/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "android-base/parsebool.h" #include "android-base/stringprintf.h" #include "android-base/strings.h" #include "base/array_ref.h" #include "base/dumpable.h" #include "base/logging.h" // For InitLogging. #include "base/mem_map.h" #include "base/scoped_flock.h" #include "base/stl_util.h" #include "base/string_view_cpp20.h" #include "base/time_utils.h" #include "base/unix_file/fd_file.h" #include "base/utils.h" #include "base/zip_archive.h" #include "boot_image_profile.h" #include "dex/art_dex_file_loader.h" #include "dex/bytecode_utils.h" #include "dex/class_accessor-inl.h" #include "dex/class_reference.h" #include "dex/code_item_accessors-inl.h" #include "dex/descriptors_names.h" #include "dex/dex_file.h" #include "dex/dex_file_loader.h" #include "dex/dex_file_structs.h" #include "dex/dex_file_types.h" #include "dex/method_reference.h" #include "dex/type_reference.h" #include "profile/profile_boot_info.h" #include "profile/profile_compilation_info.h" #include "profile_assistant.h" namespace art { using ProfileSampleAnnotation = ProfileCompilationInfo::ProfileSampleAnnotation; static int original_argc; static char** original_argv; static std::string CommandLine() { std::vector command; command.reserve(original_argc); for (int i = 0; i < original_argc; ++i) { command.push_back(original_argv[i]); } return android::base::Join(command, ' '); } static bool FdIsValid(int fd) { return fd != File::kInvalidFd; } static void UsageErrorV(const char* fmt, va_list ap) { std::string error; android::base::StringAppendV(&error, fmt, ap); LOG(ERROR) << error; } static void UsageError(const char* fmt, ...) { va_list ap; va_start(ap, fmt); UsageErrorV(fmt, ap); va_end(ap); } NO_RETURN static void Usage(const char *fmt, ...) { va_list ap; va_start(ap, fmt); UsageErrorV(fmt, ap); va_end(ap); UsageError("Command: %s", CommandLine().c_str()); UsageError("Usage: profman [options]..."); UsageError(""); UsageError(" --dump-only: dumps the content of the specified profile files"); UsageError(" to standard output (default) in a human readable form."); UsageError(""); UsageError(" --dump-output-to-fd=: redirects --dump-only output to a file descriptor."); UsageError(""); UsageError(" --dump-classes-and-methods: dumps a sorted list of classes and methods that are"); UsageError(" in the specified profile file to standard output (default) in a human"); UsageError(" readable form. The output is valid input for --create-profile-from"); UsageError(""); UsageError(" --profile-file=: specify profiler output file to use for compilation."); UsageError(" Can be specified multiple time, in which case the data from the different"); UsageError(" profiles will be aggregated."); UsageError(""); UsageError(" --profile-file-fd=: same as --profile-file but accepts a file descriptor."); UsageError(" Cannot be used together with --profile-file."); UsageError(""); UsageError(" --reference-profile-file=: specify a reference profile."); UsageError(" The data in this file will be compared with the data obtained by merging"); UsageError(" all the files specified with --profile-file or --profile-file-fd."); UsageError(" If the exit code is EXIT_COMPILE then all --profile-file will be merged into"); UsageError(" --reference-profile-file. "); UsageError(""); UsageError(" --reference-profile-file-fd=: same as --reference-profile-file but"); UsageError(" accepts a file descriptor. Cannot be used together with"); UsageError(" --reference-profile-file."); UsageError(""); UsageError(" --generate-test-profile=: generates a random profile file for testing."); UsageError(" --generate-test-profile-num-dex=: number of dex files that should be"); UsageError(" included in the generated profile. Defaults to 20."); UsageError(" --generate-test-profile-method-percentage=: the percentage from the maximum"); UsageError(" number of methods that should be generated. Defaults to 5."); UsageError(" --generate-test-profile-class-percentage=: the percentage from the maximum"); UsageError(" number of classes that should be generated. Defaults to 5."); UsageError(" --generate-test-profile-seed=: seed for random number generator used when"); UsageError(" generating random test profiles. Defaults to using NanoTime."); UsageError(""); UsageError(" --create-profile-from=: creates a profile from a list of classes,"); UsageError(" methods and inline caches."); UsageError(" --output-profile-type=(app|boot|bprof): Select output profile format for"); UsageError(" the --create-profile-from option. Default: app."); UsageError(""); UsageError(" --dex-location=: location string to use with corresponding"); UsageError(" apk-fd to find dex files"); UsageError(""); UsageError(" --apk-fd=: file descriptor containing an open APK to"); UsageError(" search for dex files"); UsageError(" --apk=: an APK to search for dex files"); UsageError(" --skip-apk-verification: do not attempt to verify APKs"); UsageError(""); UsageError(" --generate-boot-image-profile: Generate a boot image profile based on input"); UsageError(" profiles. Requires passing in dex files to inspect properties of classes."); UsageError(" --method-threshold=percentage between 0 and 100"); UsageError(" what threshold to apply to the methods when deciding whether or not to"); UsageError(" include it in the final profile."); UsageError(" --class-threshold=percentage between 0 and 100"); UsageError(" what threshold to apply to the classes when deciding whether or not to"); UsageError(" include it in the final profile."); UsageError(" --clean-class-threshold=percentage between 0 and 100"); UsageError(" what threshold to apply to the clean classes when deciding whether or not to"); UsageError(" include it in the final profile."); UsageError(" --preloaded-class-threshold=percentage between 0 and 100"); UsageError(" what threshold to apply to the classes when deciding whether or not to"); UsageError(" include it in the final preloaded classes."); UsageError(" --preloaded-classes-denylist=file"); UsageError(" a file listing the classes that should not be preloaded in Zygote"); UsageError(" --upgrade-startup-to-hot=true|false:"); UsageError(" whether or not to upgrade startup methods to hot"); UsageError(" --special-package=pkg_name:percentage between 0 and 100"); UsageError(" what threshold to apply to the methods/classes that are used by the given"); UsageError(" package when deciding whether or not to include it in the final profile."); UsageError(" --debug-append-uses=bool: whether or not to append package use as debug info."); UsageError(" --out-profile-path=path: boot image profile output path"); UsageError(" --out-preloaded-classes-path=path: preloaded classes output path"); UsageError(" --copy-and-update-profile-key: if present, profman will copy the profile from"); UsageError(" the file passed with --profile-fd(file) to the profile passed with"); UsageError(" --reference-profile-fd(file) and update at the same time the profile-key"); UsageError(" of entries corresponding to the apks passed with --apk(-fd)."); UsageError(" --boot-image-merge: indicates that this merge is for a boot image profile."); UsageError(" In this case, the reference profile must have a boot profile version."); UsageError(" --force-merge: performs a forced merge, without analyzing if there is a"); UsageError(" significant difference between the current profile and the reference profile."); UsageError(" --min-new-methods-percent-change=percentage between 0 and 100 (default 20)"); UsageError(" the min percent of new methods to trigger a compilation."); UsageError(" --min-new-classes-percent-change=percentage between 0 and 100 (default 20)"); UsageError(" the min percent of new classes to trigger a compilation."); UsageError(""); exit(EXIT_FAILURE); } // Note: make sure you update the Usage if you change these values. static constexpr uint16_t kDefaultTestProfileNumDex = 20; static constexpr uint16_t kDefaultTestProfileMethodPercentage = 5; static constexpr uint16_t kDefaultTestProfileClassPercentage = 5; // Separators used when parsing human friendly representation of profiles. static const std::string kMethodSep = "->"; // NOLINT [runtime/string] [4] static const std::string kMissingTypesMarker = "missing_types"; // NOLINT [runtime/string] [4] static const std::string kMegamorphicTypesMarker = "megamorphic_types"; // NOLINT [runtime/string] [4] static const std::string kClassAllMethods = "*"; // NOLINT [runtime/string] [4] static constexpr char kAnnotationStart = '{'; static constexpr char kAnnotationEnd = '}'; static constexpr char kProfileParsingInlineChacheSep = '+'; static constexpr char kProfileParsingInlineChacheTargetSep = ']'; static constexpr char kProfileParsingTypeSep = ','; static constexpr char kProfileParsingFirstCharInSignature = '('; static constexpr char kMethodFlagStringHot = 'H'; static constexpr char kMethodFlagStringStartup = 'S'; static constexpr char kMethodFlagStringPostStartup = 'P'; NO_RETURN static void Abort(const char* msg) { LOG(ERROR) << msg; exit(1); } template static void ParseUintValue(const std::string& option_name, const std::string& value, T* out, T min = std::numeric_limits::min(), T max = std::numeric_limits::max()) { int64_t parsed_integer_value = 0; if (!android::base::ParseInt( value, &parsed_integer_value, static_cast(min), static_cast(max))) { Usage("Failed to parse %s '%s' as an integer", option_name.c_str(), value.c_str()); } if (parsed_integer_value < 0) { Usage("%s passed a negative value %" PRId64, option_name.c_str(), parsed_integer_value); } if (static_cast(parsed_integer_value) > static_cast>(std::numeric_limits::max())) { Usage("%s passed a value %" PRIu64 " above max (%" PRIu64 ")", option_name.c_str(), static_cast(parsed_integer_value), static_cast(std::numeric_limits::max())); } *out = dchecked_integral_cast(parsed_integer_value); } template static void ParseUintOption(const char* raw_option, std::string_view option_prefix, T* out, T min = std::numeric_limits::min(), T max = std::numeric_limits::max()) { DCHECK(EndsWith(option_prefix, "=")); DCHECK(StartsWith(raw_option, option_prefix)) << raw_option << " " << option_prefix; std::string option_name(option_prefix.substr(option_prefix.size() - 1u)); const char* value_string = raw_option + option_prefix.size(); ParseUintValue(option_name, value_string, out, min, max); } static void ParseBoolOption(const char* raw_option, std::string_view option_prefix, bool* out) { DCHECK(EndsWith(option_prefix, "=")); DCHECK(StartsWith(raw_option, option_prefix)) << raw_option << " " << option_prefix; const char* value_string = raw_option + option_prefix.size(); android::base::ParseBoolResult result = android::base::ParseBool(value_string); if (result == android::base::ParseBoolResult::kError) { std::string option_name(option_prefix.substr(option_prefix.size() - 1u)); Usage("Failed to parse %s '%s' as an integer", option_name.c_str(), value_string); } *out = result == android::base::ParseBoolResult::kTrue; } enum class OutputProfileType { kApp, kBoot, kBprof, }; static void ParseOutputProfileType(const char* raw_option, std::string_view option_prefix, OutputProfileType* out) { DCHECK(EndsWith(option_prefix, "=")); DCHECK(StartsWith(raw_option, option_prefix)) << raw_option << " " << option_prefix; const char* value_string = raw_option + option_prefix.size(); if (strcmp(value_string, "app") == 0) { *out = OutputProfileType::kApp; } else if (strcmp(value_string, "boot") == 0) { *out = OutputProfileType::kBoot; } else if (strcmp(value_string, "bprof") == 0) { *out = OutputProfileType::kBprof; } else { std::string option_name(option_prefix.substr(option_prefix.size() - 1u)); Usage("Failed to parse %s '%s' as (app|boot|bprof)", option_name.c_str(), value_string); } } // TODO(calin): This class has grown too much from its initial design. Split the functionality // into smaller, more contained pieces. class ProfMan final { public: ProfMan() : reference_profile_file_fd_(File::kInvalidFd), dump_only_(false), dump_classes_and_methods_(false), generate_boot_image_profile_(false), output_profile_type_(OutputProfileType::kApp), dump_output_to_fd_(File::kInvalidFd), test_profile_num_dex_(kDefaultTestProfileNumDex), test_profile_method_percerntage_(kDefaultTestProfileMethodPercentage), test_profile_class_percentage_(kDefaultTestProfileClassPercentage), test_profile_seed_(NanoTime()), start_ns_(NanoTime()), copy_and_update_profile_key_(false), profile_assistant_options_(ProfileAssistant::Options()) {} ~ProfMan() { LogCompletionTime(); } void ParseArgs(int argc, char **argv) { original_argc = argc; original_argv = argv; MemMap::Init(); InitLogging(argv, Abort); // Skip over the command name. argv++; argc--; if (argc == 0) { Usage("No arguments specified"); } for (int i = 0; i < argc; ++i) { const char* raw_option = argv[i]; const std::string_view option(raw_option); const bool log_options = false; if (log_options) { LOG(INFO) << "profman: option[" << i << "]=" << argv[i]; } if (option == "--dump-only") { dump_only_ = true; } else if (option == "--dump-classes-and-methods") { dump_classes_and_methods_ = true; } else if (StartsWith(option, "--create-profile-from=")) { create_profile_from_file_ = std::string(option.substr(strlen("--create-profile-from="))); } else if (StartsWith(option, "--output-profile-type=")) { ParseOutputProfileType(raw_option, "--output-profile-type=", &output_profile_type_); } else if (StartsWith(option, "--dump-output-to-fd=")) { ParseUintOption(raw_option, "--dump-output-to-fd=", &dump_output_to_fd_); } else if (option == "--generate-boot-image-profile") { generate_boot_image_profile_ = true; } else if (StartsWith(option, "--method-threshold=")) { ParseUintOption(raw_option, "--method-threshold=", &boot_image_options_.method_threshold, 0u, 100u); } else if (StartsWith(option, "--class-threshold=")) { ParseUintOption(raw_option, "--class-threshold=", &boot_image_options_.image_class_threshold, 0u, 100u); } else if (StartsWith(option, "--clean-class-threshold=")) { ParseUintOption(raw_option, "--clean-class-threshold=", &boot_image_options_.image_class_clean_threshold, 0u, 100u); } else if (StartsWith(option, "--preloaded-class-threshold=")) { ParseUintOption(raw_option, "--preloaded-class-threshold=", &boot_image_options_.preloaded_class_threshold, 0u, 100u); } else if (StartsWith(option, "--preloaded-classes-denylist=")) { std::string preloaded_classes_denylist = std::string(option.substr(strlen("--preloaded-classes-denylist="))); // Read the user-specified list of methods. std::unique_ptr> denylist(ReadCommentedInputFromFile>( preloaded_classes_denylist.c_str(), nullptr)); // No post-processing. boot_image_options_.preloaded_classes_denylist.insert( denylist->begin(), denylist->end()); } else if (StartsWith(option, "--upgrade-startup-to-hot=")) { ParseBoolOption(raw_option, "--upgrade-startup-to-hot=", &boot_image_options_.upgrade_startup_to_hot); } else if (StartsWith(option, "--special-package=")) { std::vector values; Split(std::string(option.substr(strlen("--special-package="))), ':', &values); if (values.size() != 2) { Usage("--special-package needs to be specified as pkg_name:threshold"); } uint32_t threshold; ParseUintValue("special-package", values[1], &threshold, 0u, 100u); boot_image_options_.special_packages_thresholds.Overwrite(values[0], threshold); } else if (StartsWith(option, "--debug-append-uses=")) { ParseBoolOption(raw_option, "--debug-append-uses=", &boot_image_options_.append_package_use_list); } else if (StartsWith(option, "--out-profile-path=")) { boot_profile_out_path_ = std::string(option.substr(strlen("--out-profile-path="))); } else if (StartsWith(option, "--out-preloaded-classes-path=")) { preloaded_classes_out_path_ = std::string( option.substr(strlen("--out-preloaded-classes-path="))); } else if (StartsWith(option, "--profile-file=")) { profile_files_.push_back(std::string(option.substr(strlen("--profile-file=")))); } else if (StartsWith(option, "--profile-file-fd=")) { ParseFdForCollection(raw_option, "--profile-file-fd=", &profile_files_fd_); } else if (StartsWith(option, "--reference-profile-file=")) { reference_profile_file_ = std::string(option.substr(strlen("--reference-profile-file="))); } else if (StartsWith(option, "--reference-profile-file-fd=")) { ParseUintOption(raw_option, "--reference-profile-file-fd=", &reference_profile_file_fd_); } else if (StartsWith(option, "--dex-location=")) { dex_locations_.push_back(std::string(option.substr(strlen("--dex-location=")))); } else if (StartsWith(option, "--apk-fd=")) { ParseFdForCollection(raw_option, "--apk-fd=", &apks_fd_); } else if (StartsWith(option, "--apk=")) { apk_files_.push_back(std::string(option.substr(strlen("--apk=")))); } else if (StartsWith(option, "--generate-test-profile=")) { test_profile_ = std::string(option.substr(strlen("--generate-test-profile="))); } else if (StartsWith(option, "--generate-test-profile-num-dex=")) { ParseUintOption(raw_option, "--generate-test-profile-num-dex=", &test_profile_num_dex_); } else if (StartsWith(option, "--generate-test-profile-method-percentage=")) { ParseUintOption(raw_option, "--generate-test-profile-method-percentage=", &test_profile_method_percerntage_); } else if (StartsWith(option, "--generate-test-profile-class-percentage=")) { ParseUintOption(raw_option, "--generate-test-profile-class-percentage=", &test_profile_class_percentage_); } else if (StartsWith(option, "--generate-test-profile-seed=")) { ParseUintOption(raw_option, "--generate-test-profile-seed=", &test_profile_seed_); } else if (StartsWith(option, "--min-new-methods-percent-change=")) { uint32_t min_new_methods_percent_change; ParseUintOption(raw_option, "--min-new-methods-percent-change=", &min_new_methods_percent_change, 0u, 100u); profile_assistant_options_.SetMinNewMethodsPercentChangeForCompilation( min_new_methods_percent_change); } else if (StartsWith(option, "--min-new-classes-percent-change=")) { uint32_t min_new_classes_percent_change; ParseUintOption(raw_option, "--min-new-classes-percent-change=", &min_new_classes_percent_change, 0u, 100u); profile_assistant_options_.SetMinNewClassesPercentChangeForCompilation( min_new_classes_percent_change); } else if (option == "--copy-and-update-profile-key") { copy_and_update_profile_key_ = true; } else if (option == "--boot-image-merge") { profile_assistant_options_.SetBootImageMerge(true); } else if (option == "--force-merge") { profile_assistant_options_.SetForceMerge(true); } else { Usage("Unknown argument '%s'", raw_option); } } // Validate global consistency between file/fd options. if (!profile_files_.empty() && !profile_files_fd_.empty()) { Usage("Profile files should not be specified with both --profile-file-fd and --profile-file"); } if (!reference_profile_file_.empty() && FdIsValid(reference_profile_file_fd_)) { Usage("Reference profile should not be specified with both " "--reference-profile-file-fd and --reference-profile-file"); } if (!apk_files_.empty() && !apks_fd_.empty()) { Usage("APK files should not be specified with both --apk-fd and --apk"); } } struct ProfileFilterKey { ProfileFilterKey(const std::string& dex_location, uint32_t checksum) : dex_location_(dex_location), checksum_(checksum) {} const std::string dex_location_; uint32_t checksum_; bool operator==(const ProfileFilterKey& other) const { return checksum_ == other.checksum_ && dex_location_ == other.dex_location_; } bool operator<(const ProfileFilterKey& other) const { return checksum_ == other.checksum_ ? dex_location_ < other.dex_location_ : checksum_ < other.checksum_; } }; ProfileAssistant::ProcessingResult ProcessProfiles() { // Validate that at least one profile file was passed, as well as a reference profile. if (profile_files_.empty() && profile_files_fd_.empty()) { Usage("No profile files specified."); } if (reference_profile_file_.empty() && !FdIsValid(reference_profile_file_fd_)) { Usage("No reference profile file specified."); } if ((!profile_files_.empty() && FdIsValid(reference_profile_file_fd_)) || (!profile_files_fd_.empty() && !FdIsValid(reference_profile_file_fd_))) { Usage("Options --profile-file-fd and --reference-profile-file-fd " "should only be used together"); } // Check if we have any apks which we should use to filter the profile data. std::set profile_filter_keys; if (!GetProfileFilterKeyFromApks(&profile_filter_keys)) { return ProfileAssistant::kErrorIO; } // Build the profile filter function. If the set of keys is empty it means we // don't have any apks; as such we do not filter anything. const ProfileCompilationInfo::ProfileLoadFilterFn& filter_fn = [profile_filter_keys](const std::string& profile_key, uint32_t checksum) { if (profile_filter_keys.empty()) { // No --apk was specified. Accept all dex files. return true; } else { // Remove any annotations from the profile key before comparing with the keys we get from apks. std::string base_key = ProfileCompilationInfo::GetBaseKeyFromAugmentedKey(profile_key); return profile_filter_keys.find(ProfileFilterKey(base_key, checksum)) != profile_filter_keys.end(); } }; ProfileAssistant::ProcessingResult result; if (profile_files_.empty()) { // The file doesn't need to be flushed here (ProcessProfiles will do it) // so don't check the usage. File file(reference_profile_file_fd_, false); result = ProfileAssistant::ProcessProfiles(profile_files_fd_, reference_profile_file_fd_, filter_fn, profile_assistant_options_); CloseAllFds(profile_files_fd_, "profile_files_fd_"); } else { result = ProfileAssistant::ProcessProfiles(profile_files_, reference_profile_file_, filter_fn, profile_assistant_options_); } return result; } bool GetProfileFilterKeyFromApks(std::set* profile_filter_keys) { auto process_fn = [profile_filter_keys](std::unique_ptr&& dex_file) { // Store the profile key of the location instead of the location itself. // This will make the matching in the profile filter method much easier. profile_filter_keys->emplace(ProfileCompilationInfo::GetProfileDexFileBaseKey( dex_file->GetLocation()), dex_file->GetLocationChecksum()); }; return OpenApkFilesFromLocations(process_fn); } bool OpenApkFilesFromLocations(std::vector>* dex_files) { auto process_fn = [dex_files](std::unique_ptr&& dex_file) { dex_files->emplace_back(std::move(dex_file)); }; return OpenApkFilesFromLocations(process_fn); } bool OpenApkFilesFromLocations( const std::function&&)>& process_fn) { bool use_apk_fd_list = !apks_fd_.empty(); if (use_apk_fd_list) { // Get the APKs from the collection of FDs. if (dex_locations_.empty()) { // Try to compute the dex locations from the file paths of the descriptions. // This will make it easier to invoke profman with --apk-fd and without // being force to pass --dex-location when the location would be the apk path. if (!ComputeDexLocationsFromApkFds()) { return false; } } else { if (dex_locations_.size() != apks_fd_.size()) { Usage("The number of apk-fds must match the number of dex-locations."); } } } else if (!apk_files_.empty()) { if (dex_locations_.empty()) { // If no dex locations are specified use the apk names as locations. dex_locations_ = apk_files_; } else if (dex_locations_.size() != apk_files_.size()) { Usage("The number of apk-fds must match the number of dex-locations."); } } else { // No APKs were specified. CHECK(dex_locations_.empty()); return true; } static constexpr bool kVerifyChecksum = true; for (size_t i = 0; i < dex_locations_.size(); ++i) { std::string error_msg; const ArtDexFileLoader dex_file_loader; std::vector> dex_files_for_location; // We do not need to verify the apk for processing profiles. if (use_apk_fd_list) { if (dex_file_loader.OpenZip(apks_fd_[i], dex_locations_[i], /* verify= */ false, kVerifyChecksum, &error_msg, &dex_files_for_location)) { } else { LOG(ERROR) << "OpenZip failed for '" << dex_locations_[i] << "' " << error_msg; return false; } } else { if (dex_file_loader.Open(apk_files_[i].c_str(), dex_locations_[i], /* verify= */ false, kVerifyChecksum, &error_msg, &dex_files_for_location)) { } else { LOG(ERROR) << "Open failed for '" << dex_locations_[i] << "' " << error_msg; return false; } } for (std::unique_ptr& dex_file : dex_files_for_location) { process_fn(std::move(dex_file)); } } return true; } // Get the dex locations from the apk fds. // The methods reads the links from /proc/self/fd/ to find the original apk paths // and puts them in the dex_locations_ vector. bool ComputeDexLocationsFromApkFds() { #ifdef _WIN32 PLOG(ERROR) << "ComputeDexLocationsFromApkFds is unsupported on Windows."; return false; #else // We can't use a char array of PATH_MAX size without exceeding the frame size. // So we use a vector as the buffer for the path. std::vector buffer(PATH_MAX, 0); for (size_t i = 0; i < apks_fd_.size(); ++i) { std::string fd_path = "/proc/self/fd/" + std::to_string(apks_fd_[i]); ssize_t len = readlink(fd_path.c_str(), buffer.data(), buffer.size() - 1); if (len == -1) { PLOG(ERROR) << "Could not open path from fd"; return false; } buffer[len] = '\0'; dex_locations_.push_back(buffer.data()); } return true; #endif } std::unique_ptr LoadProfile(const std::string& filename, int fd, bool for_boot_image) { if (!filename.empty()) { #ifdef _WIN32 int flags = O_RDWR; #else int flags = O_RDWR | O_CLOEXEC; #endif fd = open(filename.c_str(), flags); if (fd < 0) { PLOG(ERROR) << "Cannot open " << filename; return nullptr; } } std::unique_ptr info(new ProfileCompilationInfo(for_boot_image)); if (!info->Load(fd)) { LOG(ERROR) << "Cannot load profile info from fd=" << fd << "\n"; return nullptr; } return info; } int DumpOneProfile(const std::string& banner, const std::string& filename, int fd, const std::vector>* dex_files, std::string* dump) { // For dumping, try loading as app profile and if that fails try loading as boot profile. std::unique_ptr info = LoadProfile(filename, fd, /*for_boot_image=*/ false); if (info == nullptr) { info = LoadProfile(filename, fd, /*for_boot_image=*/ true); } if (info == nullptr) { LOG(ERROR) << "Cannot load profile info from filename=" << filename << " fd=" << fd; return -1; } *dump += banner + "\n" + info->DumpInfo(MakeNonOwningPointerVector(*dex_files)) + "\n"; return 0; } int DumpProfileInfo() { // Validate that at least one profile file or reference was specified. if (profile_files_.empty() && profile_files_fd_.empty() && reference_profile_file_.empty() && !FdIsValid(reference_profile_file_fd_)) { Usage("No profile files or reference profile specified."); } static const char* kEmptyString = ""; static const char* kOrdinaryProfile = "=== profile ==="; static const char* kReferenceProfile = "=== reference profile ==="; static const char* kDexFiles = "=== Dex files ==="; std::vector> dex_files; OpenApkFilesFromLocations(&dex_files); std::string dump; // Dump checkfiles and corresponding checksums. dump += kDexFiles; dump += "\n"; for (const std::unique_ptr& dex_file : dex_files) { std::ostringstream oss; oss << dex_file->GetLocation() << " [checksum=" << std::hex << dex_file->GetLocationChecksum() << "]\n"; dump += oss.str(); } // Dump individual profile files. if (!profile_files_fd_.empty()) { for (int profile_file_fd : profile_files_fd_) { int ret = DumpOneProfile(kOrdinaryProfile, kEmptyString, profile_file_fd, &dex_files, &dump); if (ret != 0) { return ret; } } } for (const std::string& profile_file : profile_files_) { int ret = DumpOneProfile(kOrdinaryProfile, profile_file, File::kInvalidFd, &dex_files, &dump); if (ret != 0) { return ret; } } // Dump reference profile file. if (FdIsValid(reference_profile_file_fd_)) { int ret = DumpOneProfile(kReferenceProfile, kEmptyString, reference_profile_file_fd_, &dex_files, &dump); if (ret != 0) { return ret; } } if (!reference_profile_file_.empty()) { int ret = DumpOneProfile(kReferenceProfile, reference_profile_file_, File::kInvalidFd, &dex_files, &dump); if (ret != 0) { return ret; } } if (!FdIsValid(dump_output_to_fd_)) { std::cout << dump; } else { unix_file::FdFile out_fd(dump_output_to_fd_, /*check_usage=*/ false); if (!out_fd.WriteFully(dump.c_str(), dump.length())) { return -1; } } return 0; } bool ShouldOnlyDumpProfile() { return dump_only_; } // Creates the inline-cache portion of a text-profile line. If there is no // inline-caches this will be and empty string. Otherwise it will be '@' // followed by an IC description matching the format described by ProcessLine // below. Note that this will collapse all ICs with the same receiver type. std::string GetInlineCacheLine(const ProfileCompilationInfo& profile_info, const dex::MethodId& id, const DexFile* dex_file, uint16_t dex_method_idx) { ProfileCompilationInfo::MethodHotness hotness = profile_info.GetMethodHotness(MethodReference(dex_file, dex_method_idx)); DCHECK(!hotness.IsHot() || hotness.GetInlineCacheMap() != nullptr); if (!hotness.IsHot() || hotness.GetInlineCacheMap()->empty()) { return ""; } const ProfileCompilationInfo::InlineCacheMap* inline_caches = hotness.GetInlineCacheMap(); struct IcLineInfo { bool is_megamorphic_ = false; bool is_missing_types_ = false; std::set classes_; }; std::unordered_map ics; CodeItemInstructionAccessor accessor( *dex_file, dex_file->GetCodeItem(dex_file->FindCodeItemOffset(*dex_file->FindClassDef(id.class_idx_), dex_method_idx))); for (const auto& [pc, ic_data] : *inline_caches) { const Instruction& inst = accessor.InstructionAt(pc); const dex::MethodId& target = dex_file->GetMethodId(inst.VRegB()); if (ic_data.classes.empty() && !ic_data.is_megamorphic && !ic_data.is_missing_types) { continue; } auto val = ics.find(target.class_idx_); if (val == ics.end()) { val = ics.insert({ target.class_idx_, {} }).first; } if (ic_data.is_megamorphic) { val->second.is_megamorphic_ = true; } if (ic_data.is_missing_types) { val->second.is_missing_types_ = true; } for (dex::TypeIndex type_index : ic_data.classes) { val->second.classes_.insert(type_index); } } if (ics.empty()) { return ""; } std::ostringstream dump_ic; dump_ic << kProfileParsingInlineChacheSep; for (const auto& [target, dex_data] : ics) { dump_ic << kProfileParsingInlineChacheTargetSep; dump_ic << dex_file->GetTypeDescriptor(dex_file->GetTypeId(target)); if (dex_data.is_missing_types_) { dump_ic << kMissingTypesMarker; } else if (dex_data.is_megamorphic_) { dump_ic << kMegamorphicTypesMarker; } else { bool first = true; for (dex::TypeIndex type_index : dex_data.classes_) { if (!first) { dump_ic << kProfileParsingTypeSep; } first = false; dump_ic << profile_info.GetTypeDescriptor(dex_file, type_index); } } } return dump_ic.str(); } bool GetClassNamesAndMethods(const ProfileCompilationInfo& profile_info, std::vector>* dex_files, std::set* out_lines) { for (const std::unique_ptr& dex_file : *dex_files) { std::set class_types; std::set hot_methods; std::set startup_methods; std::set post_startup_methods; std::set combined_methods; if (profile_info.GetClassesAndMethods(*dex_file.get(), &class_types, &hot_methods, &startup_methods, &post_startup_methods)) { for (const dex::TypeIndex& type_index : class_types) { out_lines->insert(profile_info.GetTypeDescriptor(dex_file.get(), type_index)); } combined_methods = hot_methods; combined_methods.insert(startup_methods.begin(), startup_methods.end()); combined_methods.insert(post_startup_methods.begin(), post_startup_methods.end()); for (uint16_t dex_method_idx : combined_methods) { const dex::MethodId& id = dex_file->GetMethodId(dex_method_idx); std::string signature_string(dex_file->GetMethodSignature(id).ToString()); std::string type_string(dex_file->GetTypeDescriptor(dex_file->GetTypeId(id.class_idx_))); std::string method_name(dex_file->GetMethodName(id)); std::string flags_string; if (hot_methods.find(dex_method_idx) != hot_methods.end()) { flags_string += kMethodFlagStringHot; } if (startup_methods.find(dex_method_idx) != startup_methods.end()) { flags_string += kMethodFlagStringStartup; } if (post_startup_methods.find(dex_method_idx) != post_startup_methods.end()) { flags_string += kMethodFlagStringPostStartup; } std::string inline_cache_string = GetInlineCacheLine(profile_info, id, dex_file.get(), dex_method_idx); out_lines->insert(flags_string + type_string + kMethodSep + method_name + signature_string + inline_cache_string); } } } return true; } bool GetClassNamesAndMethods(int fd, std::vector>* dex_files, std::set* out_lines) { // For dumping, try loading as app profile and if that fails try loading as boot profile. for (bool for_boot_image : {false, true}) { ProfileCompilationInfo profile_info(for_boot_image); if (profile_info.Load(fd)) { return GetClassNamesAndMethods(profile_info, dex_files, out_lines); } } LOG(ERROR) << "Cannot load profile info"; return false; } bool GetClassNamesAndMethods(const std::string& profile_file, std::vector>* dex_files, std::set* out_lines) { #ifdef _WIN32 int flags = O_RDONLY; #else int flags = O_RDONLY | O_CLOEXEC; #endif int fd = open(profile_file.c_str(), flags); if (!FdIsValid(fd)) { PLOG(ERROR) << "Cannot open " << profile_file; return false; } if (!GetClassNamesAndMethods(fd, dex_files, out_lines)) { return false; } if (close(fd) < 0) { PLOG(WARNING) << "Failed to close descriptor"; } return true; } int DumpClassesAndMethods() { // Validate that at least one profile file or reference was specified. if (profile_files_.empty() && profile_files_fd_.empty() && reference_profile_file_.empty() && !FdIsValid(reference_profile_file_fd_)) { Usage("No profile files or reference profile specified."); } // Open the dex files to get the names for classes. std::vector> dex_files; OpenApkFilesFromLocations(&dex_files); // Build a vector of class names from individual profile files. std::set class_names; if (!profile_files_fd_.empty()) { for (int profile_file_fd : profile_files_fd_) { if (!GetClassNamesAndMethods(profile_file_fd, &dex_files, &class_names)) { return -1; } } } if (!profile_files_.empty()) { for (const std::string& profile_file : profile_files_) { if (!GetClassNamesAndMethods(profile_file, &dex_files, &class_names)) { return -1; } } } // Concatenate class names from reference profile file. if (FdIsValid(reference_profile_file_fd_)) { if (!GetClassNamesAndMethods(reference_profile_file_fd_, &dex_files, &class_names)) { return -1; } } if (!reference_profile_file_.empty()) { if (!GetClassNamesAndMethods(reference_profile_file_, &dex_files, &class_names)) { return -1; } } // Dump the class names. std::string dump; for (const std::string& class_name : class_names) { dump += class_name + std::string("\n"); } if (!FdIsValid(dump_output_to_fd_)) { std::cout << dump; } else { unix_file::FdFile out_fd(dump_output_to_fd_, /*check_usage=*/ false); if (!out_fd.WriteFully(dump.c_str(), dump.length())) { return -1; } } return 0; } bool ShouldOnlyDumpClassesAndMethods() { return dump_classes_and_methods_; } // Read lines from the given file, dropping comments and empty lines. Post-process each line with // the given function. template static T* ReadCommentedInputFromFile( const char* input_filename, std::function* process) { std::unique_ptr input_file(new std::ifstream(input_filename, std::ifstream::in)); if (input_file.get() == nullptr) { LOG(ERROR) << "Failed to open input file " << input_filename; return nullptr; } std::unique_ptr result( ReadCommentedInputStream(*input_file, process)); input_file->close(); return result.release(); } // Read lines from the given stream, dropping comments and empty lines. Post-process each line // with the given function. template static T* ReadCommentedInputStream( std::istream& in_stream, std::function* process) { std::unique_ptr output(new T()); while (in_stream.good()) { std::string dot; std::getline(in_stream, dot); if (android::base::StartsWith(dot, "#") || dot.empty()) { continue; } if (process != nullptr) { std::string descriptor((*process)(dot.c_str())); output->insert(output->end(), descriptor); } else { output->insert(output->end(), dot); } } return output.release(); } // Find class definition for a descriptor. const dex::ClassDef* FindClassDef(const std::vector>& dex_files, std::string_view klass_descriptor, /*out*/ TypeReference* class_ref) { for (const std::unique_ptr& dex_file : dex_files) { const dex::TypeId* type_id = dex_file->FindTypeId(klass_descriptor); if (type_id != nullptr) { dex::TypeIndex type_index = dex_file->GetIndexForTypeId(*type_id); const dex::ClassDef* class_def = dex_file->FindClassDef(type_index); if (class_def != nullptr) { *class_ref = TypeReference(dex_file.get(), type_index); return class_def; } } } return nullptr; } // Find class klass_descriptor in the given dex_files and store its reference // in the out parameter class_ref. // Return true if a reference of the class was found in any of the dex_files. bool FindClass(const std::vector>& dex_files, std::string_view klass_descriptor, /*out*/ TypeReference* class_ref) { for (const std::unique_ptr& dex_file_ptr : dex_files) { const DexFile* dex_file = dex_file_ptr.get(); const dex::TypeId* type_id = dex_file->FindTypeId(klass_descriptor); if (type_id != nullptr) { *class_ref = TypeReference(dex_file, dex_file->GetIndexForTypeId(*type_id)); return true; } } return false; } // Find the method specified by method_spec in the class class_ref. uint32_t FindMethodIndex(const TypeReference& class_ref, std::string_view method_spec) { const DexFile* dex_file = class_ref.dex_file; size_t signature_start = method_spec.find(kProfileParsingFirstCharInSignature); if (signature_start == std::string_view::npos) { LOG(ERROR) << "Invalid method name and signature: " << method_spec; return dex::kDexNoIndex; } const std::string_view name = method_spec.substr(0u, signature_start); const std::string_view signature = method_spec.substr(signature_start); const dex::StringId* name_id = dex_file->FindStringId(std::string(name).c_str()); if (name_id == nullptr) { LOG(WARNING) << "Could not find name: " << name; return dex::kDexNoIndex; } dex::TypeIndex return_type_idx; std::vector param_type_idxs; if (!dex_file->CreateTypeList(signature, &return_type_idx, ¶m_type_idxs)) { LOG(WARNING) << "Could not create type list: " << signature; return dex::kDexNoIndex; } const dex::ProtoId* proto_id = dex_file->FindProtoId(return_type_idx, param_type_idxs); if (proto_id == nullptr) { LOG(WARNING) << "Could not find proto_id: " << name; return dex::kDexNoIndex; } const dex::MethodId* method_id = dex_file->FindMethodId( dex_file->GetTypeId(class_ref.TypeIndex()), *name_id, *proto_id); if (method_id == nullptr) { LOG(WARNING) << "Could not find method_id: " << name; return dex::kDexNoIndex; } return dex_file->GetIndexForMethodId(*method_id); } template void VisitAllInstructions(const TypeReference& class_ref, uint16_t method_idx, Visitor visitor) { const DexFile* dex_file = class_ref.dex_file; const dex::ClassDef* def = dex_file->FindClassDef(class_ref.TypeIndex()); if (def == nullptr) { return; } std::optional offset = dex_file->GetCodeItemOffset(*def, method_idx); if (offset.has_value()) { for (const DexInstructionPcPair& inst : CodeItemInstructionAccessor(*dex_file, dex_file->GetCodeItem(*offset))) { if (!visitor(inst)) { break; } } } else { LOG(WARNING) << "Could not find method " << method_idx; } } // Get dex-pcs of any virtual + interface invokes referencing a method of the // 'target' type in the given method. void GetAllInvokes(const TypeReference& class_ref, uint16_t method_idx, dex::TypeIndex target, /*out*/ std::vector* dex_pcs) { const DexFile* dex_file = class_ref.dex_file; VisitAllInstructions(class_ref, method_idx, [&](const DexInstructionPcPair& inst) -> bool { switch (inst->Opcode()) { case Instruction::INVOKE_INTERFACE: case Instruction::INVOKE_INTERFACE_RANGE: case Instruction::INVOKE_VIRTUAL: case Instruction::INVOKE_VIRTUAL_RANGE: { const dex::MethodId& meth = dex_file->GetMethodId(inst->VRegB()); if (meth.class_idx_ == target) { dex_pcs->push_back(inst.DexPc()); } break; } default: break; } return true; }); } // Given a method, return true if the method has a single INVOKE_VIRTUAL in its byte code. // Upon success it returns true and stores the method index and the invoke dex pc // in the output parameters. // The format of the method spec is "inlinePolymorphic(LSuper;)I+LSubA;,LSubB;,LSubC;". bool HasSingleInvoke(const TypeReference& class_ref, uint16_t method_index, /*out*/ uint32_t* dex_pc) { bool found_invoke = false; bool found_multiple_invokes = false; VisitAllInstructions(class_ref, method_index, [&](const DexInstructionPcPair& inst) -> bool { if (inst->Opcode() == Instruction::INVOKE_VIRTUAL || inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE || inst->Opcode() == Instruction::INVOKE_INTERFACE || inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE) { if (found_invoke) { LOG(ERROR) << "Multiple invoke INVOKE_VIRTUAL found: " << class_ref.dex_file->PrettyMethod(method_index); return false; } found_invoke = true; *dex_pc = inst.DexPc(); } return true; }); if (!found_invoke) { LOG(ERROR) << "Could not find any INVOKE_VIRTUAL/INTERFACE: " << class_ref.dex_file->PrettyMethod(method_index); } return found_invoke && !found_multiple_invokes; } struct InlineCacheSegment { public: using IcArray = std::array; static void SplitInlineCacheSegment(std::string_view ic_line, /*out*/ std::vector* res) { if (ic_line[0] != kProfileParsingInlineChacheTargetSep) { // single target InlineCacheSegment out; Split(ic_line, kProfileParsingTypeSep, &out.inline_caches_); res->push_back(out); return; } std::vector targets_and_resolutions; // Avoid a zero-length entry. for (std::string_view t : SplitString(ic_line.substr(1), kProfileParsingInlineChacheTargetSep)) { InlineCacheSegment out; DCHECK_EQ(t[0], 'L') << "Target is not a class? " << t; size_t recv_end = t.find_first_of(';'); out.receiver_ = t.substr(0, recv_end + 1); Split(t.substr(recv_end + 1), kProfileParsingTypeSep, &out.inline_caches_); res->push_back(out); } } bool IsSingleReceiver() const { return !receiver_.has_value(); } const std::string_view& GetReceiverType() const { DCHECK(!IsSingleReceiver()); return *receiver_; } const IcArray& GetIcTargets() const { return inline_caches_; } size_t NumIcTargets() const { return std::count_if( inline_caches_.begin(), inline_caches_.end(), [](const auto& x) { return !x.empty(); }); } std::ostream& Dump(std::ostream& os) const { if (!IsSingleReceiver()) { os << "[" << GetReceiverType(); } bool first = true; for (std::string_view target : inline_caches_) { if (target.empty()) { break; } else if (!first) { os << ","; } first = false; os << target; } return os; } private: std::optional receiver_; // Max number of ics in the profile file. Don't need to store more than this // (although internally we can have as many as we want). If we fill this up // we are megamorphic. IcArray inline_caches_; friend std::ostream& operator<<(std::ostream& os, const InlineCacheSegment& ics); }; struct ClassMethodReference { TypeReference type_; uint32_t method_index_; bool operator==(const ClassMethodReference& ref) { return ref.type_ == type_ && ref.method_index_ == method_index_; } bool operator!=(const ClassMethodReference& ref) { return !(*this == ref); } }; // Try to perform simple method resolution to produce a more useful profile. // This will resolve to the nearest class+method-index which is within the // same dexfile and in a declared supertype of the starting class. It will // return nullopt if it cannot find an appropriate method or the nearest // possibility is private. // TODO: This should ideally support looking in other dex files. That's getting // to the point of needing to have a whole class-linker so it's probably not // worth it. std::optional ResolveMethod(TypeReference class_ref, uint32_t method_index) { const DexFile* dex = class_ref.dex_file; const dex::ClassDef* def = dex->FindClassDef(class_ref.TypeIndex()); if (def == nullptr || method_index >= dex->NumMethodIds()) { // Class not in dex-file. return std::nullopt; } if (LIKELY(dex->GetCodeItemOffset(*def, method_index).has_value())) { return ClassMethodReference{class_ref, method_index}; } // What to look for. const dex::MethodId& method_id = dex->GetMethodId(method_index); // No going between different dexs so use name and proto directly const dex::ProtoIndex& method_proto = method_id.proto_idx_; const dex::StringIndex& method_name = method_id.name_idx_; // Floyd's algo to prevent infinite loops. // Slow-iterator position for Floyd's dex::TypeIndex slow_class_type = def->class_idx_; // Whether to take a step with the slow iterator. bool update_slow = false; for (dex::TypeIndex cur_candidate = def->superclass_idx_; cur_candidate != dex::TypeIndex::Invalid() && cur_candidate != slow_class_type;) { const dex::ClassDef* cur_class_def = dex->FindClassDef(cur_candidate); if (cur_class_def == nullptr) { // We left the dex file. return std::nullopt; } const dex::MethodId* cur_id = dex->FindMethodIdByIndex(cur_candidate, method_name, method_proto); if (cur_id != nullptr) { if (dex->GetCodeItemOffset(*cur_class_def, dex->GetIndexForMethodId(*cur_id)).has_value()) { return ClassMethodReference{TypeReference(dex, cur_candidate), dex->GetIndexForMethodId(*cur_id)}; } } // Floyd's algo step. cur_candidate = cur_class_def->superclass_idx_; slow_class_type = update_slow ? dex->FindClassDef(slow_class_type)->superclass_idx_ : slow_class_type; update_slow = !update_slow; } return std::nullopt; } // Process a line defining a class or a method and its inline caches. // Upon success return true and add the class or the method info to profile. // Inline caches are identified by the type of the declared receiver type. // The possible line formats are: // "LJustTheClass;". // "LTestInline;->inlinePolymorphic(LSuper;)I+LSubA;,LSubB;,LSubC;". // "LTestInline;->inlineMissingTypes(LSuper;)I+missing_types". // // Note no ',' after [LTarget; // "LTestInline;->multiInlinePolymorphic(LSuper;)I+]LTarget1;LResA;,LResB;]LTarget2;LResC;,LResD;". // "LTestInline;->multiInlinePolymorphic(LSuper;)I+]LTarget1;missing_types]LTarget2;LResC;,LResD;". // "{annotation}LTestInline;->inlineNoInlineCaches(LSuper;)I". // "LTestInline;->*". // The method and classes are searched only in the given dex files. bool ProcessLine(const std::vector>& dex_files, std::string_view maybe_annotated_line, /*out*/ProfileCompilationInfo* profile) { // First, process the annotation. if (maybe_annotated_line.empty()) { return true; } // Working line variable which will contain the user input without the annotations. std::string_view line = maybe_annotated_line; std::string_view annotation_string; if (maybe_annotated_line[0] == kAnnotationStart) { size_t end_pos = maybe_annotated_line.find(kAnnotationEnd, 0); if (end_pos == std::string::npos || end_pos == 0) { LOG(ERROR) << "Invalid line: " << maybe_annotated_line; return false; } annotation_string = maybe_annotated_line.substr(1, end_pos - 1); // Update the working line. line = maybe_annotated_line.substr(end_pos + 1); } ProfileSampleAnnotation annotation = annotation_string.empty() ? ProfileSampleAnnotation::kNone : ProfileSampleAnnotation(std::string(annotation_string)); // Now process the rest of the line. std::string_view klass; std::string_view method_str; bool is_hot = false; bool is_startup = false; bool is_post_startup = false; const size_t method_sep_index = line.find(kMethodSep, 0); if (method_sep_index == std::string::npos) { klass = line; } else { // The method prefix flags are only valid for method strings. size_t start_index = 0; while (start_index < line.size() && line[start_index] != 'L') { const char c = line[start_index]; if (c == kMethodFlagStringHot) { is_hot = true; } else if (c == kMethodFlagStringStartup) { is_startup = true; } else if (c == kMethodFlagStringPostStartup) { is_post_startup = true; } else { LOG(WARNING) << "Invalid flag " << c; return false; } ++start_index; } klass = line.substr(start_index, method_sep_index - start_index); method_str = line.substr(method_sep_index + kMethodSep.size()); } if (!IsValidDescriptor(std::string(klass).c_str())) { LOG(ERROR) << "Invalid descriptor: " << klass; return false; } if (method_str.empty()) { auto array_it = std::find_if(klass.begin(), klass.end(), [](char c) { return c != '['; }); size_t array_dim = std::distance(klass.begin(), array_it); if (klass.size() == array_dim + 1u) { // Attribute primitive types and their arrays to the first dex file. profile->AddClass(*dex_files[0], klass, annotation); return true; } // Attribute non-primitive classes and their arrays to the dex file with the definition. TypeReference class_ref(/* dex_file= */ nullptr, dex::TypeIndex()); if (FindClassDef(dex_files, klass.substr(array_dim), &class_ref) == nullptr) { LOG(WARNING) << "Could not find class definition: " << klass.substr(array_dim); return false; } if (array_dim != 0) { // Let the ProfileCompilationInfo find the type index or add an extra descriptor. return profile->AddClass(*class_ref.dex_file, klass, annotation); } else { return profile->AddClass(*class_ref.dex_file, class_ref.TypeIndex(), annotation); } } DCHECK_NE(klass[0], '['); TypeReference class_ref(/* dex_file= */ nullptr, dex::TypeIndex()); const dex::ClassDef* class_def = FindClassDef(dex_files, klass, &class_ref); if (class_def == nullptr) { LOG(WARNING) << "Could not find class definition: " << klass; return false; } uint32_t flags = 0; if (is_hot) { flags |= ProfileCompilationInfo::MethodHotness::kFlagHot; } if (is_startup) { flags |= ProfileCompilationInfo::MethodHotness::kFlagStartup; } if (is_post_startup) { flags |= ProfileCompilationInfo::MethodHotness::kFlagPostStartup; } if (method_str == kClassAllMethods) { // Start by adding the class. profile->AddClass(*class_ref.dex_file, class_ref.TypeIndex(), annotation); uint16_t class_def_index = class_ref.dex_file->GetIndexForClassDef(*class_def); ClassAccessor accessor(*class_ref.dex_file, class_def_index); std::vector methods; for (const ClassAccessor::Method& method : accessor.GetMethods()) { if (method.GetCodeItemOffset() != 0) { // Add all of the methods that have code to the profile. methods.push_back(ProfileMethodInfo(method.GetReference())); } } // TODO: Check return value? profile->AddMethods( methods, static_cast(flags), annotation); return true; } // Process the method. std::string method_spec; // If none of the flags are set, default to hot. // TODO: Why is this done after we have already calculated `flags`? is_hot = is_hot || (!is_hot && !is_startup && !is_post_startup); // Lifetime of segments is same as method_elems since it contains pointers into the string-data std::vector segments; std::vector method_elems; Split(method_str, kProfileParsingInlineChacheSep, &method_elems); if (method_elems.size() == 2) { method_spec = method_elems[0]; InlineCacheSegment::SplitInlineCacheSegment(method_elems[1], &segments); } else if (method_elems.size() == 1) { method_spec = method_elems[0]; } else { LOG(ERROR) << "Invalid method line: " << line; return false; } const uint32_t method_index = FindMethodIndex(class_ref, method_spec); if (method_index == dex::kDexNoIndex) { LOG(WARNING) << "Could not find method " << klass << "->" << method_spec; return false; } std::optional resolved_class_method_ref = ResolveMethod(class_ref, method_index); std::vector inline_caches; // We can only create inline-caches when we actually have code we can // examine. If we couldn't resolve the method don't bother trying to create // inline-caches. if (resolved_class_method_ref) { for (const InlineCacheSegment& segment : segments) { std::vector dex_pcs; if (segment.IsSingleReceiver()) { DCHECK_EQ(segments.size(), 1u); dex_pcs.resize(1, -1); // TODO This single invoke format should really be phased out and // removed. if (!HasSingleInvoke(class_ref, method_index, &dex_pcs[0])) { return false; } } else { // Get the type-ref the method code will use. std::string receiver_str(segment.GetReceiverType()); const dex::TypeId *type_id = class_ref.dex_file->FindTypeId(receiver_str.c_str()); if (type_id == nullptr) { LOG(WARNING) << "Could not find class: " << segment.GetReceiverType() << " in dex-file " << class_ref.dex_file << ". Ignoring IC group: '" << segment << "'"; continue; } dex::TypeIndex target_index = class_ref.dex_file->GetIndexForTypeId(*type_id); GetAllInvokes(resolved_class_method_ref->type_, resolved_class_method_ref->method_index_, target_index, &dex_pcs); } bool missing_types = segment.GetIcTargets()[0] == kMissingTypesMarker; bool megamorphic_types = segment.GetIcTargets()[0] == kMegamorphicTypesMarker; std::vector classes; if (!missing_types && !megamorphic_types) { classes.reserve(segment.NumIcTargets()); for (const std::string_view& ic_class : segment.GetIcTargets()) { if (ic_class.empty()) { break; } if (!IsValidDescriptor(std::string(ic_class).c_str())) { LOG(ERROR) << "Invalid descriptor for inline cache: " << ic_class; return false; } // TODO: Allow referencing classes without a `dex::TypeId` in any of the dex files. TypeReference ic_class_ref(/* dex_file= */ nullptr, dex::TypeIndex()); if (!FindClass(dex_files, ic_class, &ic_class_ref)) { LOG(segment.IsSingleReceiver() ? ERROR : WARNING) << "Could not find class: " << ic_class << " in " << segment; if (segment.IsSingleReceiver()) { return false; } else { // Be a bit more forgiving with profiles from servers. missing_types = true; classes.clear(); break; } } classes.push_back(ic_class_ref); } } for (size_t dex_pc : dex_pcs) { inline_caches.emplace_back(dex_pc, missing_types, classes, megamorphic_types); } } } MethodReference ref(class_ref.dex_file, method_index); if (is_hot) { ClassMethodReference orig_cmr { class_ref, method_index }; if (!inline_caches.empty() && resolved_class_method_ref && orig_cmr != *resolved_class_method_ref) { // We have inline-caches on a method that doesn't actually exist. We // want to put the inline caches on the resolved version of the method // (if we could find one) and just mark the actual method as present. const DexFile *dex = resolved_class_method_ref->type_.dex_file; LOG(VERBOSE) << "Adding " << dex->PrettyMethod( resolved_class_method_ref->method_index_) << " as alias for " << dex->PrettyMethod(method_index); // The inline-cache refers to a supertype of the actual profile line. // Include this supertype method in the profile as well. MethodReference resolved_ref(class_ref.dex_file, resolved_class_method_ref->method_index_); profile->AddMethod( ProfileMethodInfo(resolved_ref, inline_caches), static_cast(flags), annotation); profile->AddMethod( ProfileMethodInfo(ref), static_cast(flags), annotation); } else { profile->AddMethod( ProfileMethodInfo(ref, inline_caches), static_cast(flags), annotation); } } if (flags != 0) { if (!profile->AddMethod(ProfileMethodInfo(ref), static_cast(flags), annotation)) { return false; } DCHECK(profile->GetMethodHotness(ref, annotation).IsInProfile()) << method_spec; } return true; } bool ProcessBootLine(const std::vector>& dex_files, std::string_view line, ProfileBootInfo* boot_profiling_info) { const size_t method_sep_index = line.find(kMethodSep, 0); if (method_sep_index == std::string_view::npos) { LOG(ERROR) << "Invalid boot line: " << line; return false; } std::string_view klass_str = line.substr(0, method_sep_index); std::string_view method_str = line.substr(method_sep_index + kMethodSep.size()); TypeReference class_ref(/* dex_file= */ nullptr, dex::TypeIndex()); if (FindClassDef(dex_files, klass_str, &class_ref) == nullptr) { LOG(WARNING) << "Could not find class definition: " << klass_str; return false; } const uint32_t method_index = FindMethodIndex(class_ref, method_str); if (method_index == dex::kDexNoIndex) { LOG(WARNING) << "Could not find method: " << line; return false; } boot_profiling_info->Add(class_ref.dex_file, method_index); return true; } int OpenReferenceProfile() const { int fd = reference_profile_file_fd_; if (!FdIsValid(fd)) { CHECK(!reference_profile_file_.empty()); #ifdef _WIN32 int flags = O_CREAT | O_TRUNC | O_WRONLY; #else int flags = O_CREAT | O_TRUNC | O_WRONLY | O_CLOEXEC; #endif fd = open(reference_profile_file_.c_str(), flags, 0644); if (fd < 0) { PLOG(ERROR) << "Cannot open " << reference_profile_file_; return File::kInvalidFd; } } return fd; } // Create and store a ProfileBootInfo. int CreateBootProfile() { // Validate parameters for this command. if (apk_files_.empty() && apks_fd_.empty()) { Usage("APK files must be specified"); } if (dex_locations_.empty()) { Usage("DEX locations must be specified"); } if (reference_profile_file_.empty() && !FdIsValid(reference_profile_file_fd_)) { Usage("Reference profile must be specified with --reference-profile-file or " "--reference-profile-file-fd"); } if (!profile_files_.empty() || !profile_files_fd_.empty()) { Usage("Profile must be specified with --reference-profile-file or " "--reference-profile-file-fd"); } // Open the profile output file if needed. int fd = OpenReferenceProfile(); if (!FdIsValid(fd)) { return -1; } // Read the user-specified list of methods. std::unique_ptr> user_lines(ReadCommentedInputFromFile>( create_profile_from_file_.c_str(), nullptr)); // No post-processing. // Open the dex files to look up classes and methods. std::vector> dex_files; OpenApkFilesFromLocations(&dex_files); // Process the lines one by one and add the successful ones to the profile. ProfileBootInfo info; for (const auto& line : *user_lines) { ProcessBootLine(dex_files, line, &info); } // Write the profile file. CHECK(info.Save(fd)); if (close(fd) < 0) { PLOG(WARNING) << "Failed to close descriptor"; } return 0; } // Creates a profile from a human friendly textual representation. // The expected input format is: // # Classes // Ljava/lang/Comparable; // Ljava/lang/Math; // # Methods with inline caches // LTestInline;->inlinePolymorphic(LSuper;)I+LSubA;,LSubB;,LSubC; // LTestInline;->noInlineCache(LSuper;)I int CreateProfile() { // Validate parameters for this command. if (apk_files_.empty() && apks_fd_.empty()) { Usage("APK files must be specified"); } if (dex_locations_.empty()) { Usage("DEX locations must be specified"); } if (reference_profile_file_.empty() && !FdIsValid(reference_profile_file_fd_)) { Usage("Reference profile must be specified with --reference-profile-file or " "--reference-profile-file-fd"); } if (!profile_files_.empty() || !profile_files_fd_.empty()) { Usage("Profile must be specified with --reference-profile-file or " "--reference-profile-file-fd"); } // Open the profile output file if needed. int fd = OpenReferenceProfile(); if (!FdIsValid(fd)) { return -1; } // Read the user-specified list of classes and methods. std::unique_ptr> user_lines(ReadCommentedInputFromFile>( create_profile_from_file_.c_str(), nullptr)); // No post-processing. // Open the dex files to look up classes and methods. std::vector> dex_files; OpenApkFilesFromLocations(&dex_files); // Process the lines one by one and add the successful ones to the profile. bool for_boot_image = GetOutputProfileType() == OutputProfileType::kBoot; ProfileCompilationInfo info(for_boot_image); if (for_boot_image) { // Add all dex files to the profile. This is needed for jitzygote to indicate // which dex files are part of the boot image extension to compile in memory. for (const std::unique_ptr& dex_file : dex_files) { if (info.FindOrAddDexFile(*dex_file) == info.MaxProfileIndex()) { LOG(ERROR) << "Failed to add dex file to boot image profile: " << dex_file->GetLocation(); return -1; } } } for (const auto& line : *user_lines) { ProcessLine(dex_files, line, &info); } // Write the profile file. CHECK(info.Save(fd)); if (close(fd) < 0) { PLOG(WARNING) << "Failed to close descriptor"; } return 0; } bool ShouldCreateBootImageProfile() const { return generate_boot_image_profile_; } OutputProfileType GetOutputProfileType() const { return output_profile_type_; } // Create and store a ProfileCompilationInfo for the boot image. int CreateBootImageProfile() { // Open the input profile file. if (profile_files_.size() < 1) { LOG(ERROR) << "At least one --profile-file must be specified."; return -1; } // Open the dex files. std::vector> dex_files; OpenApkFilesFromLocations(&dex_files); if (dex_files.empty()) { PLOG(ERROR) << "Expected dex files for creating boot profile"; return -2; } if (!GenerateBootImageProfile(dex_files, profile_files_, boot_image_options_, boot_profile_out_path_, preloaded_classes_out_path_)) { LOG(ERROR) << "There was an error when generating the boot image profiles"; return -4; } return 0; } bool ShouldCreateProfile() { return !create_profile_from_file_.empty(); } int GenerateTestProfile() { // Validate parameters for this command. if (test_profile_method_percerntage_ > 100) { Usage("Invalid percentage for --generate-test-profile-method-percentage"); } if (test_profile_class_percentage_ > 100) { Usage("Invalid percentage for --generate-test-profile-class-percentage"); } // If given APK files or DEX locations, check that they're ok. if (!apk_files_.empty() || !apks_fd_.empty() || !dex_locations_.empty()) { if (apk_files_.empty() && apks_fd_.empty()) { Usage("APK files must be specified when passing DEX locations to --generate-test-profile"); } if (dex_locations_.empty()) { Usage("DEX locations must be specified when passing APK files to --generate-test-profile"); } } // ShouldGenerateTestProfile confirms !test_profile_.empty(). #ifdef _WIN32 int flags = O_CREAT | O_TRUNC | O_WRONLY; #else int flags = O_CREAT | O_TRUNC | O_WRONLY | O_CLOEXEC; #endif int profile_test_fd = open(test_profile_.c_str(), flags, 0644); if (profile_test_fd < 0) { PLOG(ERROR) << "Cannot open " << test_profile_; return -1; } bool result; if (apk_files_.empty() && apks_fd_.empty() && dex_locations_.empty()) { result = ProfileCompilationInfo::GenerateTestProfile(profile_test_fd, test_profile_num_dex_, test_profile_method_percerntage_, test_profile_class_percentage_, test_profile_seed_); } else { // Open the dex files to look up classes and methods. std::vector> dex_files; OpenApkFilesFromLocations(&dex_files); // Create a random profile file based on the set of dex files. result = ProfileCompilationInfo::GenerateTestProfile(profile_test_fd, dex_files, test_profile_method_percerntage_, test_profile_class_percentage_, test_profile_seed_); } close(profile_test_fd); // ignore close result. return result ? 0 : -1; } bool ShouldGenerateTestProfile() { return !test_profile_.empty(); } bool ShouldCopyAndUpdateProfileKey() const { return copy_and_update_profile_key_; } int32_t CopyAndUpdateProfileKey() { // Validate that at least one profile file was passed, as well as a reference profile. if (!(profile_files_.size() == 1 ^ profile_files_fd_.size() == 1)) { Usage("Only one profile file should be specified."); } if (reference_profile_file_.empty() && !FdIsValid(reference_profile_file_fd_)) { Usage("No reference profile file specified."); } if (apk_files_.empty() && apks_fd_.empty()) { Usage("No apk files specified"); } static constexpr int32_t kErrorFailedToUpdateProfile = -1; static constexpr int32_t kErrorFailedToSaveProfile = -2; static constexpr int32_t kErrorFailedToLoadProfile = -3; bool use_fds = profile_files_fd_.size() == 1; ProfileCompilationInfo profile; // Do not clear if invalid. The input might be an archive. bool load_ok = use_fds ? profile.Load(profile_files_fd_[0]) : profile.Load(profile_files_[0], /*clear_if_invalid=*/ false); if (load_ok) { // Open the dex files to look up classes and methods. std::vector> dex_files; OpenApkFilesFromLocations(&dex_files); if (!profile.UpdateProfileKeys(dex_files)) { return kErrorFailedToUpdateProfile; } bool result = use_fds ? profile.Save(reference_profile_file_fd_) : profile.Save(reference_profile_file_, /*bytes_written=*/ nullptr); return result ? 0 : kErrorFailedToSaveProfile; } else { return kErrorFailedToLoadProfile; } } private: static void ParseFdForCollection(const char* raw_option, std::string_view option_prefix, std::vector* fds) { int fd; ParseUintOption(raw_option, option_prefix, &fd); fds->push_back(fd); } static void CloseAllFds(const std::vector& fds, const char* descriptor) { for (size_t i = 0; i < fds.size(); i++) { if (close(fds[i]) < 0) { PLOG(WARNING) << "Failed to close descriptor for " << descriptor << " at index " << i << ": " << fds[i]; } } } void LogCompletionTime() { static constexpr uint64_t kLogThresholdTime = MsToNs(100); // 100ms uint64_t time_taken = NanoTime() - start_ns_; if (time_taken > kLogThresholdTime) { LOG(WARNING) << "profman took " << PrettyDuration(time_taken); } } std::vector profile_files_; std::vector profile_files_fd_; std::vector dex_locations_; std::vector apk_files_; std::vector apks_fd_; std::string reference_profile_file_; int reference_profile_file_fd_; bool dump_only_; bool dump_classes_and_methods_; bool generate_boot_image_profile_; OutputProfileType output_profile_type_; int dump_output_to_fd_; BootImageOptions boot_image_options_; std::string test_profile_; std::string create_profile_from_file_; uint16_t test_profile_num_dex_; uint16_t test_profile_method_percerntage_; uint16_t test_profile_class_percentage_; uint32_t test_profile_seed_; uint64_t start_ns_; bool copy_and_update_profile_key_; ProfileAssistant::Options profile_assistant_options_; std::string boot_profile_out_path_; std::string preloaded_classes_out_path_; }; std::ostream& operator<<(std::ostream& os, const ProfMan::InlineCacheSegment& ics) { return ics.Dump(os); } // See ProfileAssistant::ProcessingResult for return codes. static int profman(int argc, char** argv) { ProfMan profman; // Parse arguments. Argument mistakes will lead to exit(EXIT_FAILURE) in UsageError. profman.ParseArgs(argc, argv); // Initialize MemMap for ZipArchive::OpenFromFd. MemMap::Init(); if (profman.ShouldGenerateTestProfile()) { return profman.GenerateTestProfile(); } if (profman.ShouldOnlyDumpProfile()) { return profman.DumpProfileInfo(); } if (profman.ShouldOnlyDumpClassesAndMethods()) { return profman.DumpClassesAndMethods(); } if (profman.ShouldCreateProfile()) { if (profman.GetOutputProfileType() == OutputProfileType::kBprof) { return profman.CreateBootProfile(); } else { return profman.CreateProfile(); } } if (profman.ShouldCreateBootImageProfile()) { return profman.CreateBootImageProfile(); } if (profman.ShouldCopyAndUpdateProfileKey()) { return profman.CopyAndUpdateProfileKey(); } // Process profile information and assess if we need to do a profile guided compilation. // This operation involves I/O. return profman.ProcessProfiles(); } } // namespace art int main(int argc, char **argv) { return art::profman(argc, argv); }