// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include #include #include "bench/conv.h" #include "bench/utils.h" #include #include #include #include #include #include #include #include static void IGEMMBenchmark(benchmark::State& state, xnn_f16_igemm_minmax_ukernel_function f16_igemm, uint32_t mr, uint32_t nr, uint32_t kr, uint32_t sr) { if (!cpuinfo_initialize()) { state.SkipWithError("cpuinfo initialization failed"); } if (!benchmark::utils::CheckNEONFP16ARITH(state)) { return; } const size_t input_height = state.range(0); const size_t input_width = state.range(1); const size_t kernel_height = state.range(2); const size_t kernel_width = state.range(3); const size_t kernel_size = kernel_height * kernel_width; const size_t padding_height = state.range(4); const size_t padding_width = state.range(5); const size_t subsampling = state.range(6); const size_t dilation = state.range(7); const size_t group_input_channels = state.range(8); const size_t group_output_channels = state.range(9); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(), std::ref(rng)); auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); const size_t output_pixel_stride = group_output_channels; const size_t input_pixel_stride = group_input_channels; const size_t effective_kernel_height = (kernel_height - 1) * dilation + 1; const size_t effective_kernel_width = (kernel_width - 1) * dilation + 1; const size_t padding_left = padding_width / 2; const size_t padding_top = padding_height / 2; const size_t output_height = (input_height + padding_height - effective_kernel_height) / subsampling + 1; const size_t output_width = (input_width + padding_width - effective_kernel_width) / subsampling + 1; const size_t output_size = output_height * output_width; const size_t mc_stride = benchmark::utils::RoundUp(output_size, mr); const size_t nc_stride = benchmark::utils::RoundUp(group_output_channels, nr); const size_t kc_stride = benchmark::utils::RoundUp(group_input_channels, kr); std::vector a(input_height * input_width * input_pixel_stride); std::generate(a.begin(), a.end(), std::ref(f16rng)); std::vector k(group_output_channels * kernel_height * kernel_width * group_input_channels); std::generate(k.begin(), k.end(), std::ref(f16rng)); std::vector b(group_output_channels); std::generate(b.begin(), b.end(), std::ref(f16rng)); std::vector z(group_input_channels); const size_t w_elements = (kernel_size * kc_stride + 1) * nc_stride; const size_t i_elements = mc_stride * kernel_size; const size_t c_elements = output_height * output_width * output_pixel_stride; const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp(benchmark::utils::GetMaxCacheSize(), sizeof(uint16_t) * (w_elements + c_elements) + sizeof(void*) * i_elements); std::vector> w(w_elements * num_buffers); std::fill(w.begin(), w.end(), 0); xnn_pack_f16_conv_goki_w( 1 /* groups */, group_output_channels, kernel_size, group_input_channels, nr, kr, sr, k.data(), b.data(), w.data(), nullptr); for (size_t n = 1; n < num_buffers; n++) { std::copy(w.cbegin(), w.cbegin() + w_elements, w.begin() + n * w_elements); } std::vector i(i_elements * num_buffers); xnn_operator convolution_op = { }; convolution_op.indirection_buffer = reinterpret_cast(i.data()); convolution_op.input = a.data(); convolution_op.input_pixel_stride = input_pixel_stride; convolution_op.zero_buffer = z.data(); convolution_op.groups = 1; convolution_op.group_input_channels = group_input_channels; convolution_op.batch_size = 1; convolution_op.input_height = input_height; convolution_op.input_width = input_width; convolution_op.output_height = output_height; convolution_op.output_width = output_width; convolution_op.kernel_height = kernel_height; convolution_op.kernel_width = kernel_width; convolution_op.stride_height = subsampling; convolution_op.stride_width = subsampling; convolution_op.dilation_height = dilation; convolution_op.dilation_width = dilation; convolution_op.padding_top = padding_top; convolution_op.padding_left = padding_left; xnn_indirection_init_conv2d(&convolution_op, mr, 1 /* log2(sizeof(uint16_t)) */); for (size_t n = 1; n < num_buffers; n++) { std::copy(i.cbegin(), i.cbegin() + i_elements, i.begin() + n * i_elements); } std::vector c(c_elements * num_buffers); std::fill(c.begin(), c.end(), std::nanf("")); // Prepare minmax parameters. xnn_f16_scaleminmax_params params; params = xnn_init_f16_scaleminmax_params( UINT16_C(0x3C00), /* 1.0 */ UINT16_C(0x7C00), /* inf */ UINT16_C(0xFC00)); /* -inf */ size_t buffer_index = 0; for (auto _ : state) { state.PauseTiming(); benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(uint16_t)); buffer_index = (buffer_index + 1) % num_buffers; state.ResumeTiming(); for (uint32_t m = 0; m < output_size; m += mr) { const uint32_t mb = min(output_size - m, mr); for (uint32_t n = 0; n < group_output_channels; n += nr) { const uint32_t nb = min(group_output_channels - n, nr); f16_igemm( mb, nb, group_input_channels * sizeof(uint16_t), kernel_size * mr * sizeof(void*), reinterpret_cast(i.data()) + buffer_index * i_elements + m, w.data() + buffer_index * w_elements + n * (kc_stride * kernel_size + 1), c.data() + buffer_index * c_elements + m * group_output_channels + n, group_output_channels * sizeof(uint16_t), nr * sizeof(uint16_t), 0, z.data(), ¶ms); } } } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } state.counters["FLOPS"] = benchmark::Counter( uint64_t(state.iterations()) * 2 * output_height * output_width * group_input_channels * group_output_channels * kernel_height * kernel_width, benchmark::Counter::kIsRate); } #if XNN_ARCH_ARM64 static void f16_igemm_1x8__neonfp16arith_ld64(benchmark::State& state, const char* net) { IGEMMBenchmark(state, xnn_f16_igemm_minmax_ukernel_1x8__neonfp16arith_ld64, 1, 8, 1, 1); } static void f16_igemm_4x8__neonfp16arith_ld64(benchmark::State& state, const char* net) { IGEMMBenchmark(state, xnn_f16_igemm_minmax_ukernel_4x8__neonfp16arith_ld64, 4, 8, 1, 1); } static void f16_igemm_6x8__neonfp16arith_ld64(benchmark::State& state, const char* net) { IGEMMBenchmark(state, xnn_f16_igemm_minmax_ukernel_6x8__neonfp16arith_ld64, 6, 8, 1, 1); } static void f16_igemm_8x8__neonfp16arith_ld64(benchmark::State& state, const char* net) { IGEMMBenchmark(state, xnn_f16_igemm_minmax_ukernel_8x8__neonfp16arith_ld64, 8, 8, 1, 1); } static void f16_igemm_1x16__neonfp16arith_ld64(benchmark::State& state, const char* net) { IGEMMBenchmark(state, xnn_f16_igemm_minmax_ukernel_1x16__neonfp16arith_ld64, 1, 16, 1, 1); } static void f16_igemm_4x16__neonfp16arith_ld64(benchmark::State& state, const char* net) { IGEMMBenchmark(state, xnn_f16_igemm_minmax_ukernel_4x16__neonfp16arith_ld64, 4, 16, 1, 1); } static void f16_igemm_6x16__neonfp16arith_ld64(benchmark::State& state, const char* net) { IGEMMBenchmark(state, xnn_f16_igemm_minmax_ukernel_6x16__neonfp16arith_ld64, 6, 16, 1, 1); } static void f16_igemm_8x16__neonfp16arith_ld64(benchmark::State& state, const char* net) { IGEMMBenchmark(state, xnn_f16_igemm_minmax_ukernel_8x16__neonfp16arith_ld64, 8, 16, 1, 1); } BENCHMARK_CONV(f16_igemm_1x8__neonfp16arith_ld64) BENCHMARK_CONV(f16_igemm_4x8__neonfp16arith_ld64) BENCHMARK_CONV(f16_igemm_6x8__neonfp16arith_ld64) BENCHMARK_CONV(f16_igemm_8x8__neonfp16arith_ld64) BENCHMARK_CONV(f16_igemm_1x16__neonfp16arith_ld64) BENCHMARK_CONV(f16_igemm_4x16__neonfp16arith_ld64) BENCHMARK_CONV(f16_igemm_6x16__neonfp16arith_ld64) BENCHMARK_CONV(f16_igemm_8x16__neonfp16arith_ld64) #endif /* XNN_ARCH_ARM64 */ #ifndef XNNPACK_BENCHMARK_NO_MAIN BENCHMARK_MAIN(); #endif