// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include "bench/dconv.h" #include "bench/utils.h" #include #include #include #include #include #include static void DConv3X3S2P1Benchmark(benchmark::State& state, xnn_f32_conv_hwc_ukernel_function conv, uint32_t output_channels_tile, benchmark::utils::IsaCheckFunction isa_check = nullptr) { if (isa_check && !isa_check(state)) { return; } const size_t input_height = state.range(0); const size_t input_width = state.range(1); const size_t output_channels = state.range(2); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.0f, 1.0f), std::ref(rng)); const size_t input_channels = 3; const size_t kernel_size = 3; const size_t padding = 1; const size_t subsampling = 2; const size_t output_height = (input_height + 2 * padding - kernel_size) / subsampling + 1; const size_t output_width = (input_width + 2 * padding - kernel_size) / subsampling + 1; std::vector input(input_height * input_width * input_channels + XNN_EXTRA_BYTES / sizeof(float)); std::generate(input.begin(), input.end(), std::ref(f32rng)); std::vector kernel(output_channels * kernel_size * kernel_size * input_channels); std::generate(kernel.begin(), kernel.end(), std::ref(f32rng)); std::vector bias(output_channels); std::generate(bias.begin(), bias.end(), std::ref(f32rng)); std::vector> zero(input_channels * input_width + XNN_EXTRA_BYTES / sizeof(float)); const size_t weights_elements = (kernel_size * kernel_size * input_channels + 1) * benchmark::utils::RoundUp(output_channels, output_channels_tile); const size_t output_elements = output_height * output_width * output_channels; const size_t num_buffers = 1 + benchmark::utils::DivideRoundUp(benchmark::utils::GetMaxCacheSize(), sizeof(float) * (weights_elements + output_elements)); std::vector> packed_weights(weights_elements * num_buffers); std::fill(packed_weights.begin(), packed_weights.end(), 0.0f); xnn_pack_f32_dconv_oki_w( output_channels, input_channels, output_channels_tile, kernel_size /* kernel height */, kernel_size /* kernel width */, kernel.data(), bias.data(), packed_weights.data(), nullptr); for (size_t n = 1; n < num_buffers; n++) { std::copy(packed_weights.cbegin(), packed_weights.cbegin() + weights_elements, packed_weights.begin() + n * weights_elements); } std::vector output(output_elements * num_buffers); std::fill(output.begin(), output.end(), std::nanf("")); xnn_f32_minmax_params params = xnn_init_f32_minmax_params(-std::numeric_limits::infinity(), +std::numeric_limits::infinity()); size_t buffer_index = 0; for (auto _ : state) { state.PauseTiming(); benchmark::utils::PrefetchToL1(input.data(), input.size() * sizeof(float)); buffer_index = (buffer_index + 1) % num_buffers; state.ResumeTiming(); conv( input_height, input_width, 0 /* output_y_start */, output_height /* output_y_end */, input.data(), zero.data(), packed_weights.data() + buffer_index * weights_elements, output.data() + buffer_index * output_elements, padding, output_channels, output_channels * output_width * sizeof(float), output_channels * sizeof(float), ¶ms); } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } state.counters["FLOPS"] = benchmark::Counter( uint64_t(state.iterations()) * 2 * output_height * output_width * input_channels * output_channels * kernel_size * kernel_size, benchmark::Counter::kIsRate); } #if XNN_ARCH_ARM64 static void f32_conv_hwc_3x3s2p1c3x8__neonfma_2x1(benchmark::State& state, const char* net) { DConv3X3S2P1Benchmark(state, xnn_f32_conv_hwc_ukernel_3x3s2p1c3x8__neonfma_2x1, 8, benchmark::utils::CheckNEONFMA); } static void f32_conv_hwc_3x3s2p1c3x4__neonfma_2x1(benchmark::State& state, const char* net) { DConv3X3S2P1Benchmark(state, xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__neonfma_2x1, 4, benchmark::utils::CheckNEONFMA); } static void f32_conv_hwc_3x3s2p1c3x8__neonfma_2x2(benchmark::State& state, const char* net) { DConv3X3S2P1Benchmark(state, xnn_f32_conv_hwc_ukernel_3x3s2p1c3x8__neonfma_2x2, 8, benchmark::utils::CheckNEONFMA); } static void f32_conv_hwc_3x3s2p1c3x4__neonfma_2x2(benchmark::State& state, const char* net) { DConv3X3S2P1Benchmark(state, xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__neonfma_2x2, 4, benchmark::utils::CheckNEONFMA); } BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x8__neonfma_2x1); BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x4__neonfma_2x1); BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x8__neonfma_2x2); BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x4__neonfma_2x2); #endif // XNN_ARCH_ARM64 #if XNN_ARCH_ARM || XNN_ARCH_ARM64 static void f32_conv_hwc_3x3s2p1c3x8__neon_2x1(benchmark::State& state, const char* net) { DConv3X3S2P1Benchmark(state, xnn_f32_conv_hwc_ukernel_3x3s2p1c3x8__neon_2x1, 8, benchmark::utils::CheckNEON); } static void f32_conv_hwc_3x3s2p1c3x4__neon_2x1(benchmark::State& state, const char* net) { DConv3X3S2P1Benchmark(state, xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__neon_2x1, 4, benchmark::utils::CheckNEON); } static void f32_conv_hwc_3x3s2p1c3x8__neon_2x2(benchmark::State& state, const char* net) { DConv3X3S2P1Benchmark(state, xnn_f32_conv_hwc_ukernel_3x3s2p1c3x8__neon_2x2, 8, benchmark::utils::CheckNEON); } static void f32_conv_hwc_3x3s2p1c3x4__neon_2x2(benchmark::State& state, const char* net) { DConv3X3S2P1Benchmark(state, xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__neon_2x2, 4, benchmark::utils::CheckNEON); } BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x8__neon_2x1); BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x4__neon_2x1); BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x8__neon_2x2); BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x4__neon_2x2); #endif // XNN_ARCH_ARM || XNN_ARCH_ARM64 #ifndef XNNPACK_BENCHMARK_NO_MAIN BENCHMARK_MAIN(); #endif