/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "math_data_test.h" #include "utils.h" using namespace std::string_literals; template class GenericTemporaryFile { public: explicit GenericTemporaryFile(T mk_fn = mkstemp) : mk_fn_(mk_fn) { // Since we might be running on the host or the target, and if we're // running on the host we might be running under bionic or glibc, // let's just try both possible temporary directories and take the // first one that works. init("/data/local/tmp"); if (fd == -1) { init("/tmp"); } } ~GenericTemporaryFile() { close(fd); unlink(path); } int fd; char path[1024]; private: T mk_fn_; void init(const char* tmp_dir) { snprintf(path, sizeof(path), "%s/TemporaryFile-XXXXXX", tmp_dir); fd = mk_fn_(path); } DISALLOW_COPY_AND_ASSIGN(GenericTemporaryFile); }; typedef GenericTemporaryFile<> MyTemporaryFile; // The random number generator tests all set the seed, get four values, reset the seed and check // that they get the first two values repeated, and then reset the seed and check two more values // to rule out the possibility that we're just going round a cycle of four values. // TODO: factor this out. TEST(stdlib, drand48) { srand48(0x01020304); EXPECT_DOUBLE_EQ(0.65619299195623526, drand48()); EXPECT_DOUBLE_EQ(0.18522597229772941, drand48()); EXPECT_DOUBLE_EQ(0.42015087072844537, drand48()); EXPECT_DOUBLE_EQ(0.061637783047395089, drand48()); srand48(0x01020304); EXPECT_DOUBLE_EQ(0.65619299195623526, drand48()); EXPECT_DOUBLE_EQ(0.18522597229772941, drand48()); srand48(0x01020304); EXPECT_DOUBLE_EQ(0.65619299195623526, drand48()); EXPECT_DOUBLE_EQ(0.18522597229772941, drand48()); } TEST(stdlib, erand48) { const unsigned short seed[3] = { 0x330e, 0xabcd, 0x1234 }; unsigned short xsubi[3]; memcpy(xsubi, seed, sizeof(seed)); EXPECT_DOUBLE_EQ(0.39646477376027534, erand48(xsubi)); EXPECT_DOUBLE_EQ(0.84048536941142515, erand48(xsubi)); EXPECT_DOUBLE_EQ(0.35333609724524351, erand48(xsubi)); EXPECT_DOUBLE_EQ(0.44658343479654405, erand48(xsubi)); memcpy(xsubi, seed, sizeof(seed)); EXPECT_DOUBLE_EQ(0.39646477376027534, erand48(xsubi)); EXPECT_DOUBLE_EQ(0.84048536941142515, erand48(xsubi)); memcpy(xsubi, seed, sizeof(seed)); EXPECT_DOUBLE_EQ(0.39646477376027534, erand48(xsubi)); EXPECT_DOUBLE_EQ(0.84048536941142515, erand48(xsubi)); } TEST(stdlib, lcong48) { unsigned short p[7] = { 0x0102, 0x0304, 0x0506, 0x0708, 0x090a, 0x0b0c, 0x0d0e }; lcong48(p); EXPECT_EQ(1531389981, lrand48()); EXPECT_EQ(1598801533, lrand48()); EXPECT_EQ(2080534853, lrand48()); EXPECT_EQ(1102488897, lrand48()); lcong48(p); EXPECT_EQ(1531389981, lrand48()); EXPECT_EQ(1598801533, lrand48()); lcong48(p); EXPECT_EQ(1531389981, lrand48()); EXPECT_EQ(1598801533, lrand48()); } TEST(stdlib, lrand48) { srand48(0x01020304); EXPECT_EQ(1409163720, lrand48()); EXPECT_EQ(397769746, lrand48()); EXPECT_EQ(902267124, lrand48()); EXPECT_EQ(132366131, lrand48()); srand48(0x01020304); EXPECT_EQ(1409163720, lrand48()); EXPECT_EQ(397769746, lrand48()); srand48(0x01020304); EXPECT_EQ(1409163720, lrand48()); EXPECT_EQ(397769746, lrand48()); } TEST(stdlib, random) { srandom(0x01020304); EXPECT_EQ(55436735, random()); EXPECT_EQ(1399865117, random()); EXPECT_EQ(2032643283, random()); EXPECT_EQ(571329216, random()); srandom(0x01020304); EXPECT_EQ(55436735, random()); EXPECT_EQ(1399865117, random()); srandom(0x01020304); EXPECT_EQ(55436735, random()); EXPECT_EQ(1399865117, random()); } TEST(stdlib, rand) { srand(0x01020304); EXPECT_EQ(55436735, rand()); EXPECT_EQ(1399865117, rand()); EXPECT_EQ(2032643283, rand()); EXPECT_EQ(571329216, rand()); srand(0x01020304); EXPECT_EQ(55436735, rand()); EXPECT_EQ(1399865117, rand()); srand(0x01020304); EXPECT_EQ(55436735, rand()); EXPECT_EQ(1399865117, rand()); } TEST(stdlib, mrand48) { srand48(0x01020304); EXPECT_EQ(-1476639856, mrand48()); EXPECT_EQ(795539493, mrand48()); EXPECT_EQ(1804534249, mrand48()); EXPECT_EQ(264732262, mrand48()); srand48(0x01020304); EXPECT_EQ(-1476639856, mrand48()); EXPECT_EQ(795539493, mrand48()); srand48(0x01020304); EXPECT_EQ(-1476639856, mrand48()); EXPECT_EQ(795539493, mrand48()); } TEST(stdlib, jrand48_distribution) { const int iterations = 4096; const int pivot_low = 1536; const int pivot_high = 2560; unsigned short xsubi[3]; int bits[32] = {}; for (int iter = 0; iter < iterations; ++iter) { long rand_val = jrand48(xsubi); for (int bit = 0; bit < 32; ++bit) { bits[bit] += (static_cast(rand_val) >> bit) & 0x01; } } // Check that bit probability is uniform for (int bit = 0; bit < 32; ++bit) { EXPECT_TRUE((pivot_low <= bits[bit]) && (bits[bit] <= pivot_high)); } } TEST(stdlib, mrand48_distribution) { const int iterations = 4096; const int pivot_low = 1536; const int pivot_high = 2560; int bits[32] = {}; for (int iter = 0; iter < iterations; ++iter) { long rand_val = mrand48(); for (int bit = 0; bit < 32; ++bit) { bits[bit] += (static_cast(rand_val) >> bit) & 0x01; } } // Check that bit probability is uniform for (int bit = 0; bit < 32; ++bit) { EXPECT_TRUE((pivot_low <= bits[bit]) && (bits[bit] <= pivot_high)); } } TEST(stdlib, posix_memalign_sweep) { SKIP_WITH_HWASAN; void* ptr; // These should all fail. for (size_t align = 0; align < sizeof(long); align++) { ASSERT_EQ(EINVAL, posix_memalign(&ptr, align, 256)) << "Unexpected value at align " << align; } // Verify powers of 2 up to 2048 allocate, and verify that all other // alignment values between the powers of 2 fail. size_t last_align = sizeof(long); for (size_t align = sizeof(long); align <= 2048; align <<= 1) { // Try all of the non power of 2 values from the last until this value. for (size_t fail_align = last_align + 1; fail_align < align; fail_align++) { ASSERT_EQ(EINVAL, posix_memalign(&ptr, fail_align, 256)) << "Unexpected success at align " << fail_align; } ASSERT_EQ(0, posix_memalign(&ptr, align, 256)) << "Unexpected failure at align " << align; ASSERT_EQ(0U, reinterpret_cast(ptr) & (align - 1)) << "Did not return a valid aligned ptr " << ptr << " expected alignment " << align; free(ptr); last_align = align; } } TEST(stdlib, posix_memalign_various_sizes) { std::vector sizes{1, 4, 8, 256, 1024, 65000, 128000, 256000, 1000000}; for (auto size : sizes) { void* ptr; ASSERT_EQ(0, posix_memalign(&ptr, 16, 1)) << "posix_memalign failed at size " << size; ASSERT_EQ(0U, reinterpret_cast(ptr) & 0xf) << "Pointer not aligned at size " << size << " ptr " << ptr; free(ptr); } } TEST(stdlib, posix_memalign_overflow) { SKIP_WITH_HWASAN; void* ptr; ASSERT_NE(0, posix_memalign(&ptr, 16, SIZE_MAX)); } TEST(stdlib, aligned_alloc_sweep) { SKIP_WITH_HWASAN; // Verify powers of 2 up to 2048 allocate, and verify that all other // alignment values between the powers of 2 fail. size_t last_align = 1; for (size_t align = 1; align <= 2048; align <<= 1) { // Try all of the non power of 2 values from the last until this value. for (size_t fail_align = last_align + 1; fail_align < align; fail_align++) { ASSERT_TRUE(aligned_alloc(fail_align, fail_align) == nullptr) << "Unexpected success at align " << fail_align; ASSERT_EQ(EINVAL, errno) << "Unexpected errno at align " << fail_align; } void* ptr = aligned_alloc(align, 2 * align); ASSERT_TRUE(ptr != nullptr) << "Unexpected failure at align " << align; ASSERT_EQ(0U, reinterpret_cast(ptr) & (align - 1)) << "Did not return a valid aligned ptr " << ptr << " expected alignment " << align; free(ptr); last_align = align; } } TEST(stdlib, aligned_alloc_overflow) { SKIP_WITH_HWASAN; ASSERT_TRUE(aligned_alloc(16, SIZE_MAX) == nullptr); } TEST(stdlib, aligned_alloc_size_not_multiple_of_alignment) { SKIP_WITH_HWASAN; ASSERT_TRUE(aligned_alloc(2048, 1) == nullptr); ASSERT_TRUE(aligned_alloc(4, 3) == nullptr); ASSERT_TRUE(aligned_alloc(4, 7) == nullptr); ASSERT_TRUE(aligned_alloc(16, 8) == nullptr); } TEST(stdlib, realpath__NULL_filename) { errno = 0; // Work around the compile-time error generated by FORTIFY here. const char* path = nullptr; char* p = realpath(path, nullptr); ASSERT_TRUE(p == nullptr); ASSERT_EQ(EINVAL, errno); } TEST(stdlib, realpath__empty_filename) { errno = 0; char* p = realpath("", nullptr); ASSERT_TRUE(p == nullptr); ASSERT_EQ(ENOENT, errno); } TEST(stdlib, realpath__ENOENT) { errno = 0; char* p = realpath("/this/directory/path/almost/certainly/does/not/exist", nullptr); ASSERT_TRUE(p == nullptr); ASSERT_EQ(ENOENT, errno); } TEST(stdlib, realpath__ELOOP) { TemporaryDir td; std::string link = std::string(td.path) + "/loop"; ASSERT_EQ(0, symlink(link.c_str(), link.c_str())); errno = 0; char* p = realpath(link.c_str(), nullptr); ASSERT_TRUE(p == nullptr); ASSERT_EQ(ELOOP, errno); } TEST(stdlib, realpath__component_after_non_directory) { errno = 0; char* p = realpath("/dev/null/.", nullptr); ASSERT_TRUE(p == nullptr); ASSERT_EQ(ENOTDIR, errno); errno = 0; p = realpath("/dev/null/..", nullptr); ASSERT_TRUE(p == nullptr); ASSERT_EQ(ENOTDIR, errno); } TEST(stdlib, realpath) { // Get the name of this executable. char executable_path[PATH_MAX]; int rc = readlink("/proc/self/exe", executable_path, sizeof(executable_path)); ASSERT_NE(rc, -1); executable_path[rc] = '\0'; char buf[PATH_MAX + 1]; char* p = realpath("/proc/self/exe", buf); ASSERT_STREQ(executable_path, p); p = realpath("/proc/self/exe", nullptr); ASSERT_STREQ(executable_path, p); free(p); } TEST(stdlib, realpath__dot) { char* p = realpath("/proc/./version", nullptr); ASSERT_STREQ("/proc/version", p); free(p); } TEST(stdlib, realpath__dot_dot) { char* p = realpath("/dev/../proc/version", nullptr); ASSERT_STREQ("/proc/version", p); free(p); } TEST(stdlib, realpath__deleted) { TemporaryDir td; // Create a file "A". std::string A_path = td.path + "/A"s; ASSERT_TRUE(android::base::WriteStringToFile("test\n", A_path)); // Get an O_PATH fd for it. android::base::unique_fd fd(open(A_path.c_str(), O_PATH)); ASSERT_NE(fd, -1); // Create a file "A (deleted)". android::base::unique_fd fd2(open((td.path + "/A (deleted)"s).c_str(), O_CREAT | O_TRUNC | O_WRONLY, 0644)); ASSERT_NE(fd2, -1); // Delete "A". ASSERT_EQ(0, unlink(A_path.c_str())); // Now realpath() on the O_PATH fd, and check we *don't* get "A (deleted)". std::string path = android::base::StringPrintf("/proc/%d/fd/%d", static_cast(getpid()), fd.get()); errno = 0; char* result = realpath(path.c_str(), nullptr); ASSERT_EQ(nullptr, result) << result; ASSERT_EQ(ENOENT, errno); free(result); } TEST(stdlib, qsort) { struct s { char name[16]; static int comparator(const void* lhs, const void* rhs) { return strcmp(reinterpret_cast(lhs)->name, reinterpret_cast(rhs)->name); } }; s entries[3]; strcpy(entries[0].name, "charlie"); strcpy(entries[1].name, "bravo"); strcpy(entries[2].name, "alpha"); qsort(entries, 3, sizeof(s), s::comparator); ASSERT_STREQ("alpha", entries[0].name); ASSERT_STREQ("bravo", entries[1].name); ASSERT_STREQ("charlie", entries[2].name); qsort(entries, 3, sizeof(s), s::comparator); ASSERT_STREQ("alpha", entries[0].name); ASSERT_STREQ("bravo", entries[1].name); ASSERT_STREQ("charlie", entries[2].name); } static void* TestBug57421_child(void* arg) { pthread_t main_thread = reinterpret_cast(arg); pthread_join(main_thread, nullptr); char* value = getenv("ENVIRONMENT_VARIABLE"); if (value == nullptr) { setenv("ENVIRONMENT_VARIABLE", "value", 1); } return nullptr; } static void TestBug57421_main() { pthread_t t; ASSERT_EQ(0, pthread_create(&t, nullptr, TestBug57421_child, reinterpret_cast(pthread_self()))); pthread_exit(nullptr); } // Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to // run this test (which exits normally) in its own process. using stdlib_DeathTest = SilentDeathTest; TEST_F(stdlib_DeathTest, getenv_after_main_thread_exits) { // https://code.google.com/p/android/issues/detail?id=57421 ASSERT_EXIT(TestBug57421_main(), ::testing::ExitedWithCode(0), ""); } TEST(stdlib, mkostemp64) { MyTemporaryFile tf([](char* path) { return mkostemp64(path, O_CLOEXEC); }); ASSERT_TRUE(CloseOnExec(tf.fd)); } TEST(stdlib, mkostemp) { MyTemporaryFile tf([](char* path) { return mkostemp(path, O_CLOEXEC); }); ASSERT_TRUE(CloseOnExec(tf.fd)); } TEST(stdlib, mkstemp64) { MyTemporaryFile tf(mkstemp64); struct stat64 sb; ASSERT_EQ(0, fstat64(tf.fd, &sb)); ASSERT_EQ(O_LARGEFILE, fcntl(tf.fd, F_GETFL) & O_LARGEFILE); } TEST(stdlib, mkstemp) { MyTemporaryFile tf(mkstemp); struct stat sb; ASSERT_EQ(0, fstat(tf.fd, &sb)); } TEST(stdlib, system) { int status; status = system("exit 0"); ASSERT_TRUE(WIFEXITED(status)); ASSERT_EQ(0, WEXITSTATUS(status)); status = system("exit 1"); ASSERT_TRUE(WIFEXITED(status)); ASSERT_EQ(1, WEXITSTATUS(status)); } TEST(stdlib, system_NULL) { // "The system() function shall always return non-zero when command is NULL." // http://pubs.opengroup.org/onlinepubs/9699919799/functions/system.html ASSERT_NE(0, system(nullptr)); } TEST(stdlib, atof) { ASSERT_DOUBLE_EQ(1.23, atof("1.23")); } template static void CheckStrToFloat(T fn(const char* s, char** end)) { FpUlpEq<0, T> pred; EXPECT_PRED_FORMAT2(pred, 9.0, fn("9.0", nullptr)); EXPECT_PRED_FORMAT2(pred, 9.0, fn("0.9e1", nullptr)); EXPECT_PRED_FORMAT2(pred, 9.0, fn("0x1.2p3", nullptr)); const char* s = " \t\v\f\r\n9.0"; char* p; EXPECT_PRED_FORMAT2(pred, 9.0, fn(s, &p)); EXPECT_EQ(s + strlen(s), p); EXPECT_TRUE(isnan(fn("+nan", nullptr))); EXPECT_TRUE(isnan(fn("nan", nullptr))); EXPECT_TRUE(isnan(fn("-nan", nullptr))); EXPECT_TRUE(isnan(fn("+nan(0xff)", nullptr))); EXPECT_TRUE(isnan(fn("nan(0xff)", nullptr))); EXPECT_TRUE(isnan(fn("-nan(0xff)", nullptr))); EXPECT_TRUE(isnan(fn("+nanny", &p))); EXPECT_STREQ("ny", p); EXPECT_TRUE(isnan(fn("nanny", &p))); EXPECT_STREQ("ny", p); EXPECT_TRUE(isnan(fn("-nanny", &p))); EXPECT_STREQ("ny", p); EXPECT_EQ(0, fn("muppet", &p)); EXPECT_STREQ("muppet", p); EXPECT_EQ(0, fn(" muppet", &p)); EXPECT_STREQ(" muppet", p); EXPECT_EQ(std::numeric_limits::infinity(), fn("+inf", nullptr)); EXPECT_EQ(std::numeric_limits::infinity(), fn("inf", nullptr)); EXPECT_EQ(-std::numeric_limits::infinity(), fn("-inf", nullptr)); EXPECT_EQ(std::numeric_limits::infinity(), fn("+infinity", nullptr)); EXPECT_EQ(std::numeric_limits::infinity(), fn("infinity", nullptr)); EXPECT_EQ(-std::numeric_limits::infinity(), fn("-infinity", nullptr)); EXPECT_EQ(std::numeric_limits::infinity(), fn("+infinitude", &p)); EXPECT_STREQ("initude", p); EXPECT_EQ(std::numeric_limits::infinity(), fn("infinitude", &p)); EXPECT_STREQ("initude", p); EXPECT_EQ(-std::numeric_limits::infinity(), fn("-infinitude", &p)); EXPECT_STREQ("initude", p); // Check case-insensitivity. EXPECT_EQ(std::numeric_limits::infinity(), fn("InFiNiTy", nullptr)); EXPECT_TRUE(isnan(fn("NaN", nullptr))); } TEST(stdlib, strtod) { CheckStrToFloat(strtod); } TEST(stdlib, strtof) { CheckStrToFloat(strtof); } TEST(stdlib, strtold) { CheckStrToFloat(strtold); } TEST(stdlib, strtof_2206701) { ASSERT_EQ(0.0f, strtof("7.0064923216240853546186479164495e-46", nullptr)); ASSERT_EQ(1.4e-45f, strtof("7.0064923216240853546186479164496e-46", nullptr)); } TEST(stdlib, strtod_largest_subnormal) { // This value has been known to cause javac and java to infinite loop. // http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/ ASSERT_EQ(2.2250738585072014e-308, strtod("2.2250738585072012e-308", nullptr)); ASSERT_EQ(2.2250738585072014e-308, strtod("0.00022250738585072012e-304", nullptr)); ASSERT_EQ(2.2250738585072014e-308, strtod("00000002.2250738585072012e-308", nullptr)); ASSERT_EQ(2.2250738585072014e-308, strtod("2.225073858507201200000e-308", nullptr)); ASSERT_EQ(2.2250738585072014e-308, strtod("2.2250738585072012e-00308", nullptr)); ASSERT_EQ(2.2250738585072014e-308, strtod("2.22507385850720129978001e-308", nullptr)); ASSERT_EQ(-2.2250738585072014e-308, strtod("-2.2250738585072012e-308", nullptr)); } TEST(stdlib, quick_exit) { pid_t pid = fork(); ASSERT_NE(-1, pid) << strerror(errno); if (pid == 0) { quick_exit(99); } AssertChildExited(pid, 99); } static int quick_exit_status = 0; static void quick_exit_1(void) { ASSERT_EQ(quick_exit_status, 0); quick_exit_status = 1; } static void quick_exit_2(void) { ASSERT_EQ(quick_exit_status, 1); } static void not_run(void) { FAIL(); } TEST(stdlib, at_quick_exit) { pid_t pid = fork(); ASSERT_NE(-1, pid) << strerror(errno); if (pid == 0) { ASSERT_EQ(at_quick_exit(quick_exit_2), 0); ASSERT_EQ(at_quick_exit(quick_exit_1), 0); atexit(not_run); quick_exit(99); } AssertChildExited(pid, 99); } TEST(unistd, _Exit) { pid_t pid = fork(); ASSERT_NE(-1, pid) << strerror(errno); if (pid == 0) { _Exit(99); } AssertChildExited(pid, 99); } TEST(stdlib, pty_smoke) { // getpt returns a pty with O_RDWR|O_NOCTTY. int fd = getpt(); ASSERT_NE(-1, fd); // grantpt is a no-op. ASSERT_EQ(0, grantpt(fd)); // ptsname_r should start "/dev/pts/". char name_r[128]; ASSERT_EQ(0, ptsname_r(fd, name_r, sizeof(name_r))); name_r[9] = 0; ASSERT_STREQ("/dev/pts/", name_r); close(fd); } TEST(stdlib, posix_openpt) { int fd = posix_openpt(O_RDWR|O_NOCTTY|O_CLOEXEC); ASSERT_NE(-1, fd); close(fd); } TEST(stdlib, ptsname_r_ENOTTY) { errno = 0; char buf[128]; ASSERT_EQ(ENOTTY, ptsname_r(STDOUT_FILENO, buf, sizeof(buf))); ASSERT_EQ(ENOTTY, errno); } TEST(stdlib, ptsname_r_EINVAL) { int fd = getpt(); ASSERT_NE(-1, fd); errno = 0; char* buf = nullptr; ASSERT_EQ(EINVAL, ptsname_r(fd, buf, 128)); ASSERT_EQ(EINVAL, errno); close(fd); } TEST(stdlib, ptsname_r_ERANGE) { int fd = getpt(); ASSERT_NE(-1, fd); errno = 0; char buf[1]; ASSERT_EQ(ERANGE, ptsname_r(fd, buf, sizeof(buf))); ASSERT_EQ(ERANGE, errno); close(fd); } TEST(stdlib, ttyname) { int fd = getpt(); ASSERT_NE(-1, fd); // ttyname returns "/dev/ptmx" for a pty. ASSERT_STREQ("/dev/ptmx", ttyname(fd)); close(fd); } TEST(stdlib, ttyname_r) { int fd = getpt(); ASSERT_NE(-1, fd); // ttyname_r returns "/dev/ptmx" for a pty. char name_r[128]; ASSERT_EQ(0, ttyname_r(fd, name_r, sizeof(name_r))); ASSERT_STREQ("/dev/ptmx", name_r); close(fd); } TEST(stdlib, ttyname_r_ENOTTY) { int fd = open("/dev/null", O_WRONLY); errno = 0; char buf[128]; ASSERT_EQ(ENOTTY, ttyname_r(fd, buf, sizeof(buf))); ASSERT_EQ(ENOTTY, errno); close(fd); } TEST(stdlib, ttyname_r_EINVAL) { int fd = getpt(); ASSERT_NE(-1, fd); errno = 0; char* buf = nullptr; ASSERT_EQ(EINVAL, ttyname_r(fd, buf, 128)); ASSERT_EQ(EINVAL, errno); close(fd); } TEST(stdlib, ttyname_r_ERANGE) { int fd = getpt(); ASSERT_NE(-1, fd); errno = 0; char buf[1]; ASSERT_EQ(ERANGE, ttyname_r(fd, buf, sizeof(buf))); ASSERT_EQ(ERANGE, errno); close(fd); } TEST(stdlib, unlockpt_ENOTTY) { int fd = open("/dev/null", O_WRONLY); errno = 0; ASSERT_EQ(-1, unlockpt(fd)); ASSERT_EQ(ENOTTY, errno); close(fd); } TEST(stdlib, getsubopt) { char* const tokens[] = { const_cast("a"), const_cast("b"), const_cast("foo"), nullptr }; std::string input = "a,b,foo=bar,a,unknown"; char* subopts = &input[0]; char* value = nullptr; ASSERT_EQ(0, getsubopt(&subopts, tokens, &value)); ASSERT_EQ(nullptr, value); ASSERT_EQ(1, getsubopt(&subopts, tokens, &value)); ASSERT_EQ(nullptr, value); ASSERT_EQ(2, getsubopt(&subopts, tokens, &value)); ASSERT_STREQ("bar", value); ASSERT_EQ(0, getsubopt(&subopts, tokens, &value)); ASSERT_EQ(nullptr, value); ASSERT_EQ(-1, getsubopt(&subopts, tokens, &value)); } TEST(stdlib, mblen) { // "If s is a null pointer, mblen() shall return a non-zero or 0 value, if character encodings, // respectively, do or do not have state-dependent encodings." We're always UTF-8. EXPECT_EQ(0, mblen(nullptr, 1)); ASSERT_STREQ("C.UTF-8", setlocale(LC_ALL, "C.UTF-8")); // 1-byte UTF-8. EXPECT_EQ(1, mblen("abcdef", 6)); // 2-byte UTF-8. EXPECT_EQ(2, mblen("\xc2\xa2" "cdef", 6)); // 3-byte UTF-8. EXPECT_EQ(3, mblen("\xe2\x82\xac" "def", 6)); // 4-byte UTF-8. EXPECT_EQ(4, mblen("\xf0\xa4\xad\xa2" "ef", 6)); // Illegal over-long sequence. ASSERT_EQ(-1, mblen("\xf0\x82\x82\xac" "ef", 6)); // "mblen() shall ... return 0 (if s points to the null byte)". EXPECT_EQ(0, mblen("", 1)); } template static void CheckStrToInt(T fn(const char* s, char** end, int base)) { char* end_p; // Negative base => invalid. errno = 0; ASSERT_EQ(T(0), fn("123", &end_p, -1)); ASSERT_EQ(EINVAL, errno); // Base 1 => invalid (base 0 means "please guess"). errno = 0; ASSERT_EQ(T(0), fn("123", &end_p, 1)); ASSERT_EQ(EINVAL, errno); // Base > 36 => invalid. errno = 0; ASSERT_EQ(T(0), fn("123", &end_p, 37)); ASSERT_EQ(EINVAL, errno); // Both leading + or - are always allowed (even for the strtou* family). ASSERT_EQ(T(-123), fn("-123", &end_p, 10)); ASSERT_EQ(T(123), fn("+123", &end_p, 10)); // If we see "0x" *not* followed by a hex digit, we shouldn't swallow the 'x'. ASSERT_EQ(T(0), fn("0xy", &end_p, 16)); ASSERT_EQ('x', *end_p); // Hexadecimal (both the 0x and the digits) is case-insensitive. ASSERT_EQ(T(0xab), fn("0xab", &end_p, 0)); ASSERT_EQ(T(0xab), fn("0Xab", &end_p, 0)); ASSERT_EQ(T(0xab), fn("0xAB", &end_p, 0)); ASSERT_EQ(T(0xab), fn("0XAB", &end_p, 0)); ASSERT_EQ(T(0xab), fn("0xAb", &end_p, 0)); ASSERT_EQ(T(0xab), fn("0XAb", &end_p, 0)); // Octal lives! (Sadly.) ASSERT_EQ(T(0666), fn("0666", &end_p, 0)); if (std::numeric_limits::is_signed) { // Minimum (such as -128). std::string min{std::to_string(std::numeric_limits::min())}; end_p = nullptr; errno = 0; ASSERT_EQ(std::numeric_limits::min(), fn(min.c_str(), &end_p, 0)); ASSERT_EQ(0, errno); ASSERT_EQ('\0', *end_p); // Too negative (such as -129). min.back() = (min.back() + 1); end_p = nullptr; errno = 0; ASSERT_EQ(std::numeric_limits::min(), fn(min.c_str(), &end_p, 0)); ASSERT_EQ(ERANGE, errno); ASSERT_EQ('\0', *end_p); } // Maximum (such as 127). std::string max{std::to_string(std::numeric_limits::max())}; end_p = nullptr; errno = 0; ASSERT_EQ(std::numeric_limits::max(), fn(max.c_str(), &end_p, 0)); ASSERT_EQ(0, errno); ASSERT_EQ('\0', *end_p); // Too positive (such as 128). max.back() = (max.back() + 1); end_p = nullptr; errno = 0; ASSERT_EQ(std::numeric_limits::max(), fn(max.c_str(), &end_p, 0)); ASSERT_EQ(ERANGE, errno); ASSERT_EQ('\0', *end_p); // In case of overflow, strto* leaves us pointing past the end of the number, // not at the digit that overflowed. end_p = nullptr; errno = 0; ASSERT_EQ(std::numeric_limits::max(), fn("99999999999999999999999999999999999999999999999999999abc", &end_p, 0)); ASSERT_EQ(ERANGE, errno); ASSERT_STREQ("abc", end_p); if (std::numeric_limits::is_signed) { end_p = nullptr; errno = 0; ASSERT_EQ(std::numeric_limits::min(), fn("-99999999999999999999999999999999999999999999999999999abc", &end_p, 0)); ASSERT_EQ(ERANGE, errno); ASSERT_STREQ("abc", end_p); } } TEST(stdlib, strtol_smoke) { CheckStrToInt(strtol); } TEST(stdlib, strtoll_smoke) { CheckStrToInt(strtoll); } TEST(stdlib, strtoul_smoke) { CheckStrToInt(strtoul); } TEST(stdlib, strtoull_smoke) { CheckStrToInt(strtoull); } TEST(stdlib, strtoimax_smoke) { CheckStrToInt(strtoimax); } TEST(stdlib, strtoumax_smoke) { CheckStrToInt(strtoumax); } TEST(stdlib, atoi) { // Implemented using strtol in bionic, so extensive testing unnecessary. ASSERT_EQ(123, atoi("123four")); ASSERT_EQ(0, atoi("hello")); } TEST(stdlib, atol) { // Implemented using strtol in bionic, so extensive testing unnecessary. ASSERT_EQ(123L, atol("123four")); ASSERT_EQ(0L, atol("hello")); } TEST(stdlib, abs) { ASSERT_EQ(INT_MAX, abs(-INT_MAX)); ASSERT_EQ(INT_MAX, abs(INT_MAX)); } TEST(stdlib, labs) { ASSERT_EQ(LONG_MAX, labs(-LONG_MAX)); ASSERT_EQ(LONG_MAX, labs(LONG_MAX)); } TEST(stdlib, llabs) { ASSERT_EQ(LLONG_MAX, llabs(-LLONG_MAX)); ASSERT_EQ(LLONG_MAX, llabs(LLONG_MAX)); } TEST(stdlib, getloadavg) { double load[3]; // The second argument should have been size_t. ASSERT_EQ(-1, getloadavg(load, -1)); ASSERT_EQ(-1, getloadavg(load, INT_MIN)); // Zero is a no-op. ASSERT_EQ(0, getloadavg(load, 0)); // The Linux kernel doesn't support more than 3 (but you can ask for fewer). ASSERT_EQ(1, getloadavg(load, 1)); ASSERT_EQ(2, getloadavg(load, 2)); ASSERT_EQ(3, getloadavg(load, 3)); ASSERT_EQ(3, getloadavg(load, 4)); ASSERT_EQ(3, getloadavg(load, INT_MAX)); // Read /proc/loadavg and check that it's "close enough". double expected[3]; std::unique_ptr fp{fopen("/proc/loadavg", "re"), fclose}; ASSERT_EQ(3, fscanf(fp.get(), "%lf %lf %lf", &expected[0], &expected[1], &expected[2])); load[0] = load[1] = load[2] = nan(""); ASSERT_EQ(3, getloadavg(load, 3)); // Check that getloadavg(3) at least overwrote the NaNs. ASSERT_FALSE(isnan(load[0])); ASSERT_FALSE(isnan(load[1])); ASSERT_FALSE(isnan(load[2])); // And that the difference between /proc/loadavg and getloadavg(3) is "small". ASSERT_TRUE(fabs(expected[0] - load[0]) < 0.5) << expected[0] << ' ' << load[0]; ASSERT_TRUE(fabs(expected[1] - load[1]) < 0.5) << expected[1] << ' ' << load[1]; ASSERT_TRUE(fabs(expected[2] - load[2]) < 0.5) << expected[2] << ' ' << load[2]; } TEST(stdlib, getprogname) { #if defined(__GLIBC__) GTEST_SKIP() << "glibc doesn't have getprogname()"; #else // You should always have a name. ASSERT_TRUE(getprogname() != nullptr); // The name should never have a slash in it. ASSERT_TRUE(strchr(getprogname(), '/') == nullptr); #endif } TEST(stdlib, setprogname) { #if defined(__GLIBC__) GTEST_SKIP() << "glibc doesn't have setprogname()"; #else // setprogname() only takes the basename of what you give it. setprogname("/usr/bin/muppet"); ASSERT_STREQ("muppet", getprogname()); #endif }