// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include #include #include "bench/spmm.h" #include "bench/utils.h" #include #include #include #include #include static void SpMMBenchmark(benchmark::State& state, xnn_f16_spmm_minmax_ukernel_function spmm, uint32_t mr, uint32_t nr, float sparsity) { if (!cpuinfo_initialize()) { state.SkipWithError("cpuinfo initialization failed"); return; } if (!benchmark::utils::CheckNEONFP16ARITH(state)) { return; } const size_t mc = state.range(0); const size_t nc = state.range(1); const size_t kc = state.range(2); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(), std::ref(rng)); auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); // if using blocks, generate the reduced matrix first and then extrude along // the block dimension (n), to get the full matrix size_t ncols = nc / nr + nc % nr; std::vector b(ncols * kc); std::vector bias(nc); std::vector w; std::vector nmap; std::vector dmap; const size_t sparse_end = std::min(size_t(float(b.size()) * sparsity), b.size()); const size_t num_nonzeroes = nr * (b.size() - sparse_end); const size_t w_elements = num_nonzeroes + nc; const size_t c_elements = mc * nc; const size_t dmap_elements = num_nonzeroes / nr; const size_t nmap_elements = nc; const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp(benchmark::utils::GetMaxCacheSize(), sizeof(uint16_t) * (w_elements + c_elements) + sizeof(uint32_t) * (dmap_elements + nmap_elements)); // Micro-kernel can access one element beyond w and dmap for software pipelining. w.reserve(num_buffers * w_elements + 1); dmap.reserve(num_buffers * dmap_elements + 1); nmap.resize(num_buffers * nmap_elements); std::vector a_offsets(num_buffers); for (size_t buffer_index = 0; buffer_index < num_buffers; buffer_index++) { // Re-generate weights. Note: each re-generation produces the number of non-zeroes. std::fill(b.begin(), b.begin() + sparse_end, 0); std::generate(b.begin() + sparse_end, b.end(), std::ref(f16rng)); std::shuffle(b.begin(), b.end(), rng); std::generate(bias.begin(), bias.end(), std::ref(f16rng)); uint32_t first_j = 0, last_j = 0; bool is_first_nonzero = true; for (uint32_t i = 0; i < nc / nr; i++) { for (uint32_t n = 0; n < nr; n++) w.push_back(bias[nr * i + n]); for (uint32_t j = 0; j < kc; j++) { if ((b[i * kc + j] & 0x7FFF) != 0) { for (size_t l = 0; l < nr; l++) w.push_back(fp16_ieee_from_fp32_value(fp16_ieee_to_fp32_value(b[i * kc + j]) + static_cast(i))); if (is_first_nonzero) { first_j = j; } else { const ptrdiff_t increment = int32_t(j - last_j) * int32_t(mc) * int32_t(sizeof(uint16_t)); dmap.push_back(increment); } last_j = j; is_first_nonzero = false; nmap[buffer_index * nmap_elements + i] += 1; } } } for (uint32_t i = nc / nr; i < ncols; i++) { w.push_back(bias[i]); for (uint32_t j = 0; j < kc; j++) { if ((b[i * kc + j] & 0x7FFF) != 0) { w.push_back(b[i * kc + j]); if (is_first_nonzero) { first_j = j; } else { const ptrdiff_t increment = int32_t(j - last_j) * int32_t(mc) * int32_t(sizeof(uint16_t)); dmap.push_back(increment); } last_j = j; is_first_nonzero = false; nmap[buffer_index * nmap_elements + i] += 1; } } } { const ptrdiff_t increment = int32_t(first_j - last_j) * int32_t(mc) * int32_t(sizeof(uint16_t)); dmap.push_back(increment); } a_offsets[buffer_index] = first_j * mc; } // Micro-kernel can access one element beyond w and dmap for software pipelining. w.resize(w.size() + 1); dmap.resize(dmap.size() + 1); std::vector> a(kc * mc); std::vector> c(num_buffers * c_elements); std::generate(a.begin(), a.end(), std::ref(f32rng)); std::fill(c.begin(), c.end(), nanf("")); xnn_f16_scaleminmax_params params{ 0x3C00 /* 1.0 */, 0x7C00 /* inf */, 0xFC00 /* -inf */}; size_t buffer_index = 0; for (auto _ : state) { // Use circular buffers (exceeding cache size) and prefetch to control cache state: // - A is always in L1 cache (if fits, otherwise L2, L3, etc) // - W, Kmap, and Nmap is not in cache (for any cache level) // - C is not in cache (for any cache level) state.PauseTiming(); benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(uint16_t)); buffer_index = (buffer_index + 1) % num_buffers; state.ResumeTiming(); spmm(mc * sizeof(uint16_t), nc, a.data() + a_offsets[buffer_index], w.data() + buffer_index * w_elements, dmap.data() + buffer_index * dmap_elements, nmap.data() + buffer_index * nmap_elements, c.data() + buffer_index * c_elements, mc * sizeof(uint16_t), ¶ms); } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } state.counters["FLOPS"] = benchmark::Counter( uint64_t(state.iterations()) * 2 * mc * num_nonzeroes, benchmark::Counter::kIsRate); state.counters["EffFLOPS"] = benchmark::Counter( uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate); } #if XNN_ARCH_ARM64 static void spmm80_8x1__neonfp16arith(benchmark::State& state, const char* net) { SpMMBenchmark(state, xnn_f16_spmm_minmax_ukernel_8x1__neonfp16arith, 8, 1, 0.8f); } static void spmm80_8x1__neonfp16arith_x2(benchmark::State& state, const char* net) { SpMMBenchmark(state, xnn_f16_spmm_minmax_ukernel_8x1__neonfp16arith_x2, 8, 1, 0.8f); } static void spmm80_16x1__neonfp16arith(benchmark::State& state, const char* net) { SpMMBenchmark(state, xnn_f16_spmm_minmax_ukernel_16x1__neonfp16arith, 16, 1, 0.8f); } static void spmm80_16x1__neonfp16arith_x2(benchmark::State& state, const char* net) { SpMMBenchmark(state, xnn_f16_spmm_minmax_ukernel_16x1__neonfp16arith_x2, 16, 1, 0.8f); } static void spmm80_24x1__neonfp16arith(benchmark::State& state, const char* net) { SpMMBenchmark(state, xnn_f16_spmm_minmax_ukernel_24x1__neonfp16arith, 24, 1, 0.8f); } static void spmm80_24x1__neonfp16arith_x2(benchmark::State& state, const char* net) { SpMMBenchmark(state, xnn_f16_spmm_minmax_ukernel_24x1__neonfp16arith_x2, 24, 1, 0.8f); } static void spmm80_32x1__neonfp16arith(benchmark::State& state, const char* net) { SpMMBenchmark(state, xnn_f16_spmm_minmax_ukernel_32x1__neonfp16arith, 32, 1, 0.8f); } static void spmm80_32x1__neonfp16arith_x2(benchmark::State& state, const char* net) { SpMMBenchmark(state, xnn_f16_spmm_minmax_ukernel_32x1__neonfp16arith_x2, 32, 1, 0.8f); } BENCHMARK_SPMM(spmm80_8x1__neonfp16arith) BENCHMARK_SPMM(spmm80_8x1__neonfp16arith_x2) BENCHMARK_SPMM(spmm80_16x1__neonfp16arith) BENCHMARK_SPMM(spmm80_16x1__neonfp16arith_x2) BENCHMARK_SPMM(spmm80_24x1__neonfp16arith) BENCHMARK_SPMM(spmm80_24x1__neonfp16arith_x2) BENCHMARK_SPMM(spmm80_32x1__neonfp16arith) BENCHMARK_SPMM(spmm80_32x1__neonfp16arith_x2) #endif // XNN_ARCH_ARM64 #ifndef XNNPACK_BENCHMARK_NO_MAIN BENCHMARK_MAIN(); #endif