// Copyright (c) Facebook, Inc. and its affiliates. // All rights reserved. // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include #include #ifdef BENCHMARK_TENSORFLOW_LITE #include "flatbuffers/include/flatbuffers/flatbuffers.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/kernels/register.h" #include "tensorflow/lite/model.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/version.h" #endif // BENCHMARK_TENSORFLOW_LITE #include "bench/utils.h" #ifndef XNN_NO_QU8_OPERATORS static void xnnpack_average_pooling_qu8(benchmark::State& state, const char* net) { const size_t batch_size = state.range(0); const size_t input_height = state.range(1); const size_t input_width = state.range(2); const size_t pooling_size = state.range(3); const size_t padding_size = state.range(4); const size_t stride = state.range(5); const size_t channels = state.range(6); std::random_device random_device; auto rng = std::mt19937(random_device()); auto u8rng = std::bind(std::uniform_int_distribution(0, std::numeric_limits::max()), std::ref(rng)); const size_t output_height = (2 * padding_size + input_height - pooling_size) / stride + 1; const size_t output_width = (2 * padding_size + input_width - pooling_size) / stride + 1; std::vector input(batch_size * input_height * input_width * channels + XNN_EXTRA_BYTES / sizeof(uint8_t)); std::generate(input.begin(), input.end(), std::ref(u8rng)); std::vector output(batch_size * output_height * output_width * channels); std::fill(output.begin(), output.end(), 0xA5); xnn_status status = xnn_initialize(nullptr /* allocator */); if (status != xnn_status_success) { state.SkipWithError("failed to initialize XNNPACK"); return; } xnn_operator_t pooling_op = nullptr; status = xnn_create_average_pooling2d_nhwc_qu8( padding_size, padding_size, padding_size, padding_size, pooling_size, pooling_size, stride, stride, channels, channels /* input pixel stride */, channels /* output pixel stride */, 127 /* input zero point */, 0.75f /* input scale */, 127 /* output zero point */, 1.25f /* output scale */, 0, 255, 0 /* flags */, &pooling_op); if (status != xnn_status_success) { state.SkipWithError("failed to create Average Pooling operator"); return; } status = xnn_setup_average_pooling2d_nhwc_qu8( pooling_op, batch_size, input_height, input_width, input.data(), output.data(), nullptr /* thread pool */); if (status != xnn_status_success) { state.SkipWithError("failed to setup Average Pooling operator"); return; } for (auto _ : state) { status = xnn_run_operator(pooling_op, nullptr /* thread pool */); if (status != xnn_status_success) { state.SkipWithError("failed to run Average Pooling operator"); return; } } status = xnn_delete_operator(pooling_op); if (status != xnn_status_success) { state.SkipWithError("failed to delete Average Pooling operator"); return; } pooling_op = nullptr; const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } state.counters["bytes"] = benchmark::Counter( uint64_t(state.iterations()) * batch_size * (input_height * input_width + output_height * output_width) * channels * sizeof(uint8_t), benchmark::Counter::kIsRate); } #endif // XNN_NO_QU8_OPERATORS static void xnnpack_average_pooling_f32(benchmark::State& state, const char* net) { const size_t batch_size = state.range(0); const size_t input_height = state.range(1); const size_t input_width = state.range(2); const size_t pooling_size = state.range(3); const size_t padding_size = state.range(4); const size_t stride = state.range(5); const size_t channels = state.range(6); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(), std::ref(rng)); const size_t output_height = (2 * padding_size + input_height - pooling_size) / stride + 1; const size_t output_width = (2 * padding_size + input_width - pooling_size) / stride + 1; std::vector input(batch_size * input_height * input_width * channels + XNN_EXTRA_BYTES / sizeof(float)); std::generate(input.begin(), input.end(), std::ref(f32rng)); std::vector output(batch_size * output_height * output_width * channels); std::fill(output.begin(), output.end(), std::nanf("")); xnn_status status = xnn_initialize(nullptr /* allocator */); if (status != xnn_status_success) { state.SkipWithError("failed to initialize XNNPACK"); return; } xnn_operator_t pooling_op = nullptr; status = xnn_create_average_pooling2d_nhwc_f32( padding_size, padding_size, padding_size, padding_size, pooling_size, pooling_size, stride, stride, channels, channels /* input pixel stride */, channels /* output pixel stride */, -std::numeric_limits::infinity(), std::numeric_limits::infinity(), 0 /* flags */, &pooling_op); if (status != xnn_status_success) { state.SkipWithError("failed to create Average Pooling operator"); return; } status = xnn_setup_average_pooling2d_nhwc_f32( pooling_op, batch_size, input_height, input_width, input.data(), output.data(), nullptr /* thread pool */); if (status != xnn_status_success) { state.SkipWithError("failed to setup Average Pooling operator"); return; } for (auto _ : state) { status = xnn_run_operator(pooling_op, nullptr /* thread pool */); if (status != xnn_status_success) { state.SkipWithError("failed to run Average Pooling operator"); return; } } status = xnn_delete_operator(pooling_op); if (status != xnn_status_success) { state.SkipWithError("failed to delete Average Pooling operator"); return; } pooling_op = nullptr; const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } state.counters["bytes"] = benchmark::Counter( uint64_t(state.iterations()) * batch_size * (input_height * input_width + output_height * output_width) * channels * sizeof(float), benchmark::Counter::kIsRate); } #ifdef BENCHMARK_TENSORFLOW_LITE void tflite_average_pooling_f32(benchmark::State& state, const char* net) { const size_t batch_size = state.range(0); const size_t input_height = state.range(1); const size_t input_width = state.range(2); const size_t pooling_size = state.range(3); const size_t padding_size = state.range(4); const size_t stride = state.range(5); const size_t channels = state.range(6); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(), std::ref(rng)); tflite::Padding padding = tflite::Padding_VALID; if (2 * padding_size == (pooling_size - 1)) { padding = tflite::Padding_SAME; } else if (padding_size == 0) { padding = tflite::Padding_VALID; } else { state.SkipWithError("unsupported padding"); return; } const size_t output_height = (2 * padding_size + input_height - pooling_size) / stride + 1; const size_t output_width = (2 * padding_size + input_width - pooling_size) / stride + 1; std::vector input(batch_size * input_height * input_width * channels + XNN_EXTRA_BYTES / sizeof(float)); std::generate(input.begin(), input.end(), std::ref(f32rng)); std::vector output(batch_size * output_height * output_width * channels); std::fill(output.begin(), output.end(), std::nanf("")); flatbuffers::FlatBufferBuilder builder; flatbuffers::Offset operator_code = CreateOperatorCode(builder, tflite::BuiltinOperator_AVERAGE_POOL_2D); flatbuffers::Offset pool2d_options = CreatePool2DOptions( builder, padding, stride /* stride_w */, stride /* stride_h */, pooling_size /* filter_width */, pooling_size /* filter_height */, tflite::ActivationFunctionType_NONE); flatbuffers::Offset buffers[1] = { tflite::CreateBuffer(builder, builder.CreateVector({})), }; const int32_t input_shape[4] = { static_cast(batch_size), static_cast(input_height), static_cast(input_width), static_cast(channels) }; const int32_t output_shape[4] = { static_cast(batch_size), static_cast(output_height), static_cast(output_width), static_cast(channels) }; flatbuffers::Offset tensors[2] = { tflite::CreateTensor(builder, builder.CreateVector(input_shape, 4), tflite::TensorType_FLOAT32), tflite::CreateTensor(builder, builder.CreateVector(output_shape, 4), tflite::TensorType_FLOAT32), }; const int32_t op_inputs[1] = { 0 }; const int32_t op_outputs[1] = { 1 }; flatbuffers::Offset op = CreateOperator( builder, 0 /* opcode_index */, builder.CreateVector(op_inputs, 1), builder.CreateVector(op_outputs, 1), tflite::BuiltinOptions_Pool2DOptions, pool2d_options.Union()); const int32_t graph_inputs[1] = { 0 }; const int32_t graph_outputs[1] = { 1 }; flatbuffers::Offset subgraph = CreateSubGraph( builder, builder.CreateVector(tensors, 2), builder.CreateVector(graph_inputs, 1), builder.CreateVector(graph_outputs, 1), builder.CreateVector(&op, 1)); flatbuffers::Offset model_buffer = tflite::CreateModel(builder, TFLITE_SCHEMA_VERSION, builder.CreateVector(&operator_code, 1), builder.CreateVector(&subgraph, 1), builder.CreateString("AVERAGE_POOL_2D model"), builder.CreateVector(buffers, 1)); builder.Finish(model_buffer); const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); tflite::ops::builtin::BuiltinOpResolver resolver; tflite::InterpreterBuilder interpreterBuilder(model, resolver); std::unique_ptr interpreter; if (interpreterBuilder(&interpreter) != kTfLiteOk) { state.SkipWithError("failed to create TFLite interpreter"); return; } if (interpreter == nullptr) { state.SkipWithError("TFLite interpreter is null"); return; } interpreter->SetNumThreads(1); if (interpreter->AllocateTensors() != kTfLiteOk) { state.SkipWithError("failed to allocate tensors"); return; } std::generate( interpreter->typed_tensor(0), interpreter->typed_tensor(0) + batch_size * input_height * input_width * channels, std::ref(f32rng)); for (auto _ : state) { if (interpreter->Invoke() != kTfLiteOk) { state.SkipWithError("failed to invoke TFLite interpreter"); return; } } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } state.counters["bytes"] = benchmark::Counter( uint64_t(state.iterations()) * batch_size * (input_height * input_width + output_height * output_width) * channels * sizeof(float), benchmark::Counter::kIsRate); } #endif // BENCHMARK_TENSORFLOW_LITE // Final global average pooling in ImageNet classification models. static void ImageNet(benchmark::internal::Benchmark* b) { b->ArgNames({"N", "H", "W", "K", "P", "S", "C"}); /* N H W K P S C */ b->Args({1, 13, 13, 13, 0, 1, 1000}); b->Args({1, 7, 7, 7, 0, 1, 1000}); } // ShuffleNet v1 with 1 group. static void ShuffleNetV1G1(benchmark::internal::Benchmark* b) { b->ArgNames({"N", "H", "W", "K", "P", "S", "C"}); /* N H W K P S C */ b->Args({1, 56, 56, 3, 1, 2, 24}); b->Args({1, 28, 28, 3, 1, 2, 144}); b->Args({1, 14, 14, 3, 1, 2, 288}); b->Args({1, 7, 7, 3, 1, 2, 576}); } // ShuffleNet v1 with 2 groups. static void ShuffleNetV1G2(benchmark::internal::Benchmark* b) { b->ArgNames({"N", "H", "W", "K", "P", "S", "C"}); /* N H W K P S C */ b->Args({1, 56, 56, 3, 1, 2, 24}); b->Args({1, 28, 28, 3, 1, 2, 200}); b->Args({1, 14, 14, 3, 1, 2, 400}); b->Args({1, 7, 7, 3, 1, 2, 800}); } // ShuffleNet v1 with 3 groups. static void ShuffleNetV1G3(benchmark::internal::Benchmark* b) { b->ArgNames({"N", "H", "W", "K", "P", "S", "C"}); /* N H W K P S C */ b->Args({1, 56, 56, 3, 1, 2, 24}); b->Args({1, 28, 28, 3, 1, 2, 240}); b->Args({1, 14, 14, 3, 1, 2, 480}); b->Args({1, 7, 7, 3, 1, 2, 960}); } // ShuffleNet v1 with 4 groups. static void ShuffleNetV1G4(benchmark::internal::Benchmark* b) { b->ArgNames({"N", "H", "W", "K", "P", "S", "C"}); /* N H W K P S C */ b->Args({1, 56, 56, 3, 1, 2, 24}); b->Args({1, 28, 28, 3, 1, 2, 272}); b->Args({1, 14, 14, 3, 1, 2, 576}); b->Args({1, 7, 7, 3, 1, 2, 1088}); } // ShuffleNet v1 with 8 groups. static void ShuffleNetV1G8(benchmark::internal::Benchmark* b) { b->ArgNames({"N", "H", "W", "K", "P", "S", "C"}); /* N H W K P S C */ b->Args({1, 56, 56, 3, 1, 2, 24}); b->Args({1, 28, 28, 3, 1, 2, 384}); b->Args({1, 14, 14, 3, 1, 2, 768}); b->Args({1, 7, 7, 3, 1, 2, 1536}); } BENCHMARK_CAPTURE(xnnpack_average_pooling_f32, imagenet, "ImageNet")->Apply(ImageNet)->UseRealTime(); BENCHMARK_CAPTURE(xnnpack_average_pooling_f32, shufflenet_v1_g1, "ShuffleNet v1 (1 group)")->Apply(ShuffleNetV1G1)->UseRealTime(); BENCHMARK_CAPTURE(xnnpack_average_pooling_f32, shufflenet_v1_g2, "ShuffleNet v1 (2 groups)")->Apply(ShuffleNetV1G2)->UseRealTime(); BENCHMARK_CAPTURE(xnnpack_average_pooling_f32, shufflenet_v1_g3, "ShuffleNet v1 (3 groups)")->Apply(ShuffleNetV1G3)->UseRealTime(); BENCHMARK_CAPTURE(xnnpack_average_pooling_f32, shufflenet_v1_g4, "ShuffleNet v1 (4 groups)")->Apply(ShuffleNetV1G4)->UseRealTime(); BENCHMARK_CAPTURE(xnnpack_average_pooling_f32, shufflenet_v1_g8, "ShuffleNet v1 (8 groups)")->Apply(ShuffleNetV1G8)->UseRealTime(); #ifdef BENCHMARK_TENSORFLOW_LITE BENCHMARK_CAPTURE(tflite_average_pooling_f32, imagenet, "ImageNet")->Apply(ImageNet)->UseRealTime(); BENCHMARK_CAPTURE(tflite_average_pooling_f32, shufflenet_v1_g1, "ShuffleNet v1 (1 group)")->Apply(ShuffleNetV1G1)->UseRealTime(); BENCHMARK_CAPTURE(tflite_average_pooling_f32, shufflenet_v1_g2, "ShuffleNet v1 (2 groups)")->Apply(ShuffleNetV1G2)->UseRealTime(); BENCHMARK_CAPTURE(tflite_average_pooling_f32, shufflenet_v1_g3, "ShuffleNet v1 (3 groups)")->Apply(ShuffleNetV1G3)->UseRealTime(); BENCHMARK_CAPTURE(tflite_average_pooling_f32, shufflenet_v1_g4, "ShuffleNet v1 (4 groups)")->Apply(ShuffleNetV1G4)->UseRealTime(); BENCHMARK_CAPTURE(tflite_average_pooling_f32, shufflenet_v1_g8, "ShuffleNet v1 (8 groups)")->Apply(ShuffleNetV1G8)->UseRealTime(); #endif // BENCHMARK_TENSORFLOW_LITE #ifndef XNN_NO_QU8_OPERATORS BENCHMARK_CAPTURE(xnnpack_average_pooling_qu8, imagenet, "ImageNet")->Apply(ImageNet)->UseRealTime(); BENCHMARK_CAPTURE(xnnpack_average_pooling_qu8, shufflenet_v1_g1, "ShuffleNet v1 (1 group)")->Apply(ShuffleNetV1G1)->UseRealTime(); BENCHMARK_CAPTURE(xnnpack_average_pooling_qu8, shufflenet_v1_g2, "ShuffleNet v1 (2 groups)")->Apply(ShuffleNetV1G2)->UseRealTime(); BENCHMARK_CAPTURE(xnnpack_average_pooling_qu8, shufflenet_v1_g3, "ShuffleNet v1 (3 groups)")->Apply(ShuffleNetV1G3)->UseRealTime(); BENCHMARK_CAPTURE(xnnpack_average_pooling_qu8, shufflenet_v1_g4, "ShuffleNet v1 (4 groups)")->Apply(ShuffleNetV1G4)->UseRealTime(); BENCHMARK_CAPTURE(xnnpack_average_pooling_qu8, shufflenet_v1_g8, "ShuffleNet v1 (8 groups)")->Apply(ShuffleNetV1G8)->UseRealTime(); #endif // XNN_NO_QU8_OPERATORS #ifndef XNNPACK_BENCHMARK_NO_MAIN BENCHMARK_MAIN(); #endif