } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleGetAndAddAcquire(HInvoke* invoke) { CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kAdd); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleGetAndAddAcquire(HInvoke* invoke) { GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kAdd, std::memory_order_acquire); } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleGetAndAddRelease(HInvoke* invoke) { CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kAdd); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleGetAndAddRelease(HInvoke* invoke) { GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kAdd, std::memory_order_release); } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleGetAndBitwiseAnd(HInvoke* invoke) { CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kAnd); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleGetAndBitwiseAnd(HInvoke* invoke) { GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kAnd, std::memory_order_seq_cst); } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleGetAndBitwiseAndAcquire(HInvoke* invoke) { CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kAnd); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleGetAndBitwiseAndAcquire(HInvoke* invoke) { GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kAnd, std::memory_order_acquire); } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleGetAndBitwiseAndRelease(HInvoke* invoke) { CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kAnd); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleGetAndBitwiseAndRelease(HInvoke* invoke) { GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kAnd, std::memory_order_release); } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleGetAndBitwiseOr(HInvoke* invoke) { CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kOr); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleGetAndBitwiseOr(HInvoke* invoke) { GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kOr, std::memory_order_seq_cst); } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleGetAndBitwiseOrAcquire(HInvoke* invoke) { CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kOr); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleGetAndBitwiseOrAcquire(HInvoke* invoke) { GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kOr, std::memory_order_acquire); } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleGetAndBitwiseOrRelease(HInvoke* invoke) { CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kOr); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleGetAndBitwiseOrRelease(HInvoke* invoke) { GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kOr, std::memory_order_release); } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleGetAndBitwiseXor(HInvoke* invoke) { CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kXor); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleGetAndBitwiseXor(HInvoke* invoke) { GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kXor, std::memory_order_seq_cst); } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleGetAndBitwiseXorAcquire(HInvoke* invoke) { CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kXor); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleGetAndBitwiseXorAcquire(HInvoke* invoke) { GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kXor, std::memory_order_acquire); } void IntrinsicLocationsBuilderARMVIXL::VisitVarHandleGetAndBitwiseXorRelease(HInvoke* invoke) { CreateVarHandleGetAndUpdateLocations(invoke, GetAndUpdateOp::kXor); } void IntrinsicCodeGeneratorARMVIXL::VisitVarHandleGetAndBitwiseXorRelease(HInvoke* invoke) { GenerateVarHandleGetAndUpdate(invoke, codegen_, GetAndUpdateOp::kXor, std::memory_order_release); } void VarHandleSlowPathARMVIXL::EmitByteArrayViewCode(CodeGenerator* codegen_in) { DCHECK(GetByteArrayViewCheckLabel()->IsReferenced()); CodeGeneratorARMVIXL* codegen = down_cast(codegen_in); ArmVIXLAssembler* assembler = codegen->GetAssembler(); HInvoke* invoke = GetInvoke(); mirror::VarHandle::AccessModeTemplate access_mode_template = GetAccessModeTemplate(); DataType::Type value_type = GetVarHandleExpectedValueType(invoke, /*expected_coordinates_count=*/ 2u); DCHECK_NE(value_type, DataType::Type::kReference); size_t size = DataType::Size(value_type); DCHECK_GT(size, 1u); vixl32::Operand size_operand(dchecked_integral_cast(size)); vixl32::Register varhandle = InputRegisterAt(invoke, 0); vixl32::Register object = InputRegisterAt(invoke, 1); vixl32::Register index = InputRegisterAt(invoke, 2); MemberOffset class_offset = mirror::Object::ClassOffset(); MemberOffset array_length_offset = mirror::Array::LengthOffset(); MemberOffset data_offset = mirror::Array::DataOffset(Primitive::kPrimByte); MemberOffset native_byte_order_offset = mirror::ByteArrayViewVarHandle::NativeByteOrderOffset(); __ Bind(GetByteArrayViewCheckLabel()); VarHandleTarget target = GetVarHandleTarget(invoke); { // Use the offset temporary register. It is not used yet at this point. vixl32::Register temp = RegisterFrom(invoke->GetLocations()->GetTemp(0u)); UseScratchRegisterScope temps(assembler->GetVIXLAssembler()); vixl32::Register temp2 = temps.Acquire(); // The main path checked that the coordinateType0 is an array class that matches // the class of the actual coordinate argument but it does not match the value type. // Check if the `varhandle` references a ByteArrayViewVarHandle instance. __ Ldr(temp, MemOperand(varhandle, class_offset.Int32Value())); codegen->LoadClassRootForIntrinsic(temp2, ClassRoot::kJavaLangInvokeByteArrayViewVarHandle); __ Cmp(temp, temp2); __ B(ne, GetEntryLabel()); // Check for array index out of bounds. __ Ldr(temp, MemOperand(object, array_length_offset.Int32Value())); if (!temp.IsLow()) { // Avoid using the 32-bit `cmp temp, #imm` in IT block by loading `size` into `temp2`. __ Mov(temp2, size_operand); } __ Subs(temp, temp, index); { // Use ExactAssemblyScope here because we are using IT. ExactAssemblyScope it_scope(assembler->GetVIXLAssembler(), 2 * k16BitT32InstructionSizeInBytes); __ it(hs); if (temp.IsLow()) { __ cmp(hs, temp, size_operand); } else { __ cmp(hs, temp, temp2); } } __ B(lo, GetEntryLabel()); // Construct the target. __ Add(target.offset, index, data_offset.Int32Value()); // Note: `temp` cannot be used below. // Alignment check. For unaligned access, go to the runtime. DCHECK(IsPowerOfTwo(size)); __ Tst(target.offset, dchecked_integral_cast(size - 1u)); __ B(ne, GetEntryLabel()); // Byte order check. For native byte order return to the main path. if (access_mode_template == mirror::VarHandle::AccessModeTemplate::kSet) { HInstruction* arg = invoke->InputAt(invoke->GetNumberOfArguments() - 1u); if (arg->IsConstant() && arg->AsConstant()->IsZeroBitPattern()) { // There is no reason to differentiate between native byte order and byte-swap // for setting a zero bit pattern. Just return to the main path. __ B(GetNativeByteOrderLabel()); return; } } __ Ldr(temp2, MemOperand(varhandle, native_byte_order_offset.Int32Value())); __ Cmp(temp2, 0); __ B(ne, GetNativeByteOrderLabel()); } switch (access_mode_template) { case mirror::VarHandle::AccessModeTemplate::kGet: GenerateVarHandleGet(invoke, codegen, order_, atomic_, /*byte_swap=*/ true); break; case mirror::VarHandle::AccessModeTemplate::kSet: GenerateVarHandleSet(invoke, codegen, order_, atomic_, /*byte_swap=*/ true); break; case mirror::VarHandle::AccessModeTemplate::kCompareAndSet: case mirror::VarHandle::AccessModeTemplate::kCompareAndExchange: GenerateVarHandleCompareAndSetOrExchange( invoke, codegen, order_, return_success_, strong_, /*byte_swap=*/ true); break; case mirror::VarHandle::AccessModeTemplate::kGetAndUpdate: GenerateVarHandleGetAndUpdate( invoke, codegen, get_and_update_op_, order_, /*byte_swap=*/ true); break; } __ B(GetExitLabel()); } UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathRoundDouble) // Could be done by changing rounding mode, maybe? UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeCASLong) // High register pressure. UNIMPLEMENTED_INTRINSIC(ARMVIXL, SystemArrayCopyChar) UNIMPLEMENTED_INTRINSIC(ARMVIXL, LongDivideUnsigned) UNIMPLEMENTED_INTRINSIC(ARMVIXL, CRC32Update) UNIMPLEMENTED_INTRINSIC(ARMVIXL, CRC32UpdateBytes) UNIMPLEMENTED_INTRINSIC(ARMVIXL, CRC32UpdateByteBuffer) UNIMPLEMENTED_INTRINSIC(ARMVIXL, FP16ToFloat) UNIMPLEMENTED_INTRINSIC(ARMVIXL, FP16ToHalf) UNIMPLEMENTED_INTRINSIC(ARMVIXL, FP16Floor) UNIMPLEMENTED_INTRINSIC(ARMVIXL, FP16Ceil) UNIMPLEMENTED_INTRINSIC(ARMVIXL, FP16Rint) UNIMPLEMENTED_INTRINSIC(ARMVIXL, FP16Greater) UNIMPLEMENTED_INTRINSIC(ARMVIXL, FP16GreaterEquals) UNIMPLEMENTED_INTRINSIC(ARMVIXL, FP16Less) UNIMPLEMENTED_INTRINSIC(ARMVIXL, FP16LessEquals) UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathMultiplyHigh) UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringStringIndexOf); UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringStringIndexOfAfter); UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBufferAppend); UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBufferLength); UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBufferToString); UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendObject); UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendString); UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendCharSequence); UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendCharArray); UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendBoolean); UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendChar); UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendInt); UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendLong); UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendFloat); UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendDouble); UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderLength); UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderToString); // 1.8. UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndAddInt) UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndAddLong) UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndSetInt) UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndSetLong) UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndSetObject) UNIMPLEMENTED_INTRINSIC(ARMVIXL, MethodHandleInvokeExact) UNIMPLEMENTED_INTRINSIC(ARMVIXL, MethodHandleInvoke) UNREACHABLE_INTRINSICS(ARMVIXL) #undef __ } // namespace arm } // namespace art