/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_OPTIMIZING_OPTIMIZING_UNIT_TEST_H_ #define ART_COMPILER_OPTIMIZING_OPTIMIZING_UNIT_TEST_H_ #include #include #include #include #include #include #include #include "base/indenter.h" #include "base/malloc_arena_pool.h" #include "base/scoped_arena_allocator.h" #include "builder.h" #include "common_compiler_test.h" #include "dex/code_item_accessors-inl.h" #include "dex/dex_file.h" #include "dex/dex_instruction.h" #include "dex/standard_dex_file.h" #include "driver/dex_compilation_unit.h" #include "graph_checker.h" #include "gtest/gtest.h" #include "handle_scope-inl.h" #include "handle_scope.h" #include "mirror/class_loader.h" #include "mirror/dex_cache.h" #include "nodes.h" #include "scoped_thread_state_change.h" #include "ssa_builder.h" #include "ssa_liveness_analysis.h" namespace art { #define NUM_INSTRUCTIONS(...) \ (sizeof((uint16_t[]) {__VA_ARGS__}) /sizeof(uint16_t)) #define N_REGISTERS_CODE_ITEM(NUM_REGS, ...) \ { NUM_REGS, 0, 0, 0, 0, 0, NUM_INSTRUCTIONS(__VA_ARGS__), 0, __VA_ARGS__ } #define ZERO_REGISTER_CODE_ITEM(...) N_REGISTERS_CODE_ITEM(0, __VA_ARGS__) #define ONE_REGISTER_CODE_ITEM(...) N_REGISTERS_CODE_ITEM(1, __VA_ARGS__) #define TWO_REGISTERS_CODE_ITEM(...) N_REGISTERS_CODE_ITEM(2, __VA_ARGS__) #define THREE_REGISTERS_CODE_ITEM(...) N_REGISTERS_CODE_ITEM(3, __VA_ARGS__) #define FOUR_REGISTERS_CODE_ITEM(...) N_REGISTERS_CODE_ITEM(4, __VA_ARGS__) #define FIVE_REGISTERS_CODE_ITEM(...) N_REGISTERS_CODE_ITEM(5, __VA_ARGS__) #define SIX_REGISTERS_CODE_ITEM(...) N_REGISTERS_CODE_ITEM(6, __VA_ARGS__) struct InstructionDumper { public: HInstruction* ins_; }; inline bool operator==(const InstructionDumper& a, const InstructionDumper& b) { return a.ins_ == b.ins_; } inline bool operator!=(const InstructionDumper& a, const InstructionDumper& b) { return !(a == b); } inline std::ostream& operator<<(std::ostream& os, const InstructionDumper& id) { if (id.ins_ == nullptr) { return os << "NULL"; } else { return os << "(" << id.ins_ << "): " << id.ins_->DumpWithArgs(); } } #define EXPECT_INS_EQ(a, b) EXPECT_EQ(InstructionDumper{a}, InstructionDumper{b}) #define EXPECT_INS_REMOVED(a) EXPECT_TRUE(IsRemoved(a)) << "Not removed: " << (InstructionDumper{a}) #define EXPECT_INS_RETAINED(a) EXPECT_FALSE(IsRemoved(a)) << "Removed: " << (InstructionDumper{a}) #define ASSERT_INS_EQ(a, b) ASSERT_EQ(InstructionDumper{a}, InstructionDumper{b}) #define ASSERT_INS_REMOVED(a) ASSERT_TRUE(IsRemoved(a)) << "Not removed: " << (InstructionDumper{a}) #define ASSERT_INS_RETAINED(a) ASSERT_FALSE(IsRemoved(a)) << "Removed: " << (InstructionDumper{a}) inline LiveInterval* BuildInterval(const size_t ranges[][2], size_t number_of_ranges, ScopedArenaAllocator* allocator, int reg = -1, HInstruction* defined_by = nullptr) { LiveInterval* interval = LiveInterval::MakeInterval(allocator, DataType::Type::kInt32, defined_by); if (defined_by != nullptr) { defined_by->SetLiveInterval(interval); } for (size_t i = number_of_ranges; i > 0; --i) { interval->AddRange(ranges[i - 1][0], ranges[i - 1][1]); } interval->SetRegister(reg); return interval; } inline void RemoveSuspendChecks(HGraph* graph) { for (HBasicBlock* block : graph->GetBlocks()) { if (block != nullptr) { if (block->GetLoopInformation() != nullptr) { block->GetLoopInformation()->SetSuspendCheck(nullptr); } for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { HInstruction* current = it.Current(); if (current->IsSuspendCheck()) { current->GetBlock()->RemoveInstruction(current); } } } } } class ArenaPoolAndAllocator { public: ArenaPoolAndAllocator() : pool_(), allocator_(&pool_), arena_stack_(&pool_), scoped_allocator_(&arena_stack_) { } ArenaAllocator* GetAllocator() { return &allocator_; } ArenaStack* GetArenaStack() { return &arena_stack_; } ScopedArenaAllocator* GetScopedAllocator() { return &scoped_allocator_; } private: MallocArenaPool pool_; ArenaAllocator allocator_; ArenaStack arena_stack_; ScopedArenaAllocator scoped_allocator_; }; class AdjacencyListGraph { public: using Edge = std::pair; AdjacencyListGraph( HGraph* graph, ArenaAllocator* alloc, const std::string_view entry_name, const std::string_view exit_name, const std::vector& adj) : graph_(graph) { auto create_block = [&]() { HBasicBlock* blk = new (alloc) HBasicBlock(graph_); graph_->AddBlock(blk); return blk; }; HBasicBlock* entry = create_block(); HBasicBlock* exit = create_block(); graph_->SetEntryBlock(entry); graph_->SetExitBlock(exit); name_to_block_.Put(entry_name, entry); name_to_block_.Put(exit_name, exit); for (const auto& [src, dest] : adj) { HBasicBlock* src_blk = name_to_block_.GetOrCreate(src, create_block); HBasicBlock* dest_blk = name_to_block_.GetOrCreate(dest, create_block); src_blk->AddSuccessor(dest_blk); } graph_->ClearReachabilityInformation(); graph_->ComputeDominanceInformation(); graph_->ComputeReachabilityInformation(); for (auto [name, blk] : name_to_block_) { block_to_name_.Put(blk, name); } } bool HasBlock(const HBasicBlock* blk) const { return block_to_name_.find(blk) != block_to_name_.end(); } std::string_view GetName(const HBasicBlock* blk) const { return block_to_name_.Get(blk); } HBasicBlock* Get(const std::string_view& sv) const { return name_to_block_.Get(sv); } AdjacencyListGraph(AdjacencyListGraph&&) = default; AdjacencyListGraph(const AdjacencyListGraph&) = default; AdjacencyListGraph& operator=(AdjacencyListGraph&&) = default; AdjacencyListGraph& operator=(const AdjacencyListGraph&) = default; std::ostream& Dump(std::ostream& os) const { struct Namer : public BlockNamer { public: explicit Namer(const AdjacencyListGraph& alg) : BlockNamer(), alg_(alg) {} std::ostream& PrintName(std::ostream& os, HBasicBlock* blk) const override { if (alg_.HasBlock(blk)) { return os << alg_.GetName(blk) << " (" << blk->GetBlockId() << ")"; } else { return os << "GetBlockId() << ">"; } } const AdjacencyListGraph& alg_; }; Namer namer(*this); return graph_->Dump(os, namer); } private: HGraph* graph_; SafeMap name_to_block_; SafeMap block_to_name_; }; // Have a separate helper so the OptimizingCFITest can inherit it without causing // multiple inheritance errors from having two gtest as a parent twice. class OptimizingUnitTestHelper { public: OptimizingUnitTestHelper() : pool_and_allocator_(new ArenaPoolAndAllocator()), graph_(nullptr), entry_block_(nullptr), return_block_(nullptr), exit_block_(nullptr) { } ArenaAllocator* GetAllocator() { return pool_and_allocator_->GetAllocator(); } ArenaStack* GetArenaStack() { return pool_and_allocator_->GetArenaStack(); } ScopedArenaAllocator* GetScopedAllocator() { return pool_and_allocator_->GetScopedAllocator(); } void ResetPoolAndAllocator() { pool_and_allocator_.reset(new ArenaPoolAndAllocator()); } HGraph* CreateGraph(VariableSizedHandleScope* handles = nullptr) { ArenaAllocator* const allocator = pool_and_allocator_->GetAllocator(); // Reserve a big array of 0s so the dex file constructor can offsets from the header. static constexpr size_t kDexDataSize = 4 * KB; const uint8_t* dex_data = reinterpret_cast(allocator->Alloc(kDexDataSize)); // Create the dex file based on the fake data. Call the constructor so that we can use virtual // functions. Don't use the arena for the StandardDexFile otherwise the dex location leaks. dex_files_.emplace_back(new StandardDexFile( dex_data, sizeof(StandardDexFile::Header), "no_location", /*location_checksum*/ 0, /*oat_dex_file*/ nullptr, /*container*/ nullptr)); graph_ = new (allocator) HGraph( allocator, pool_and_allocator_->GetArenaStack(), handles, *dex_files_.back(), /*method_idx*/-1, kRuntimeISA); return graph_; } // Create a control-flow graph from Dex instructions. HGraph* CreateCFG(const std::vector& data, DataType::Type return_type = DataType::Type::kInt32, VariableSizedHandleScope* handles = nullptr) { HGraph* graph = CreateGraph(handles); // The code item data might not aligned to 4 bytes, copy it to ensure that. const size_t code_item_size = data.size() * sizeof(data.front()); void* aligned_data = GetAllocator()->Alloc(code_item_size); memcpy(aligned_data, &data[0], code_item_size); CHECK_ALIGNED(aligned_data, StandardDexFile::CodeItem::kAlignment); const dex::CodeItem* code_item = reinterpret_cast(aligned_data); { const DexCompilationUnit* dex_compilation_unit = new (graph->GetAllocator()) DexCompilationUnit( /* class_loader= */ Handle(), // Invalid handle. /* class_linker= */ nullptr, graph->GetDexFile(), code_item, /* class_def_index= */ DexFile::kDexNoIndex16, /* method_idx= */ dex::kDexNoIndex, /* access_flags= */ 0u, /* verified_method= */ nullptr, /* dex_cache= */ Handle()); // Invalid handle. CodeItemDebugInfoAccessor accessor(graph->GetDexFile(), code_item, /*dex_method_idx*/ 0u); HGraphBuilder builder(graph, dex_compilation_unit, accessor, return_type); bool graph_built = (builder.BuildGraph() == kAnalysisSuccess); return graph_built ? graph : nullptr; } } void InitGraph(VariableSizedHandleScope* handles = nullptr) { CreateGraph(handles); entry_block_ = AddNewBlock(); return_block_ = AddNewBlock(); exit_block_ = AddNewBlock(); graph_->SetEntryBlock(entry_block_); graph_->SetExitBlock(exit_block_); entry_block_->AddSuccessor(return_block_); return_block_->AddSuccessor(exit_block_); return_block_->AddInstruction(new (GetAllocator()) HReturnVoid()); exit_block_->AddInstruction(new (GetAllocator()) HExit()); } void AddParameter(HInstruction* parameter) { entry_block_->AddInstruction(parameter); parameters_.push_back(parameter); } HBasicBlock* AddNewBlock() { HBasicBlock* block = new (GetAllocator()) HBasicBlock(graph_); graph_->AddBlock(block); return block; } // Run GraphChecker with all checks. // // Return: the status whether the run is successful. bool CheckGraph(HGraph* graph, std::ostream& oss = std::cerr) { return CheckGraph(graph, /*check_ref_type_info=*/true, oss); } bool CheckGraph(std::ostream& oss = std::cerr) { return CheckGraph(graph_, oss); } // Run GraphChecker with all checks except reference type information checks. // // Return: the status whether the run is successful. bool CheckGraphSkipRefTypeInfoChecks(HGraph* graph, std::ostream& oss = std::cerr) { return CheckGraph(graph, /*check_ref_type_info=*/false, oss); } bool CheckGraphSkipRefTypeInfoChecks(std::ostream& oss = std::cerr) { return CheckGraphSkipRefTypeInfoChecks(graph_, oss); } HEnvironment* ManuallyBuildEnvFor(HInstruction* instruction, ArenaVector* current_locals) { HEnvironment* environment = new (GetAllocator()) HEnvironment( (GetAllocator()), current_locals->size(), graph_->GetArtMethod(), instruction->GetDexPc(), instruction); environment->CopyFrom(ArrayRef(*current_locals)); instruction->SetRawEnvironment(environment); return environment; } void EnsurePredecessorOrder(HBasicBlock* target, std::initializer_list preds) { // Make sure the given preds and block predecessors have the same blocks. BitVector bv(preds.size(), false, Allocator::GetMallocAllocator()); auto preds_and_idx = ZipCount(MakeIterationRange(target->GetPredecessors())); bool correct_preds = preds.size() == target->GetPredecessors().size() && std::all_of(preds.begin(), preds.end(), [&](HBasicBlock* pred) { return std::any_of(preds_and_idx.begin(), preds_and_idx.end(), // Make sure every target predecessor is used only // once. [&](std::pair cur) { if (cur.first == pred && !bv.IsBitSet(cur.second)) { bv.SetBit(cur.second); return true; } else { return false; } }); }) && bv.NumSetBits() == preds.size(); auto dump_list = [](auto it) { std::ostringstream oss; oss << "["; bool first = true; for (HBasicBlock* b : it) { if (!first) { oss << ", "; } first = false; oss << b->GetBlockId(); } oss << "]"; return oss.str(); }; ASSERT_TRUE(correct_preds) << "Predecessors of " << target->GetBlockId() << " are " << dump_list(target->GetPredecessors()) << " not " << dump_list(preds); if (correct_preds) { std::copy(preds.begin(), preds.end(), target->predecessors_.begin()); } } AdjacencyListGraph SetupFromAdjacencyList(const std::string_view entry_name, const std::string_view exit_name, const std::vector& adj) { return AdjacencyListGraph(graph_, GetAllocator(), entry_name, exit_name, adj); } void ManuallyBuildEnvFor(HInstruction* ins, const std::initializer_list& env) { ArenaVector current_locals(env, GetAllocator()->Adapter(kArenaAllocInstruction)); OptimizingUnitTestHelper::ManuallyBuildEnvFor(ins, ¤t_locals); } HLoadClass* MakeClassLoad(std::optional ti = std::nullopt, std::optional> klass = std::nullopt) { return new (GetAllocator()) HLoadClass(graph_->GetCurrentMethod(), ti ? *ti : dex::TypeIndex(class_idx_++), graph_->GetDexFile(), /* klass= */ klass ? *klass : null_klass_, /* is_referrers_class= */ false, /* dex_pc= */ 0, /* needs_access_check= */ false); } HNewInstance* MakeNewInstance(HInstruction* cls, uint32_t dex_pc = 0u) { EXPECT_TRUE(cls->IsLoadClass() || cls->IsClinitCheck()) << *cls; HLoadClass* load = cls->IsLoadClass() ? cls->AsLoadClass() : cls->AsClinitCheck()->GetLoadClass(); return new (GetAllocator()) HNewInstance(cls, dex_pc, load->GetTypeIndex(), graph_->GetDexFile(), /* finalizable= */ false, QuickEntrypointEnum::kQuickAllocObjectInitialized); } HInstanceFieldSet* MakeIFieldSet(HInstruction* inst, HInstruction* data, MemberOffset off, uint32_t dex_pc = 0u) { return new (GetAllocator()) HInstanceFieldSet(inst, data, /* field= */ nullptr, /* field_type= */ data->GetType(), /* field_offset= */ off, /* is_volatile= */ false, /* field_idx= */ 0, /* declaring_class_def_index= */ 0, graph_->GetDexFile(), dex_pc); } HInstanceFieldGet* MakeIFieldGet(HInstruction* inst, DataType::Type type, MemberOffset off, uint32_t dex_pc = 0u) { return new (GetAllocator()) HInstanceFieldGet(inst, /* field= */ nullptr, /* field_type= */ type, /* field_offset= */ off, /* is_volatile= */ false, /* field_idx= */ 0, /* declaring_class_def_index= */ 0, graph_->GetDexFile(), dex_pc); } HInvokeStaticOrDirect* MakeInvoke(DataType::Type return_type, const std::vector& args) { MethodReference method_reference{/* file= */ &graph_->GetDexFile(), /* index= */ method_idx_++}; HInvokeStaticOrDirect* res = new (GetAllocator()) HInvokeStaticOrDirect(GetAllocator(), args.size(), return_type, /* dex_pc= */ 0, method_reference, /* resolved_method= */ nullptr, HInvokeStaticOrDirect::DispatchInfo{}, InvokeType::kStatic, /* resolved_method_reference= */ method_reference, HInvokeStaticOrDirect::ClinitCheckRequirement::kNone); for (auto [ins, idx] : ZipCount(MakeIterationRange(args))) { res->SetRawInputAt(idx, ins); } return res; } HPhi* MakePhi(const std::vector& ins) { EXPECT_GE(ins.size(), 2u) << "Phi requires at least 2 inputs"; HPhi* phi = new (GetAllocator()) HPhi(GetAllocator(), kNoRegNumber, ins.size(), ins[0]->GetType()); for (auto [i, idx] : ZipCount(MakeIterationRange(ins))) { phi->SetRawInputAt(idx, i); } return phi; } void SetupExit(HBasicBlock* exit) { exit->AddInstruction(new (GetAllocator()) HExit()); } dex::TypeIndex DefaultTypeIndexForType(DataType::Type type) { switch (type) { case DataType::Type::kBool: return dex::TypeIndex(1); case DataType::Type::kUint8: case DataType::Type::kInt8: return dex::TypeIndex(2); case DataType::Type::kUint16: case DataType::Type::kInt16: return dex::TypeIndex(3); case DataType::Type::kUint32: case DataType::Type::kInt32: return dex::TypeIndex(4); case DataType::Type::kUint64: case DataType::Type::kInt64: return dex::TypeIndex(5); case DataType::Type::kReference: return dex::TypeIndex(6); case DataType::Type::kFloat32: return dex::TypeIndex(7); case DataType::Type::kFloat64: return dex::TypeIndex(8); case DataType::Type::kVoid: EXPECT_TRUE(false) << "No type for void!"; return dex::TypeIndex(1000); } } // Creates a parameter. The instruction is automatically added to the entry-block HParameterValue* MakeParam(DataType::Type type, std::optional ti = std::nullopt) { HParameterValue* val = new (GetAllocator()) HParameterValue( graph_->GetDexFile(), ti ? *ti : DefaultTypeIndexForType(type), param_count_++, type); graph_->GetEntryBlock()->AddInstruction(val); return val; } protected: bool CheckGraph(HGraph* graph, bool check_ref_type_info, std::ostream& oss) { GraphChecker checker(graph); checker.SetRefTypeInfoCheckEnabled(check_ref_type_info); checker.Run(); checker.Dump(oss); return checker.IsValid(); } std::vector> dex_files_; std::unique_ptr pool_and_allocator_; HGraph* graph_; HBasicBlock* entry_block_; HBasicBlock* return_block_; HBasicBlock* exit_block_; std::vector parameters_; size_t param_count_ = 0; size_t class_idx_ = 42; uint32_t method_idx_ = 100; ScopedNullHandle null_klass_; }; class OptimizingUnitTest : public CommonArtTest, public OptimizingUnitTestHelper {}; // Naive string diff data type. typedef std::list> diff_t; // An alias for the empty string used to make it clear that a line is // removed in a diff. static const std::string removed = ""; // NOLINT [runtime/string] [4] // Naive patch command: apply a diff to a string. inline std::string Patch(const std::string& original, const diff_t& diff) { std::string result = original; for (const auto& p : diff) { std::string::size_type pos = result.find(p.first); DCHECK_NE(pos, std::string::npos) << "Could not find: \"" << p.first << "\" in \"" << result << "\""; result.replace(pos, p.first.size(), p.second); } return result; } // Returns if the instruction is removed from the graph. inline bool IsRemoved(HInstruction* instruction) { return instruction->GetBlock() == nullptr; } inline std::ostream& operator<<(std::ostream& oss, const AdjacencyListGraph& alg) { return alg.Dump(oss); } class PatternMatchGraphVisitor : public HGraphVisitor { private: struct HandlerWrapper { public: virtual ~HandlerWrapper() {} virtual void operator()(HInstruction* h) = 0; }; template struct KindWrapper; #define GEN_HANDLER(nm, unused) \ template \ struct KindWrapper : public HandlerWrapper { \ public: \ explicit KindWrapper(F f) : f_(f) {} \ void operator()(HInstruction* h) override { \ if constexpr (std::is_invocable_v) { \ f_(h->As##nm()); \ } else { \ LOG(FATAL) << "Incorrect call with " << #nm; \ } \ } \ \ private: \ F f_; \ }; FOR_EACH_CONCRETE_INSTRUCTION(GEN_HANDLER) #undef GEN_HANDLER template std::unique_ptr GetWrapper(HInstruction::InstructionKind kind, F f) { switch (kind) { #define GEN_GETTER(nm, unused) \ case HInstruction::InstructionKind::k##nm: \ return std::unique_ptr( \ new KindWrapper(f)); FOR_EACH_CONCRETE_INSTRUCTION(GEN_GETTER) #undef GEN_GETTER default: LOG(FATAL) << "Unable to handle kind " << kind; return nullptr; } } public: template explicit PatternMatchGraphVisitor(HGraph* graph, Inst... handlers) : HGraphVisitor(graph) { FillHandlers(handlers...); } void VisitInstruction(HInstruction* instruction) override { auto& h = handlers_[instruction->GetKind()]; if (h.get() != nullptr) { (*h)(instruction); } } private: template constexpr HInstruction::InstructionKind GetKind() { #define CHECK_INST(nm, unused) \ if constexpr (std::is_invocable_v) { \ return HInstruction::InstructionKind::k##nm; \ } FOR_EACH_CONCRETE_INSTRUCTION(CHECK_INST); #undef CHECK_INST static_assert(!std::is_invocable_v, "Use on generic HInstruction not allowed"); #define STATIC_ASSERT_ABSTRACT(nm, unused) && !std::is_invocable_v static_assert(true FOR_EACH_ABSTRACT_INSTRUCTION(STATIC_ASSERT_ABSTRACT), "Must not be abstract instruction"); #undef STATIC_ASSERT_ABSTRACT #define STATIC_ASSERT_CONCRETE(nm, unused) || std::is_invocable_v static_assert(false FOR_EACH_CONCRETE_INSTRUCTION(STATIC_ASSERT_CONCRETE), "Must be a concrete instruction"); #undef STATIC_ASSERT_CONCRETE return HInstruction::InstructionKind::kLastInstructionKind; } template void FillHandlers(First h1) { HInstruction::InstructionKind type = GetKind(); CHECK_NE(type, HInstruction::kLastInstructionKind) << "Unknown instruction kind. Only concrete ones please."; handlers_[type] = GetWrapper(type, h1); } template void FillHandlers(First h1, Inst... handlers) { FillHandlers(h1); FillHandlers(handlers...); } std::array, HInstruction::InstructionKind::kLastInstructionKind> handlers_; }; template std::tuple...> FindAllInstructions( HGraph* graph, std::variant> blks = std::nullopt) { std::tuple...> res; PatternMatchGraphVisitor vis( graph, [&](Target* t) { std::get>(res).push_back(t); }...); if (std::holds_alternative>(blks)) { for (HBasicBlock* blk : std::get>(blks)) { vis.VisitBasicBlock(blk); } } else if (std::holds_alternative(blks)) { vis.VisitInsertionOrder(); } else { vis.VisitBasicBlock(std::get(blks)); } return res; } template std::tuple FindSingleInstructions( HGraph* graph, std::variant> blks = std::nullopt) { std::tuple res; PatternMatchGraphVisitor vis(graph, [&](Target* t) { EXPECT_EQ(std::get(res), nullptr) << *std::get(res) << " already found but found " << *t << "!"; std::get(res) = t; }...); if (std::holds_alternative>(blks)) { for (HBasicBlock* blk : std::get>(blks)) { vis.VisitBasicBlock(blk); } } else if (std::holds_alternative(blks)) { vis.VisitInsertionOrder(); } else { vis.VisitBasicBlock(std::get(blks)); } return res; } template Target* FindSingleInstruction( HGraph* graph, std::variant> blks = std::nullopt) { return std::get(FindSingleInstructions(graph, blks)); } } // namespace art #endif // ART_COMPILER_OPTIMIZING_OPTIMIZING_UNIT_TEST_H_