/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * Mterp entry point and support functions. */ #include "mterp.h" #include "base/quasi_atomic.h" #include "debugger.h" #include "entrypoints/entrypoint_utils-inl.h" #include "interpreter/interpreter_common.h" #include "interpreter/interpreter_intrinsics.h" #include "interpreter/shadow_frame-inl.h" #include "mirror/string-alloc-inl.h" namespace art { namespace interpreter { /* * Verify some constants used by the mterp interpreter. */ void CheckMterpAsmConstants() { /* * If we're using computed goto instruction transitions, make sure * none of the handlers overflows the byte limit. This won't tell * which one did, but if any one is too big the total size will * overflow. */ const int width = kMterpHandlerSize; int interp_size = (uintptr_t) artMterpAsmInstructionEnd - (uintptr_t) artMterpAsmInstructionStart; if ((interp_size == 0) || (interp_size != (art::kNumPackedOpcodes * width))) { LOG(FATAL) << "ERROR: unexpected asm interp size " << interp_size << "(did an instruction handler exceed " << width << " bytes?)"; } } void InitMterpTls(Thread* self) { self->SetMterpCurrentIBase(artMterpAsmInstructionStart); } /* * Find the matching case. Returns the offset to the handler instructions. * * Returns 3 if we don't find a match (it's the size of the sparse-switch * instruction). */ extern "C" ssize_t MterpDoSparseSwitch(const uint16_t* switchData, int32_t testVal) { const int kInstrLen = 3; uint16_t size; const int32_t* keys; const int32_t* entries; /* * Sparse switch data format: * ushort ident = 0x0200 magic value * ushort size number of entries in the table; > 0 * int keys[size] keys, sorted low-to-high; 32-bit aligned * int targets[size] branch targets, relative to switch opcode * * Total size is (2+size*4) 16-bit code units. */ uint16_t signature = *switchData++; DCHECK_EQ(signature, static_cast(art::Instruction::kSparseSwitchSignature)); size = *switchData++; /* The keys are guaranteed to be aligned on a 32-bit boundary; * we can treat them as a native int array. */ keys = reinterpret_cast(switchData); /* The entries are guaranteed to be aligned on a 32-bit boundary; * we can treat them as a native int array. */ entries = keys + size; /* * Binary-search through the array of keys, which are guaranteed to * be sorted low-to-high. */ int lo = 0; int hi = size - 1; while (lo <= hi) { int mid = (lo + hi) >> 1; int32_t foundVal = keys[mid]; if (testVal < foundVal) { hi = mid - 1; } else if (testVal > foundVal) { lo = mid + 1; } else { return entries[mid]; } } return kInstrLen; } extern "C" ssize_t MterpDoPackedSwitch(const uint16_t* switchData, int32_t testVal) { const int kInstrLen = 3; /* * Packed switch data format: * ushort ident = 0x0100 magic value * ushort size number of entries in the table * int first_key first (and lowest) switch case value * int targets[size] branch targets, relative to switch opcode * * Total size is (4+size*2) 16-bit code units. */ uint16_t signature = *switchData++; DCHECK_EQ(signature, static_cast(art::Instruction::kPackedSwitchSignature)); uint16_t size = *switchData++; int32_t firstKey = *switchData++; firstKey |= (*switchData++) << 16; int index = testVal - firstKey; if (index < 0 || index >= size) { return kInstrLen; } /* * The entries are guaranteed to be aligned on a 32-bit boundary; * we can treat them as a native int array. */ const int32_t* entries = reinterpret_cast(switchData); return entries[index]; } bool CanUseMterp() REQUIRES_SHARED(Locks::mutator_lock_) { const Runtime* const runtime = Runtime::Current(); return !runtime->IsAotCompiler() && !runtime->GetInstrumentation()->IsActive() && // mterp only knows how to deal with the normal exits. It cannot handle any of the // non-standard force-returns. !runtime->AreNonStandardExitsEnabled() && // An async exception has been thrown. We need to go to the switch interpreter. MTerp doesn't // know how to deal with these so we could end up never dealing with it if we are in an // infinite loop. !runtime->AreAsyncExceptionsThrown() && (runtime->GetJit() == nullptr || !runtime->GetJit()->JitAtFirstUse()); } #define MTERP_INVOKE(Name) \ extern "C" size_t MterpInvoke##Name(Thread* self, \ ShadowFrame* shadow_frame, \ uint16_t* dex_pc_ptr, \ uint16_t inst_data) \ REQUIRES_SHARED(Locks::mutator_lock_) { \ JValue* result_register = shadow_frame->GetResultRegister(); \ const Instruction* inst = Instruction::At(dex_pc_ptr); \ if (shadow_frame->GetMethod()->SkipAccessChecks()) { \ return DoInvoke( \ self, *shadow_frame, inst, inst_data, result_register) ? 1u : 0u; \ } else { \ return DoInvoke( \ self, *shadow_frame, inst, inst_data, result_register) ? 1u : 0u; \ } \ } \ extern "C" size_t MterpInvoke##Name##Range(Thread* self, \ ShadowFrame* shadow_frame, \ uint16_t* dex_pc_ptr, \ uint16_t inst_data) \ REQUIRES_SHARED(Locks::mutator_lock_) { \ JValue* result_register = shadow_frame->GetResultRegister(); \ const Instruction* inst = Instruction::At(dex_pc_ptr); \ if (shadow_frame->GetMethod()->SkipAccessChecks()) { \ return DoInvoke( \ self, *shadow_frame, inst, inst_data, result_register) ? 1u : 0u; \ } else { \ return DoInvoke( \ self, *shadow_frame, inst, inst_data, result_register) ? 1u : 0u; \ } \ } MTERP_INVOKE(Virtual) MTERP_INVOKE(Super) MTERP_INVOKE(Interface) MTERP_INVOKE(Direct) MTERP_INVOKE(Static) #undef MTERP_INVOKE extern "C" size_t MterpInvokeCustom(Thread* self, ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { JValue* result_register = shadow_frame->GetResultRegister(); const Instruction* inst = Instruction::At(dex_pc_ptr); return DoInvokeCustom( self, *shadow_frame, inst, inst_data, result_register) ? 1u : 0u; } extern "C" size_t MterpInvokePolymorphic(Thread* self, ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { JValue* result_register = shadow_frame->GetResultRegister(); const Instruction* inst = Instruction::At(dex_pc_ptr); return DoInvokePolymorphic( self, *shadow_frame, inst, inst_data, result_register) ? 1u : 0u; } extern "C" size_t MterpInvokeCustomRange(Thread* self, ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { JValue* result_register = shadow_frame->GetResultRegister(); const Instruction* inst = Instruction::At(dex_pc_ptr); return DoInvokeCustom( self, *shadow_frame, inst, inst_data, result_register) ? 1u : 0u; } extern "C" size_t MterpInvokePolymorphicRange(Thread* self, ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { JValue* result_register = shadow_frame->GetResultRegister(); const Instruction* inst = Instruction::At(dex_pc_ptr); return DoInvokePolymorphic( self, *shadow_frame, inst, inst_data, result_register) ? 1u : 0u; } extern "C" void MterpThreadFenceForConstructor() { QuasiAtomic::ThreadFenceForConstructor(); } extern "C" size_t MterpConstString(uint32_t index, uint32_t tgt_vreg, ShadowFrame* shadow_frame, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr s = ResolveString(self, *shadow_frame, dex::StringIndex(index)); if (UNLIKELY(s == nullptr)) { return 1u; } shadow_frame->SetVRegReference(tgt_vreg, s); return 0u; } extern "C" size_t MterpConstClass(uint32_t index, uint32_t tgt_vreg, ShadowFrame* shadow_frame, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr c = ResolveVerifyAndClinit(dex::TypeIndex(index), shadow_frame->GetMethod(), self, /* can_run_clinit= */ false, !shadow_frame->GetMethod()->SkipAccessChecks()); if (UNLIKELY(c == nullptr)) { return 1u; } shadow_frame->SetVRegReference(tgt_vreg, c); return 0u; } extern "C" size_t MterpConstMethodHandle(uint32_t index, uint32_t tgt_vreg, ShadowFrame* shadow_frame, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr mh = ResolveMethodHandle(self, index, shadow_frame->GetMethod()); if (UNLIKELY(mh == nullptr)) { return 1u; } shadow_frame->SetVRegReference(tgt_vreg, mh); return 0u; } extern "C" size_t MterpConstMethodType(uint32_t index, uint32_t tgt_vreg, ShadowFrame* shadow_frame, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr mt = ResolveMethodType(self, dex::ProtoIndex(index), shadow_frame->GetMethod()); if (UNLIKELY(mt == nullptr)) { return 1u; } shadow_frame->SetVRegReference(tgt_vreg, mt); return 0u; } extern "C" size_t MterpCheckCast(uint32_t index, StackReference* vreg_addr, art::ArtMethod* method, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr c = ResolveVerifyAndClinit(dex::TypeIndex(index), method, self, /* can_run_clinit= */ false, !method->SkipAccessChecks()); if (UNLIKELY(c == nullptr)) { return 1u; } // Must load obj from vreg following ResolveVerifyAndClinit due to moving gc. ObjPtr obj = vreg_addr->AsMirrorPtr(); if (UNLIKELY(obj != nullptr && !obj->InstanceOf(c))) { ThrowClassCastException(c, obj->GetClass()); return 1u; } return 0u; } extern "C" size_t MterpInstanceOf(uint32_t index, StackReference* vreg_addr, art::ArtMethod* method, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr c = ResolveVerifyAndClinit(dex::TypeIndex(index), method, self, /* can_run_clinit= */ false, !method->SkipAccessChecks()); if (UNLIKELY(c == nullptr)) { return 0u; // Caller will check for pending exception. Return value unimportant. } // Must load obj from vreg following ResolveVerifyAndClinit due to moving gc. ObjPtr obj = vreg_addr->AsMirrorPtr(); return (obj != nullptr) && obj->InstanceOf(c) ? 1u : 0u; } extern "C" size_t MterpFillArrayData(mirror::Object* obj, const Instruction::ArrayDataPayload* payload) REQUIRES_SHARED(Locks::mutator_lock_) { return FillArrayData(obj, payload) ? 1u : 0u; } extern "C" size_t MterpNewInstance(ShadowFrame* shadow_frame, Thread* self, uint32_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr()); ObjPtr obj = nullptr; ObjPtr c = ResolveVerifyAndClinit(dex::TypeIndex(inst->VRegB_21c()), shadow_frame->GetMethod(), self, /* can_run_clinit= */ false, !shadow_frame->GetMethod()->SkipAccessChecks()); if (LIKELY(c != nullptr)) { if (UNLIKELY(c->IsStringClass())) { gc::AllocatorType allocator_type = Runtime::Current()->GetHeap()->GetCurrentAllocator(); obj = mirror::String::AllocEmptyString(self, allocator_type); } else { obj = AllocObjectFromCode(c, self, Runtime::Current()->GetHeap()->GetCurrentAllocator()); } } if (UNLIKELY(obj == nullptr)) { return 0u; } obj->GetClass()->AssertInitializedOrInitializingInThread(self); shadow_frame->SetVRegReference(inst->VRegA_21c(inst_data), obj); return 1u; } extern "C" size_t MterpAputObject(ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, uint32_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { const Instruction* inst = Instruction::At(dex_pc_ptr); ObjPtr a = shadow_frame->GetVRegReference(inst->VRegB_23x()); if (UNLIKELY(a == nullptr)) { return 0u; } int32_t index = shadow_frame->GetVReg(inst->VRegC_23x()); ObjPtr val = shadow_frame->GetVRegReference(inst->VRegA_23x(inst_data)); ObjPtr> array = a->AsObjectArray(); if (array->CheckIsValidIndex(index) && array->CheckAssignable(val)) { array->SetWithoutChecks(index, val); return 1u; } return 0u; } extern "C" size_t MterpFilledNewArray(ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { const Instruction* inst = Instruction::At(dex_pc_ptr); JValue* result_register = shadow_frame->GetResultRegister(); bool res = false; if (shadow_frame->GetMethod()->SkipAccessChecks()) { res = DoFilledNewArray(inst, *shadow_frame, self, result_register); } else { res = DoFilledNewArray(inst, *shadow_frame, self, result_register); } return res ? 1u : 0u; } extern "C" size_t MterpFilledNewArrayRange(ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { const Instruction* inst = Instruction::At(dex_pc_ptr); JValue* result_register = shadow_frame->GetResultRegister(); bool res = false; if (shadow_frame->GetMethod()->SkipAccessChecks()) { res = DoFilledNewArray(inst, *shadow_frame, self, result_register); } else { res = DoFilledNewArray(inst, *shadow_frame, self, result_register); } return res ? 1u : 0u; } extern "C" size_t MterpNewArray(ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr, uint32_t inst_data, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { const Instruction* inst = Instruction::At(dex_pc_ptr); int32_t length = shadow_frame->GetVReg(inst->VRegB_22c(inst_data)); gc::AllocatorType allocator = Runtime::Current()->GetHeap()->GetCurrentAllocator(); ObjPtr obj; if (shadow_frame->GetMethod()->SkipAccessChecks()) { obj = AllocArrayFromCode(dex::TypeIndex(inst->VRegC_22c()), length, shadow_frame->GetMethod(), self, allocator); } else { obj = AllocArrayFromCode(dex::TypeIndex(inst->VRegC_22c()), length, shadow_frame->GetMethod(), self, allocator); } if (UNLIKELY(obj == nullptr)) { return 0u; } shadow_frame->SetVRegReference(inst->VRegA_22c(inst_data), obj); return 1u; } extern "C" size_t MterpHandleException(Thread* self, ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(self->IsExceptionPending()); const instrumentation::Instrumentation* const instrumentation = Runtime::Current()->GetInstrumentation(); return MoveToExceptionHandler(self, *shadow_frame, instrumentation) ? 1u : 0u; } struct MterpCheckHelper { DECLARE_RUNTIME_DEBUG_FLAG(kSlowMode); }; DEFINE_RUNTIME_DEBUG_FLAG(MterpCheckHelper, kSlowMode); extern "C" void MterpCheckBefore(Thread* self, ShadowFrame* shadow_frame, uint16_t* dex_pc_ptr) REQUIRES_SHARED(Locks::mutator_lock_) { // Check that we are using the right interpreter. if (kIsDebugBuild && self->UseMterp() != CanUseMterp()) { // The flag might be currently being updated on all threads. Retry with lock. MutexLock tll_mu(self, *Locks::thread_list_lock_); DCHECK_EQ(self->UseMterp(), CanUseMterp()); } DCHECK(!Runtime::Current()->IsActiveTransaction()); const Instruction* inst = Instruction::At(dex_pc_ptr); uint16_t inst_data = inst->Fetch16(0); if (inst->Opcode(inst_data) == Instruction::MOVE_EXCEPTION) { self->AssertPendingException(); } else { self->AssertNoPendingException(); } if (kTraceExecutionEnabled) { uint32_t dex_pc = dex_pc_ptr - shadow_frame->GetDexInstructions(); TraceExecution(*shadow_frame, inst, dex_pc); } if (kTestExportPC) { // Save invalid dex pc to force segfault if improperly used. shadow_frame->SetDexPCPtr(reinterpret_cast(kExportPCPoison)); } if (MterpCheckHelper::kSlowMode) { shadow_frame->CheckConsistentVRegs(); } } extern "C" void MterpLogDivideByZeroException(Thread* self, ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) { UNUSED(self); const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr()); uint16_t inst_data = inst->Fetch16(0); LOG(INFO) << "DivideByZero: " << inst->Opcode(inst_data); } extern "C" void MterpLogArrayIndexException(Thread* self, ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) { UNUSED(self); const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr()); uint16_t inst_data = inst->Fetch16(0); LOG(INFO) << "ArrayIndex: " << inst->Opcode(inst_data); } extern "C" void MterpLogNegativeArraySizeException(Thread* self, ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) { UNUSED(self); const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr()); uint16_t inst_data = inst->Fetch16(0); LOG(INFO) << "NegativeArraySize: " << inst->Opcode(inst_data); } extern "C" void MterpLogNoSuchMethodException(Thread* self, ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) { UNUSED(self); const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr()); uint16_t inst_data = inst->Fetch16(0); LOG(INFO) << "NoSuchMethod: " << inst->Opcode(inst_data); } extern "C" void MterpLogExceptionThrownException(Thread* self, ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) { UNUSED(self); const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr()); uint16_t inst_data = inst->Fetch16(0); LOG(INFO) << "ExceptionThrown: " << inst->Opcode(inst_data); } extern "C" void MterpLogNullObjectException(Thread* self, ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) { UNUSED(self); const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr()); uint16_t inst_data = inst->Fetch16(0); LOG(INFO) << "NullObject: " << inst->Opcode(inst_data); } extern "C" void MterpLogFallback(Thread* self, ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) { UNUSED(self); const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr()); uint16_t inst_data = inst->Fetch16(0); LOG(INFO) << "Fallback: " << inst->Opcode(inst_data) << ", Suspend Pending?: " << self->IsExceptionPending(); } extern "C" void MterpLogOSR(Thread* self, ShadowFrame* shadow_frame, int32_t offset) REQUIRES_SHARED(Locks::mutator_lock_) { UNUSED(self); const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr()); uint16_t inst_data = inst->Fetch16(0); LOG(INFO) << "OSR: " << inst->Opcode(inst_data) << ", offset = " << offset; } extern "C" void MterpLogSuspendFallback(Thread* self, ShadowFrame* shadow_frame, uint32_t flags) REQUIRES_SHARED(Locks::mutator_lock_) { UNUSED(self); const Instruction* inst = Instruction::At(shadow_frame->GetDexPCPtr()); uint16_t inst_data = inst->Fetch16(0); if (flags & kCheckpointRequest) { LOG(INFO) << "Checkpoint fallback: " << inst->Opcode(inst_data); } else if (flags & kSuspendRequest) { LOG(INFO) << "Suspend fallback: " << inst->Opcode(inst_data); } else if (flags & kEmptyCheckpointRequest) { LOG(INFO) << "Empty checkpoint fallback: " << inst->Opcode(inst_data); } } extern "C" size_t MterpSuspendCheck(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { self->AllowThreadSuspension(); return !self->UseMterp(); } // Execute single field access instruction (get/put, static/instance). // The template arguments reduce this to fairly small amount of code. // It requires the target object and field to be already resolved. template ALWAYS_INLINE void MterpFieldAccess(Instruction* inst, uint16_t inst_data, ShadowFrame* shadow_frame, ObjPtr obj, MemberOffset offset, bool is_volatile) REQUIRES_SHARED(Locks::mutator_lock_) { static_assert(std::is_integral::value, "Unexpected primitive type"); constexpr bool kIsStatic = (kAccessType & FindFieldFlags::StaticBit) != 0; constexpr bool kIsPrimitive = (kAccessType & FindFieldFlags::PrimitiveBit) != 0; constexpr bool kIsRead = (kAccessType & FindFieldFlags::ReadBit) != 0; uint16_t vRegA = kIsStatic ? inst->VRegA_21c(inst_data) : inst->VRegA_22c(inst_data); if (kIsPrimitive) { if (kIsRead) { PrimType value = UNLIKELY(is_volatile) ? obj->GetFieldPrimitive(offset) : obj->GetFieldPrimitive(offset); if (sizeof(PrimType) == sizeof(uint64_t)) { shadow_frame->SetVRegLong(vRegA, value); // Set two consecutive registers. } else { shadow_frame->SetVReg(vRegA, static_cast(value)); // Sign/zero extend. } } else { // Write. uint64_t value = (sizeof(PrimType) == sizeof(uint64_t)) ? shadow_frame->GetVRegLong(vRegA) : shadow_frame->GetVReg(vRegA); if (UNLIKELY(is_volatile)) { obj->SetFieldPrimitive(offset, value); } else { obj->SetFieldPrimitive(offset, value); } } } else { // Object. if (kIsRead) { ObjPtr value = UNLIKELY(is_volatile) ? obj->GetFieldObjectVolatile(offset) : obj->GetFieldObject(offset); shadow_frame->SetVRegReference(vRegA, value); } else { // Write. ObjPtr value = shadow_frame->GetVRegReference(vRegA); if (UNLIKELY(is_volatile)) { obj->SetFieldObjectVolatile(offset, value); } else { obj->SetFieldObject(offset, value); } } } } template NO_INLINE bool MterpFieldAccessSlow(Instruction* inst, uint16_t inst_data, ShadowFrame* shadow_frame, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { constexpr bool kIsStatic = (kAccessType & FindFieldFlags::StaticBit) != 0; constexpr bool kIsRead = (kAccessType & FindFieldFlags::ReadBit) != 0; // Update the dex pc in shadow frame, just in case anything throws. shadow_frame->SetDexPCPtr(reinterpret_cast(inst)); ArtMethod* referrer = shadow_frame->GetMethod(); uint32_t field_idx = kIsStatic ? inst->VRegB_21c() : inst->VRegC_22c(); ArtField* field = FindFieldFromCode( field_idx, referrer, self, sizeof(PrimType)); if (UNLIKELY(field == nullptr)) { DCHECK(self->IsExceptionPending()); return false; } constexpr bool kIsPrimitive = (kAccessType & FindFieldFlags::PrimitiveBit) != 0; if (!kIsPrimitive && !kIsRead) { uint16_t vRegA = kIsStatic ? inst->VRegA_21c(inst_data) : inst->VRegA_22c(inst_data); ObjPtr value = shadow_frame->GetVRegReference(vRegA); if (value != nullptr && field->ResolveType() == nullptr) { DCHECK(self->IsExceptionPending()); return false; } } ObjPtr obj = kIsStatic ? field->GetDeclaringClass().Ptr() : shadow_frame->GetVRegReference(inst->VRegB_22c(inst_data)); if (UNLIKELY(obj == nullptr)) { ThrowNullPointerExceptionForFieldAccess(field, kIsRead); return false; } MterpFieldAccess( inst, inst_data, shadow_frame, obj, field->GetOffset(), field->IsVolatile()); return true; } // This methods is called from assembly to handle field access instructions. template ALWAYS_INLINE bool MterpFieldAccessFast(Instruction* inst, uint16_t inst_data, ShadowFrame* shadow_frame, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { constexpr bool kIsStatic = (kAccessType & FindFieldFlags::StaticBit) != 0; // Try to find the field in small thread-local cache first. InterpreterCache* tls_cache = self->GetInterpreterCache(); size_t tls_value; if (LIKELY(tls_cache->Get(inst, &tls_value))) { // The meaning of the cache value is opcode-specific. // It is ArtFiled* for static fields and the raw offset for instance fields. size_t offset = kIsStatic ? reinterpret_cast(tls_value)->GetOffset().SizeValue() : tls_value; if (kIsDebugBuild) { uint32_t field_idx = kIsStatic ? inst->VRegB_21c() : inst->VRegC_22c(); ArtField* field = FindFieldFromCode( field_idx, shadow_frame->GetMethod(), self, sizeof(PrimType)); DCHECK_EQ(offset, field->GetOffset().SizeValue()); } ObjPtr obj = kIsStatic ? reinterpret_cast(tls_value)->GetDeclaringClass() : ObjPtr(shadow_frame->GetVRegReference(inst->VRegB_22c(inst_data))); if (LIKELY(obj != nullptr)) { MterpFieldAccess( inst, inst_data, shadow_frame, obj, MemberOffset(offset), /* is_volatile= */ false); return true; } } // This effectively inlines the fast path from ArtMethod::GetDexCache. ArtMethod* referrer = shadow_frame->GetMethod(); if (LIKELY(!referrer->IsObsolete() && !do_access_checks)) { // Avoid read barriers, since we need only the pointer to the native (non-movable) // DexCache field array which we can get even through from-space objects. ObjPtr klass = referrer->GetDeclaringClass(); ObjPtr dex_cache = klass->GetDexCache(); // Try to find the desired field in DexCache. uint32_t field_idx = kIsStatic ? inst->VRegB_21c() : inst->VRegC_22c(); ArtField* field = dex_cache->GetResolvedField(field_idx); if (LIKELY(field != nullptr)) { bool visibly_initialized = !kIsStatic || field->GetDeclaringClass()->IsVisiblyInitialized(); if (LIKELY(visibly_initialized)) { DCHECK_EQ(field, (FindFieldFromCode( field_idx, referrer, self, sizeof(PrimType)))); ObjPtr obj = kIsStatic ? field->GetDeclaringClass().Ptr() : shadow_frame->GetVRegReference(inst->VRegB_22c(inst_data)); // We check if nterp is supported as nterp and mterp use the cache in an // incompatible way. if (!IsNterpSupported() && LIKELY(kIsStatic || obj != nullptr)) { // Only non-volatile fields are allowed in the thread-local cache. if (LIKELY(!field->IsVolatile())) { if (kIsStatic) { tls_cache->Set(inst, reinterpret_cast(field)); } else { tls_cache->Set(inst, field->GetOffset().SizeValue()); } } MterpFieldAccess( inst, inst_data, shadow_frame, obj, field->GetOffset(), field->IsVolatile()); return true; } } } } // Slow path. Last and with identical arguments so that it becomes single instruction tail call. return MterpFieldAccessSlow( inst, inst_data, shadow_frame, self); } #define MTERP_FIELD_ACCESSOR(Name, PrimType, AccessType) \ extern "C" bool Name(Instruction* inst, uint16_t inst_data, ShadowFrame* sf, Thread* self) \ REQUIRES_SHARED(Locks::mutator_lock_) { \ if (sf->GetMethod()->SkipAccessChecks()) { \ return MterpFieldAccessFast(inst, inst_data, sf, self); \ } else { \ return MterpFieldAccessFast(inst, inst_data, sf, self); \ } \ } #define MTERP_FIELD_ACCESSORS_FOR_TYPE(Sufix, PrimType, Kind) \ MTERP_FIELD_ACCESSOR(MterpIGet##Sufix, PrimType, Instance##Kind##Read) \ MTERP_FIELD_ACCESSOR(MterpIPut##Sufix, PrimType, Instance##Kind##Write) \ MTERP_FIELD_ACCESSOR(MterpSGet##Sufix, PrimType, Static##Kind##Read) \ MTERP_FIELD_ACCESSOR(MterpSPut##Sufix, PrimType, Static##Kind##Write) MTERP_FIELD_ACCESSORS_FOR_TYPE(I8, int8_t, Primitive) MTERP_FIELD_ACCESSORS_FOR_TYPE(U8, uint8_t, Primitive) MTERP_FIELD_ACCESSORS_FOR_TYPE(I16, int16_t, Primitive) MTERP_FIELD_ACCESSORS_FOR_TYPE(U16, uint16_t, Primitive) MTERP_FIELD_ACCESSORS_FOR_TYPE(U32, uint32_t, Primitive) MTERP_FIELD_ACCESSORS_FOR_TYPE(U64, uint64_t, Primitive) MTERP_FIELD_ACCESSORS_FOR_TYPE(Obj, uint32_t, Object) // Check that the primitive type for Obj variant above is correct. // It really must be primitive type for the templates to compile. // In the case of objects, it is only used to get the field size. static_assert(kHeapReferenceSize == sizeof(uint32_t), "Unexpected kHeapReferenceSize"); #undef MTERP_FIELD_ACCESSORS_FOR_TYPE #undef MTERP_FIELD_ACCESSOR extern "C" mirror::Object* artAGetObjectFromMterp(mirror::Object* arr, int32_t index) REQUIRES_SHARED(Locks::mutator_lock_) { if (UNLIKELY(arr == nullptr)) { ThrowNullPointerExceptionFromInterpreter(); return nullptr; } ObjPtr> array = arr->AsObjectArray(); if (LIKELY(array->CheckIsValidIndex(index))) { return array->GetWithoutChecks(index).Ptr(); } else { return nullptr; } } extern "C" mirror::Object* artIGetObjectFromMterp(mirror::Object* obj, uint32_t field_offset) REQUIRES_SHARED(Locks::mutator_lock_) { if (UNLIKELY(obj == nullptr)) { ThrowNullPointerExceptionFromInterpreter(); return nullptr; } return obj->GetFieldObject(MemberOffset(field_offset)); } /* * Create a hotness_countdown based on the current method hotness_count and profiling * mode. In short, determine how many hotness events we hit before reporting back * to the full instrumentation via MterpAddHotnessBatch. Called once on entry to the method, * and regenerated following batch updates. */ extern "C" ssize_t MterpSetUpHotnessCountdown(ArtMethod* method, ShadowFrame* shadow_frame, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { uint16_t hotness_count = method->GetCounter(); int32_t countdown_value = jit::kJitHotnessDisabled; jit::Jit* jit = Runtime::Current()->GetJit(); if (jit != nullptr) { int32_t warm_threshold = jit->WarmMethodThreshold(); int32_t hot_threshold = jit->HotMethodThreshold(); int32_t osr_threshold = jit->OSRMethodThreshold(); if (hotness_count < warm_threshold) { countdown_value = warm_threshold - hotness_count; } else if (hotness_count < hot_threshold) { countdown_value = hot_threshold - hotness_count; } else if (hotness_count < osr_threshold) { countdown_value = osr_threshold - hotness_count; } else { countdown_value = jit::kJitCheckForOSR; } if (jit::Jit::ShouldUsePriorityThreadWeight(self)) { int32_t priority_thread_weight = jit->PriorityThreadWeight(); countdown_value = std::min(countdown_value, countdown_value / priority_thread_weight); } } /* * The actual hotness threshold may exceed the range of our int16_t countdown value. This is * not a problem, though. We can just break it down into smaller chunks. */ countdown_value = std::min(countdown_value, static_cast(std::numeric_limits::max())); shadow_frame->SetCachedHotnessCountdown(countdown_value); shadow_frame->SetHotnessCountdown(countdown_value); return countdown_value; } /* * Report a batch of hotness events to the instrumentation and then return the new * countdown value to the next time we should report. */ extern "C" ssize_t MterpAddHotnessBatch(ArtMethod* method, ShadowFrame* shadow_frame, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { jit::Jit* jit = Runtime::Current()->GetJit(); if (jit != nullptr) { int16_t count = shadow_frame->GetCachedHotnessCountdown() - shadow_frame->GetHotnessCountdown(); jit->AddSamples(self, method, count, /*with_backedges=*/ true); } return MterpSetUpHotnessCountdown(method, shadow_frame, self); } extern "C" size_t MterpMaybeDoOnStackReplacement(Thread* self, ShadowFrame* shadow_frame, int32_t offset) REQUIRES_SHARED(Locks::mutator_lock_) { int16_t osr_countdown = shadow_frame->GetCachedHotnessCountdown() - 1; bool did_osr = false; /* * To reduce the cost of polling the compiler to determine whether the requested OSR * compilation has completed, only check every Nth time. NOTE: the "osr_countdown <= 0" * condition is satisfied either by the decrement below or the initial setting of * the cached countdown field to kJitCheckForOSR, which elsewhere is asserted to be -1. */ if (osr_countdown <= 0) { ArtMethod* method = shadow_frame->GetMethod(); JValue* result = shadow_frame->GetResultRegister(); uint32_t dex_pc = shadow_frame->GetDexPC(); jit::Jit* jit = Runtime::Current()->GetJit(); osr_countdown = jit::Jit::kJitRecheckOSRThreshold; if (offset <= 0) { // Keep updating hotness in case a compilation request was dropped. Eventually it will retry. jit->AddSamples(self, method, osr_countdown, /*with_backedges=*/ true); } did_osr = jit::Jit::MaybeDoOnStackReplacement(self, method, dex_pc, offset, result); } shadow_frame->SetCachedHotnessCountdown(osr_countdown); return did_osr ? 1u : 0u; } } // namespace interpreter } // namespace art