// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include #include "models/models.h" namespace models { ExecutionPlan FP16MobileNetV1(pthreadpool_t threadpool) { alignas(16) static std::array v0; alignas(16) static std::array v1; alignas(16) static std::array v2; alignas(16) static std::array v3; alignas(16) static std::array v4; alignas(16) static std::array v5; alignas(16) static std::array v6; alignas(16) static std::array v7; alignas(16) static std::array v8; alignas(16) static std::array v9; alignas(16) static std::array v10; alignas(16) static std::array v11; alignas(16) static std::array v12; alignas(16) static std::array v13; alignas(16) static std::array v14; alignas(16) static std::array v15; alignas(16) static std::array v16; alignas(16) static std::array v17; alignas(16) static std::array v18; alignas(16) static std::array v19; alignas(16) static std::array v20; alignas(16) static std::array v21; alignas(16) static std::array v22; alignas(16) static std::array v23; alignas(16) static std::array v24; alignas(16) static std::array v25; alignas(16) static std::array v26; alignas(16) static std::array v27; alignas(16) static std::array v28; alignas(16) static std::array v29; alignas(16) static std::array w30; alignas(16) static std::array w31; alignas(16) static std::array w32; alignas(16) static std::array w33; alignas(16) static std::array w34; alignas(16) static std::array w35; alignas(16) static std::array w36; alignas(16) static std::array w37; alignas(16) static std::array w38; alignas(16) static std::array w39; alignas(16) static std::array w40; alignas(16) static std::array w41; alignas(16) static std::array w42; alignas(16) static std::array w43; alignas(16) static std::array w44; alignas(16) static std::array w45; alignas(16) static std::array w46; alignas(16) static std::array w47; alignas(16) static std::array w48; alignas(16) static std::array w49; alignas(16) static std::array w50; alignas(16) static std::array w51; alignas(16) static std::array w52; alignas(16) static std::array w53; alignas(16) static std::array w54; alignas(16) static std::array w55; alignas(16) static std::array w56; alignas(16) static std::array w57; alignas(16) static std::array w58; alignas(16) static std::array w59; alignas(16) static std::array w60; alignas(16) static std::array w61; alignas(16) static std::array w62; alignas(16) static std::array w63; alignas(16) static std::array w64; alignas(16) static std::array w65; alignas(16) static std::array w66; alignas(16) static std::array w67; alignas(16) static std::array w68; alignas(16) static std::array w69; alignas(16) static std::array w70; alignas(16) static std::array w71; alignas(16) static std::array w72; alignas(16) static std::array w73; alignas(16) static std::array w74; alignas(16) static std::array w75; alignas(16) static std::array w76; alignas(16) static std::array w77; alignas(16) static std::array w78; alignas(16) static std::array w79; alignas(16) static std::array w80; alignas(16) static std::array w81; alignas(16) static std::array w82; alignas(16) static std::array w83; alignas(16) static std::array w84; alignas(16) static std::array w85; std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-1.0f, +1.0f), std::ref(rng)); auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); std::generate(v0.begin(), v0.end(), std::ref(f16rng)); std::generate(v1.begin(), v1.end(), std::ref(f16rng)); std::generate(v2.begin(), v2.end(), std::ref(f16rng)); std::generate(v3.begin(), v3.end(), std::ref(f16rng)); std::generate(v4.begin(), v4.end(), std::ref(f16rng)); std::generate(v5.begin(), v5.end(), std::ref(f16rng)); std::generate(v6.begin(), v6.end(), std::ref(f16rng)); std::generate(v7.begin(), v7.end(), std::ref(f16rng)); std::generate(v8.begin(), v8.end(), std::ref(f16rng)); std::generate(v9.begin(), v9.end(), std::ref(f16rng)); std::generate(v10.begin(), v10.end(), std::ref(f16rng)); std::generate(v11.begin(), v11.end(), std::ref(f16rng)); std::generate(v12.begin(), v12.end(), std::ref(f16rng)); std::generate(v13.begin(), v13.end(), std::ref(f16rng)); std::generate(v14.begin(), v14.end(), std::ref(f16rng)); std::generate(v15.begin(), v15.end(), std::ref(f16rng)); std::generate(v16.begin(), v16.end(), std::ref(f16rng)); std::generate(v17.begin(), v17.end(), std::ref(f16rng)); std::generate(v18.begin(), v18.end(), std::ref(f16rng)); std::generate(v19.begin(), v19.end(), std::ref(f16rng)); std::generate(v20.begin(), v20.end(), std::ref(f16rng)); std::generate(v21.begin(), v21.end(), std::ref(f16rng)); std::generate(v22.begin(), v22.end(), std::ref(f16rng)); std::generate(v23.begin(), v23.end(), std::ref(f16rng)); std::generate(v24.begin(), v24.end(), std::ref(f16rng)); std::generate(v25.begin(), v25.end(), std::ref(f16rng)); std::generate(v26.begin(), v26.end(), std::ref(f16rng)); std::generate(v27.begin(), v27.end(), std::ref(f16rng)); std::generate(v28.begin(), v28.end(), std::ref(f16rng)); std::generate(v29.begin(), v29.end(), std::ref(f16rng)); std::generate(w30.begin(), w30.end(), std::ref(f16rng)); std::generate(w31.begin(), w31.end(), std::ref(f16rng)); std::generate(w32.begin(), w32.end(), std::ref(f16rng)); std::generate(w33.begin(), w33.end(), std::ref(f16rng)); std::generate(w34.begin(), w34.end(), std::ref(f16rng)); std::generate(w35.begin(), w35.end(), std::ref(f16rng)); std::generate(w36.begin(), w36.end(), std::ref(f16rng)); std::generate(w37.begin(), w37.end(), std::ref(f16rng)); std::generate(w38.begin(), w38.end(), std::ref(f16rng)); std::generate(w39.begin(), w39.end(), std::ref(f16rng)); std::generate(w40.begin(), w40.end(), std::ref(f16rng)); std::generate(w41.begin(), w41.end(), std::ref(f16rng)); std::generate(w42.begin(), w42.end(), std::ref(f16rng)); std::generate(w43.begin(), w43.end(), std::ref(f16rng)); std::generate(w44.begin(), w44.end(), std::ref(f16rng)); std::generate(w45.begin(), w45.end(), std::ref(f16rng)); std::generate(w46.begin(), w46.end(), std::ref(f16rng)); std::generate(w47.begin(), w47.end(), std::ref(f16rng)); std::generate(w48.begin(), w48.end(), std::ref(f16rng)); std::generate(w49.begin(), w49.end(), std::ref(f16rng)); std::generate(w50.begin(), w50.end(), std::ref(f16rng)); std::generate(w51.begin(), w51.end(), std::ref(f16rng)); std::generate(w52.begin(), w52.end(), std::ref(f16rng)); std::generate(w53.begin(), w53.end(), std::ref(f16rng)); std::generate(w54.begin(), w54.end(), std::ref(f16rng)); std::generate(w55.begin(), w55.end(), std::ref(f16rng)); std::generate(w56.begin(), w56.end(), std::ref(f16rng)); std::generate(w57.begin(), w57.end(), std::ref(f16rng)); std::generate(w58.begin(), w58.end(), std::ref(f16rng)); std::generate(w59.begin(), w59.end(), std::ref(f16rng)); std::generate(w60.begin(), w60.end(), std::ref(f16rng)); std::generate(w61.begin(), w61.end(), std::ref(f16rng)); std::generate(w62.begin(), w62.end(), std::ref(f16rng)); std::generate(w63.begin(), w63.end(), std::ref(f16rng)); std::generate(w64.begin(), w64.end(), std::ref(f16rng)); std::generate(w65.begin(), w65.end(), std::ref(f16rng)); std::generate(w66.begin(), w66.end(), std::ref(f16rng)); std::generate(w67.begin(), w67.end(), std::ref(f16rng)); std::generate(w68.begin(), w68.end(), std::ref(f16rng)); std::generate(w69.begin(), w69.end(), std::ref(f16rng)); std::generate(w70.begin(), w70.end(), std::ref(f16rng)); std::generate(w71.begin(), w71.end(), std::ref(f16rng)); std::generate(w72.begin(), w72.end(), std::ref(f16rng)); std::generate(w73.begin(), w73.end(), std::ref(f16rng)); std::generate(w74.begin(), w74.end(), std::ref(f16rng)); std::generate(w75.begin(), w75.end(), std::ref(f16rng)); std::generate(w76.begin(), w76.end(), std::ref(f16rng)); std::generate(w77.begin(), w77.end(), std::ref(f16rng)); std::generate(w78.begin(), w78.end(), std::ref(f16rng)); std::generate(w79.begin(), w79.end(), std::ref(f16rng)); std::generate(w80.begin(), w80.end(), std::ref(f16rng)); std::generate(w81.begin(), w81.end(), std::ref(f16rng)); std::generate(w82.begin(), w82.end(), std::ref(f16rng)); std::generate(w83.begin(), w83.end(), std::ref(f16rng)); std::generate(w84.begin(), w84.end(), std::ref(f16rng)); std::generate(w85.begin(), w85.end(), std::ref(f16rng)); ExecutionPlan operators; xnn_status status; xnn_operator_t op0 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 1 /* right padding */, 1 /* bottom padding */, 0 /* left padding */, 3 /* kernel height */, 3 /* kernel width */, 2 /* subsampling height */, 2 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 3 /* input channels per group */, 32 /* output_channels_per_group */, 3 /* input pixel stride */, 32 /* output pixel stride */, w30.data(), w31.data(), 0.0f /* output min */, 6.0f /* output max */, 0 /* flags */, &op0); if (status != xnn_status_success) { std::cerr << "failed to create operation #0" << std::endl; return ExecutionPlan(); } operators.emplace_back(op0, xnn_delete_operator); xnn_operator_t op1 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 1 /* top padding */, 1 /* right padding */, 1 /* bottom padding */, 1 /* left padding */, 3 /* kernel height */, 3 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 32 /* groups */, 1 /* input channels per group */, 1 /* output_channels_per_group */, 32 /* input pixel stride */, 32 /* output pixel stride */, w32.data(), w33.data(), 0.0f /* output min */, 6.0f /* output max */, 0 /* flags */, &op1); if (status != xnn_status_success) { std::cerr << "failed to create operation #1" << std::endl; return ExecutionPlan(); } operators.emplace_back(op1, xnn_delete_operator); xnn_operator_t op2 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 32 /* input channels per group */, 64 /* output_channels_per_group */, 32 /* input pixel stride */, 64 /* output pixel stride */, w34.data(), w35.data(), 0.0f /* output min */, 6.0f /* output max */, 0 /* flags */, &op2); if (status != xnn_status_success) { std::cerr << "failed to create operation #2" << std::endl; return ExecutionPlan(); } operators.emplace_back(op2, xnn_delete_operator); xnn_operator_t op3 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 1 /* right padding */, 1 /* bottom padding */, 0 /* left padding */, 3 /* kernel height */, 3 /* kernel width */, 2 /* subsampling height */, 2 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 64 /* groups */, 1 /* input channels per group */, 1 /* output_channels_per_group */, 64 /* input pixel stride */, 64 /* output pixel stride */, w36.data(), w37.data(), 0.0f /* output min */, 6.0f /* output max */, 0 /* flags */, &op3); if (status != xnn_status_success) { std::cerr << "failed to create operation #3" << std::endl; return ExecutionPlan(); } operators.emplace_back(op3, xnn_delete_operator); xnn_operator_t op4 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 64 /* input channels per group */, 128 /* output_channels_per_group */, 64 /* input pixel stride */, 128 /* output pixel stride */, w38.data(), w39.data(), 0.0f /* output min */, 6.0f /* output max */, 0 /* flags */, &op4); if (status != xnn_status_success) { std::cerr << "failed to create operation #4" << std::endl; return ExecutionPlan(); } operators.emplace_back(op4, xnn_delete_operator); xnn_operator_t op5 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 1 /* top padding */, 1 /* right padding */, 1 /* bottom padding */, 1 /* left padding */, 3 /* kernel height */, 3 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 128 /* groups */, 1 /* input channels per group */, 1 /* output_channels_per_group */, 128 /* input pixel stride */, 128 /* output pixel stride */, w40.data(), w41.data(), 0.0f /* output min */, 6.0f /* output max */, 0 /* flags */, &op5); if (status != xnn_status_success) { std::cerr << "failed to create operation #5" << std::endl; return ExecutionPlan(); } operators.emplace_back(op5, xnn_delete_operator); xnn_operator_t op6 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 128 /* input channels per group */, 128 /* output_channels_per_group */, 128 /* input pixel stride */, 128 /* output pixel stride */, w42.data(), w43.data(), 0.0f /* output min */, 6.0f /* output max */, 0 /* flags */, &op6); if (status != xnn_status_success) { std::cerr << "failed to create operation #6" << std::endl; return ExecutionPlan(); } operators.emplace_back(op6, xnn_delete_operator); xnn_operator_t op7 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 1 /* right padding */, 1 /* bottom padding */, 0 /* left padding */, 3 /* kernel height */, 3 /* kernel width */, 2 /* subsampling height */, 2 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 128 /* groups */, 1 /* input channels per group */, 1 /* output_channels_per_group */, 128 /* input pixel stride */, 128 /* output pixel stride */, w44.data(), w45.data(), 0.0f /* output min */, 6.0f /* output max */, 0 /* flags */, &op7); if (status != xnn_status_success) { std::cerr << "failed to create operation #7" << std::endl; return ExecutionPlan(); } operators.emplace_back(op7, xnn_delete_operator); xnn_operator_t op8 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 128 /* input channels per group */, 256 /* output_channels_per_group */, 128 /* input pixel stride */, 256 /* output pixel stride */, w46.data(), w47.data(), 0.0f /* output min */, 6.0f /* output max */, 0 /* flags */, &op8); if (status != xnn_status_success) { std::cerr << "failed to create operation #8" << std::endl; return ExecutionPlan(); } operators.emplace_back(op8, xnn_delete_operator); xnn_operator_t op9 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 1 /* top padding */, 1 /* right padding */, 1 /* bottom padding */, 1 /* left padding */, 3 /* kernel height */, 3 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 256 /* groups */, 1 /* input channels per group */, 1 /* output_channels_per_group */, 256 /* input pixel stride */, 256 /* output pixel stride */, w48.data(), w49.data(), 0.0f /* output min */, 6.0f /* output max */, 0 /* flags */, &op9); if (status != xnn_status_success) { std::cerr << "failed to create operation #9" << std::endl; return ExecutionPlan(); } operators.emplace_back(op9, xnn_delete_operator); xnn_operator_t op10 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 256 /* input channels per group */, 256 /* output_channels_per_group */, 256 /* input pixel stride */, 256 /* output pixel stride */, w50.data(), w51.data(), 0.0f /* output min */, 6.0f /* output max */, 0 /* flags */, &op10); if (status != xnn_status_success) { std::cerr << "failed to create operation #10" << std::endl; return ExecutionPlan(); } operators.emplace_back(op10, xnn_delete_operator); xnn_operator_t op11 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 1 /* right padding */, 1 /* bottom padding */, 0 /* left padding */, 3 /* kernel height */, 3 /* kernel width */, 2 /* subsampling height */, 2 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 256 /* groups */, 1 /* input channels per group */, 1 /* output_channels_per_group */, 256 /* input pixel stride */, 256 /* output pixel stride */, w52.data(), w53.data(), 0.0f /* output min */, 6.0f /* output max */, 0 /* flags */, &op11); if (status != xnn_status_success) { std::cerr << "failed to create operation #11" << std::endl; return ExecutionPlan(); } operators.emplace_back(op11, xnn_delete_operator); xnn_operator_t op12 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 256 /* input channels per group */, 512 /* output_channels_per_group */, 256 /* input pixel stride */, 512 /* output pixel stride */, w54.data(), w55.data(), 0.0f /* output min */, 6.0f /* output max */, 0 /* flags */, &op12); if (status != xnn_status_success) { std::cerr << "failed to create operation #12" << std::endl; return ExecutionPlan(); } operators.emplace_back(op12, xnn_delete_operator); xnn_operator_t op13 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 1 /* top padding */, 1 /* right padding */, 1 /* bottom padding */, 1 /* left padding */, 3 /* kernel height */, 3 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 512 /* groups */, 1 /* input channels per group */, 1 /* output_channels_per_group */, 512 /* input pixel stride */, 512 /* output pixel stride */, w56.data(), w57.data(), 0.0f /* output min */, 6.0f /* output max */, 0 /* flags */, &op13); if (status != xnn_status_success) { std::cerr << "failed to create operation #13" << std::endl; return ExecutionPlan(); } operators.emplace_back(op13, xnn_delete_operator); xnn_operator_t op14 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 512 /* input channels per group */, 512 /* output_channels_per_group */, 512 /* input pixel stride */, 512 /* output pixel stride */, w58.data(), w59.data(), 0.0f /* output min */, 6.0f /* output max */, 0 /* flags */, &op14); if (status != xnn_status_success) { std::cerr << "failed to create operation #14" << std::endl; return ExecutionPlan(); } operators.emplace_back(op14, xnn_delete_operator); xnn_operator_t op15 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 1 /* top padding */, 1 /* right padding */, 1 /* bottom padding */, 1 /* left padding */, 3 /* kernel height */, 3 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 512 /* groups */, 1 /* input channels per group */, 1 /* output_channels_per_group */, 512 /* input pixel stride */, 512 /* output pixel stride */, w60.data(), w61.data(), 0.0f /* output min */, 6.0f /* output max */, 0 /* flags */, &op15); if (status != xnn_status_success) { std::cerr << "failed to create operation #15" << std::endl; return ExecutionPlan(); } operators.emplace_back(op15, xnn_delete_operator); xnn_operator_t op16 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 512 /* input channels per group */, 512 /* output_channels_per_group */, 512 /* input pixel stride */, 512 /* output pixel stride */, w62.data(), w63.data(), 0.0f /* output min */, 6.0f /* output max */, 0 /* flags */, &op16); if (status != xnn_status_success) { std::cerr << "failed to create operation #16" << std::endl; return ExecutionPlan(); } operators.emplace_back(op16, xnn_delete_operator); xnn_operator_t op17 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 1 /* top padding */, 1 /* right padding */, 1 /* bottom padding */, 1 /* left padding */, 3 /* kernel height */, 3 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 512 /* groups */, 1 /* input channels per group */, 1 /* output_channels_per_group */, 512 /* input pixel stride */, 512 /* output pixel stride */, w64.data(), w65.data(), 0.0f /* output min */, 6.0f /* output max */, 0 /* flags */, &op17); if (status != xnn_status_success) { std::cerr << "failed to create operation #17" << std::endl; return ExecutionPlan(); } operators.emplace_back(op17, xnn_delete_operator); xnn_operator_t op18 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 512 /* input channels per group */, 512 /* output_channels_per_group */, 512 /* input pixel stride */, 512 /* output pixel stride */, w66.data(), w67.data(), 0.0f /* output min */, 6.0f /* output max */, 0 /* flags */, &op18); if (status != xnn_status_success) { std::cerr << "failed to create operation #18" << std::endl; return ExecutionPlan(); } operators.emplace_back(op18, xnn_delete_operator); xnn_operator_t op19 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 1 /* top padding */, 1 /* right padding */, 1 /* bottom padding */, 1 /* left padding */, 3 /* kernel height */, 3 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 512 /* groups */, 1 /* input channels per group */, 1 /* output_channels_per_group */, 512 /* input pixel stride */, 512 /* output pixel stride */, w68.data(), w69.data(), 0.0f /* output min */, 6.0f /* output max */, 0 /* flags */, &op19); if (status != xnn_status_success) { std::cerr << "failed to create operation #19" << std::endl; return ExecutionPlan(); } operators.emplace_back(op19, xnn_delete_operator); xnn_operator_t op20 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 512 /* input channels per group */, 512 /* output_channels_per_group */, 512 /* input pixel stride */, 512 /* output pixel stride */, w70.data(), w71.data(), 0.0f /* output min */, 6.0f /* output max */, 0 /* flags */, &op20); if (status != xnn_status_success) { std::cerr << "failed to create operation #20" << std::endl; return ExecutionPlan(); } operators.emplace_back(op20, xnn_delete_operator); xnn_operator_t op21 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 1 /* top padding */, 1 /* right padding */, 1 /* bottom padding */, 1 /* left padding */, 3 /* kernel height */, 3 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 512 /* groups */, 1 /* input channels per group */, 1 /* output_channels_per_group */, 512 /* input pixel stride */, 512 /* output pixel stride */, w72.data(), w73.data(), 0.0f /* output min */, 6.0f /* output max */, 0 /* flags */, &op21); if (status != xnn_status_success) { std::cerr << "failed to create operation #21" << std::endl; return ExecutionPlan(); } operators.emplace_back(op21, xnn_delete_operator); xnn_operator_t op22 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 512 /* input channels per group */, 512 /* output_channels_per_group */, 512 /* input pixel stride */, 512 /* output pixel stride */, w74.data(), w75.data(), 0.0f /* output min */, 6.0f /* output max */, 0 /* flags */, &op22); if (status != xnn_status_success) { std::cerr << "failed to create operation #22" << std::endl; return ExecutionPlan(); } operators.emplace_back(op22, xnn_delete_operator); xnn_operator_t op23 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 1 /* right padding */, 1 /* bottom padding */, 0 /* left padding */, 3 /* kernel height */, 3 /* kernel width */, 2 /* subsampling height */, 2 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 512 /* groups */, 1 /* input channels per group */, 1 /* output_channels_per_group */, 512 /* input pixel stride */, 512 /* output pixel stride */, w76.data(), w77.data(), 0.0f /* output min */, 6.0f /* output max */, 0 /* flags */, &op23); if (status != xnn_status_success) { std::cerr << "failed to create operation #23" << std::endl; return ExecutionPlan(); } operators.emplace_back(op23, xnn_delete_operator); xnn_operator_t op24 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 512 /* input channels per group */, 1024 /* output_channels_per_group */, 512 /* input pixel stride */, 1024 /* output pixel stride */, w78.data(), w79.data(), 0.0f /* output min */, 6.0f /* output max */, 0 /* flags */, &op24); if (status != xnn_status_success) { std::cerr << "failed to create operation #24" << std::endl; return ExecutionPlan(); } operators.emplace_back(op24, xnn_delete_operator); xnn_operator_t op25 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 1 /* top padding */, 1 /* right padding */, 1 /* bottom padding */, 1 /* left padding */, 3 /* kernel height */, 3 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1024 /* groups */, 1 /* input channels per group */, 1 /* output_channels_per_group */, 1024 /* input pixel stride */, 1024 /* output pixel stride */, w80.data(), w81.data(), 0.0f /* output min */, 6.0f /* output max */, 0 /* flags */, &op25); if (status != xnn_status_success) { std::cerr << "failed to create operation #25" << std::endl; return ExecutionPlan(); } operators.emplace_back(op25, xnn_delete_operator); xnn_operator_t op26 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 1024 /* input channels per group */, 1024 /* output_channels_per_group */, 1024 /* input pixel stride */, 1024 /* output pixel stride */, w82.data(), w83.data(), 0.0f /* output min */, 6.0f /* output max */, 0 /* flags */, &op26); if (status != xnn_status_success) { std::cerr << "failed to create operation #26" << std::endl; return ExecutionPlan(); } operators.emplace_back(op26, xnn_delete_operator); xnn_operator_t op27 = nullptr; status = xnn_create_global_average_pooling_nwc_f16( 1024 /* channels */, 1024 /* input stride */, 1024 /* output stride */, -std::numeric_limits::infinity(), std::numeric_limits::infinity(), 0 /* flags */, &op27); if (status != xnn_status_success) { std::cerr << "failed to create operation #27" << std::endl; return ExecutionPlan(); } operators.emplace_back(op27, xnn_delete_operator); xnn_operator_t op28 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 1024 /* input channels per group */, 1001 /* output_channels_per_group */, 1024 /* input pixel stride */, 1001 /* output pixel stride */, w84.data(), w85.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op28); if (status != xnn_status_success) { std::cerr << "failed to create operation #28" << std::endl; return ExecutionPlan(); } operators.emplace_back(op28, xnn_delete_operator); status = xnn_setup_convolution2d_nhwc_f16( op0, 1 /* batch size */, 224 /* input height */, 224 /* input width */, v0.data() /* input */, v1.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #0" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op1, 1 /* batch size */, 112 /* input height */, 112 /* input width */, v1.data() /* input */, v2.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #1" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op2, 1 /* batch size */, 112 /* input height */, 112 /* input width */, v2.data() /* input */, v3.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #2" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op3, 1 /* batch size */, 112 /* input height */, 112 /* input width */, v3.data() /* input */, v4.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #3" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op4, 1 /* batch size */, 56 /* input height */, 56 /* input width */, v4.data() /* input */, v5.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #4" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op5, 1 /* batch size */, 56 /* input height */, 56 /* input width */, v5.data() /* input */, v6.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #5" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op6, 1 /* batch size */, 56 /* input height */, 56 /* input width */, v6.data() /* input */, v7.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #6" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op7, 1 /* batch size */, 56 /* input height */, 56 /* input width */, v7.data() /* input */, v8.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #7" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op8, 1 /* batch size */, 28 /* input height */, 28 /* input width */, v8.data() /* input */, v9.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #8" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op9, 1 /* batch size */, 28 /* input height */, 28 /* input width */, v9.data() /* input */, v10.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #9" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op10, 1 /* batch size */, 28 /* input height */, 28 /* input width */, v10.data() /* input */, v11.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #10" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op11, 1 /* batch size */, 28 /* input height */, 28 /* input width */, v11.data() /* input */, v12.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #11" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op12, 1 /* batch size */, 14 /* input height */, 14 /* input width */, v12.data() /* input */, v13.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #12" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op13, 1 /* batch size */, 14 /* input height */, 14 /* input width */, v13.data() /* input */, v14.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #13" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op14, 1 /* batch size */, 14 /* input height */, 14 /* input width */, v14.data() /* input */, v15.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #14" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op15, 1 /* batch size */, 14 /* input height */, 14 /* input width */, v15.data() /* input */, v16.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #15" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op16, 1 /* batch size */, 14 /* input height */, 14 /* input width */, v16.data() /* input */, v17.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #16" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op17, 1 /* batch size */, 14 /* input height */, 14 /* input width */, v17.data() /* input */, v18.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #17" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op18, 1 /* batch size */, 14 /* input height */, 14 /* input width */, v18.data() /* input */, v19.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #18" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op19, 1 /* batch size */, 14 /* input height */, 14 /* input width */, v19.data() /* input */, v20.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #19" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op20, 1 /* batch size */, 14 /* input height */, 14 /* input width */, v20.data() /* input */, v21.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #20" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op21, 1 /* batch size */, 14 /* input height */, 14 /* input width */, v21.data() /* input */, v22.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #21" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op22, 1 /* batch size */, 14 /* input height */, 14 /* input width */, v22.data() /* input */, v23.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #22" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op23, 1 /* batch size */, 14 /* input height */, 14 /* input width */, v23.data() /* input */, v24.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #23" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op24, 1 /* batch size */, 7 /* input height */, 7 /* input width */, v24.data() /* input */, v25.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #24" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op25, 1 /* batch size */, 7 /* input height */, 7 /* input width */, v25.data() /* input */, v26.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #25" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op26, 1 /* batch size */, 7 /* input height */, 7 /* input width */, v26.data() /* input */, v27.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #26" << std::endl; return ExecutionPlan(); } status = xnn_setup_global_average_pooling_nwc_f16( op27, 1 /* batch size */, 49 /* width */, v27.data() /* input */, v28.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #27" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op28, 1 /* batch size */, 1 /* input height */, 1 /* input width */, v28.data() /* input */, v29.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #28" << std::endl; return ExecutionPlan(); } #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wpessimizing-move" return operators; #pragma clang diagnostic pop } } // namespace models