from fontTools.misc.py23 import bytechr, byteord, bytesjoin from fontTools.misc.fixedTools import ( fixedToFloat as fi2fl, floatToFixed as fl2fi, floatToFixedToStr as fl2str, strToFixedToFloat as str2fl, otRound, ) from fontTools.misc.textTools import safeEval import array import io import logging import struct import sys # https://www.microsoft.com/typography/otspec/otvarcommonformats.htm EMBEDDED_PEAK_TUPLE = 0x8000 INTERMEDIATE_REGION = 0x4000 PRIVATE_POINT_NUMBERS = 0x2000 DELTAS_ARE_ZERO = 0x80 DELTAS_ARE_WORDS = 0x40 DELTA_RUN_COUNT_MASK = 0x3f POINTS_ARE_WORDS = 0x80 POINT_RUN_COUNT_MASK = 0x7f TUPLES_SHARE_POINT_NUMBERS = 0x8000 TUPLE_COUNT_MASK = 0x0fff TUPLE_INDEX_MASK = 0x0fff log = logging.getLogger(__name__) class TupleVariation(object): def __init__(self, axes, coordinates): self.axes = axes.copy() self.coordinates = coordinates[:] def __repr__(self): axes = ",".join(sorted(["%s=%s" % (name, value) for (name, value) in self.axes.items()])) return "" % (axes, self.coordinates) def __eq__(self, other): return self.coordinates == other.coordinates and self.axes == other.axes def getUsedPoints(self): result = set() for i, point in enumerate(self.coordinates): if point is not None: result.add(i) return result def hasImpact(self): """Returns True if this TupleVariation has any visible impact. If the result is False, the TupleVariation can be omitted from the font without making any visible difference. """ return any(c is not None for c in self.coordinates) def toXML(self, writer, axisTags): writer.begintag("tuple") writer.newline() for axis in axisTags: value = self.axes.get(axis) if value is not None: minValue, value, maxValue = value defaultMinValue = min(value, 0.0) # -0.3 --> -0.3; 0.7 --> 0.0 defaultMaxValue = max(value, 0.0) # -0.3 --> 0.0; 0.7 --> 0.7 if minValue == defaultMinValue and maxValue == defaultMaxValue: writer.simpletag("coord", axis=axis, value=fl2str(value, 14)) else: attrs = [ ("axis", axis), ("min", fl2str(minValue, 14)), ("value", fl2str(value, 14)), ("max", fl2str(maxValue, 14)), ] writer.simpletag("coord", attrs) writer.newline() wrote_any_deltas = False for i, delta in enumerate(self.coordinates): if type(delta) == tuple and len(delta) == 2: writer.simpletag("delta", pt=i, x=delta[0], y=delta[1]) writer.newline() wrote_any_deltas = True elif type(delta) == int: writer.simpletag("delta", cvt=i, value=delta) writer.newline() wrote_any_deltas = True elif delta is not None: log.error("bad delta format") writer.comment("bad delta #%d" % i) writer.newline() wrote_any_deltas = True if not wrote_any_deltas: writer.comment("no deltas") writer.newline() writer.endtag("tuple") writer.newline() def fromXML(self, name, attrs, _content): if name == "coord": axis = attrs["axis"] value = str2fl(attrs["value"], 14) defaultMinValue = min(value, 0.0) # -0.3 --> -0.3; 0.7 --> 0.0 defaultMaxValue = max(value, 0.0) # -0.3 --> 0.0; 0.7 --> 0.7 minValue = str2fl(attrs.get("min", defaultMinValue), 14) maxValue = str2fl(attrs.get("max", defaultMaxValue), 14) self.axes[axis] = (minValue, value, maxValue) elif name == "delta": if "pt" in attrs: point = safeEval(attrs["pt"]) x = safeEval(attrs["x"]) y = safeEval(attrs["y"]) self.coordinates[point] = (x, y) elif "cvt" in attrs: cvt = safeEval(attrs["cvt"]) value = safeEval(attrs["value"]) self.coordinates[cvt] = value else: log.warning("bad delta format: %s" % ", ".join(sorted(attrs.keys()))) def compile(self, axisTags, sharedCoordIndices, sharedPoints): tupleData = [] assert all(tag in axisTags for tag in self.axes.keys()), ("Unknown axis tag found.", self.axes.keys(), axisTags) coord = self.compileCoord(axisTags) if coord in sharedCoordIndices: flags = sharedCoordIndices[coord] else: flags = EMBEDDED_PEAK_TUPLE tupleData.append(coord) intermediateCoord = self.compileIntermediateCoord(axisTags) if intermediateCoord is not None: flags |= INTERMEDIATE_REGION tupleData.append(intermediateCoord) points = self.getUsedPoints() if sharedPoints == points: # Only use the shared points if they are identical to the actually used points auxData = self.compileDeltas(sharedPoints) usesSharedPoints = True else: flags |= PRIVATE_POINT_NUMBERS numPointsInGlyph = len(self.coordinates) auxData = self.compilePoints(points, numPointsInGlyph) + self.compileDeltas(points) usesSharedPoints = False tupleData = struct.pack('>HH', len(auxData), flags) + bytesjoin(tupleData) return (tupleData, auxData, usesSharedPoints) def compileCoord(self, axisTags): result = [] for axis in axisTags: _minValue, value, _maxValue = self.axes.get(axis, (0.0, 0.0, 0.0)) result.append(struct.pack(">h", fl2fi(value, 14))) return bytesjoin(result) def compileIntermediateCoord(self, axisTags): needed = False for axis in axisTags: minValue, value, maxValue = self.axes.get(axis, (0.0, 0.0, 0.0)) defaultMinValue = min(value, 0.0) # -0.3 --> -0.3; 0.7 --> 0.0 defaultMaxValue = max(value, 0.0) # -0.3 --> 0.0; 0.7 --> 0.7 if (minValue != defaultMinValue) or (maxValue != defaultMaxValue): needed = True break if not needed: return None minCoords = [] maxCoords = [] for axis in axisTags: minValue, value, maxValue = self.axes.get(axis, (0.0, 0.0, 0.0)) minCoords.append(struct.pack(">h", fl2fi(minValue, 14))) maxCoords.append(struct.pack(">h", fl2fi(maxValue, 14))) return bytesjoin(minCoords + maxCoords) @staticmethod def decompileCoord_(axisTags, data, offset): coord = {} pos = offset for axis in axisTags: coord[axis] = fi2fl(struct.unpack(">h", data[pos:pos+2])[0], 14) pos += 2 return coord, pos @staticmethod def compilePoints(points, numPointsInGlyph): # If the set consists of all points in the glyph, it gets encoded with # a special encoding: a single zero byte. if len(points) == numPointsInGlyph: return b"\0" # In the 'gvar' table, the packing of point numbers is a little surprising. # It consists of multiple runs, each being a delta-encoded list of integers. # For example, the point set {17, 18, 19, 20, 21, 22, 23} gets encoded as # [6, 17, 1, 1, 1, 1, 1, 1]. The first value (6) is the run length minus 1. # There are two types of runs, with values being either 8 or 16 bit unsigned # integers. points = list(points) points.sort() numPoints = len(points) # The binary representation starts with the total number of points in the set, # encoded into one or two bytes depending on the value. if numPoints < 0x80: result = [bytechr(numPoints)] else: result = [bytechr((numPoints >> 8) | 0x80) + bytechr(numPoints & 0xff)] MAX_RUN_LENGTH = 127 pos = 0 lastValue = 0 while pos < numPoints: run = io.BytesIO() runLength = 0 useByteEncoding = None while pos < numPoints and runLength <= MAX_RUN_LENGTH: curValue = points[pos] delta = curValue - lastValue if useByteEncoding is None: useByteEncoding = 0 <= delta <= 0xff if useByteEncoding and (delta > 0xff or delta < 0): # we need to start a new run (which will not use byte encoding) break # TODO This never switches back to a byte-encoding from a short-encoding. # That's suboptimal. if useByteEncoding: run.write(bytechr(delta)) else: run.write(bytechr(delta >> 8)) run.write(bytechr(delta & 0xff)) lastValue = curValue pos += 1 runLength += 1 if useByteEncoding: runHeader = bytechr(runLength - 1) else: runHeader = bytechr((runLength - 1) | POINTS_ARE_WORDS) result.append(runHeader) result.append(run.getvalue()) return bytesjoin(result) @staticmethod def decompilePoints_(numPoints, data, offset, tableTag): """(numPoints, data, offset, tableTag) --> ([point1, point2, ...], newOffset)""" assert tableTag in ('cvar', 'gvar') pos = offset numPointsInData = byteord(data[pos]) pos += 1 if (numPointsInData & POINTS_ARE_WORDS) != 0: numPointsInData = (numPointsInData & POINT_RUN_COUNT_MASK) << 8 | byteord(data[pos]) pos += 1 if numPointsInData == 0: return (range(numPoints), pos) result = [] while len(result) < numPointsInData: runHeader = byteord(data[pos]) pos += 1 numPointsInRun = (runHeader & POINT_RUN_COUNT_MASK) + 1 point = 0 if (runHeader & POINTS_ARE_WORDS) != 0: points = array.array("H") pointsSize = numPointsInRun * 2 else: points = array.array("B") pointsSize = numPointsInRun points.frombytes(data[pos:pos+pointsSize]) if sys.byteorder != "big": points.byteswap() assert len(points) == numPointsInRun pos += pointsSize result.extend(points) # Convert relative to absolute absolute = [] current = 0 for delta in result: current += delta absolute.append(current) result = absolute del absolute badPoints = {str(p) for p in result if p < 0 or p >= numPoints} if badPoints: log.warning("point %s out of range in '%s' table" % (",".join(sorted(badPoints)), tableTag)) return (result, pos) def compileDeltas(self, points): deltaX = [] deltaY = [] for p in sorted(list(points)): c = self.coordinates[p] if type(c) is tuple and len(c) == 2: deltaX.append(c[0]) deltaY.append(c[1]) elif type(c) is int: deltaX.append(c) elif c is not None: raise TypeError("invalid type of delta: %s" % type(c)) return self.compileDeltaValues_(deltaX) + self.compileDeltaValues_(deltaY) @staticmethod def compileDeltaValues_(deltas): """[value1, value2, value3, ...] --> bytestring Emits a sequence of runs. Each run starts with a byte-sized header whose 6 least significant bits (header & 0x3F) indicate how many values are encoded in this run. The stored length is the actual length minus one; run lengths are thus in the range [1..64]. If the header byte has its most significant bit (0x80) set, all values in this run are zero, and no data follows. Otherwise, the header byte is followed by ((header & 0x3F) + 1) signed values. If (header & 0x40) is clear, the delta values are stored as signed bytes; if (header & 0x40) is set, the delta values are signed 16-bit integers. """ # Explaining the format because the 'gvar' spec is hard to understand. stream = io.BytesIO() pos = 0 while pos < len(deltas): value = deltas[pos] if value == 0: pos = TupleVariation.encodeDeltaRunAsZeroes_(deltas, pos, stream) elif value >= -128 and value <= 127: pos = TupleVariation.encodeDeltaRunAsBytes_(deltas, pos, stream) else: pos = TupleVariation.encodeDeltaRunAsWords_(deltas, pos, stream) return stream.getvalue() @staticmethod def encodeDeltaRunAsZeroes_(deltas, offset, stream): runLength = 0 pos = offset numDeltas = len(deltas) while pos < numDeltas and runLength < 64 and deltas[pos] == 0: pos += 1 runLength += 1 assert runLength >= 1 and runLength <= 64 stream.write(bytechr(DELTAS_ARE_ZERO | (runLength - 1))) return pos @staticmethod def encodeDeltaRunAsBytes_(deltas, offset, stream): runLength = 0 pos = offset numDeltas = len(deltas) while pos < numDeltas and runLength < 64: value = deltas[pos] if value < -128 or value > 127: break # Within a byte-encoded run of deltas, a single zero # is best stored literally as 0x00 value. However, # if are two or more zeroes in a sequence, it is # better to start a new run. For example, the sequence # of deltas [15, 15, 0, 15, 15] becomes 6 bytes # (04 0F 0F 00 0F 0F) when storing the zero value # literally, but 7 bytes (01 0F 0F 80 01 0F 0F) # when starting a new run. if value == 0 and pos+1 < numDeltas and deltas[pos+1] == 0: break pos += 1 runLength += 1 assert runLength >= 1 and runLength <= 64 stream.write(bytechr(runLength - 1)) for i in range(offset, pos): stream.write(struct.pack('b', otRound(deltas[i]))) return pos @staticmethod def encodeDeltaRunAsWords_(deltas, offset, stream): runLength = 0 pos = offset numDeltas = len(deltas) while pos < numDeltas and runLength < 64: value = deltas[pos] # Within a word-encoded run of deltas, it is easiest # to start a new run (with a different encoding) # whenever we encounter a zero value. For example, # the sequence [0x6666, 0, 0x7777] needs 7 bytes when # storing the zero literally (42 66 66 00 00 77 77), # and equally 7 bytes when starting a new run # (40 66 66 80 40 77 77). if value == 0: break # Within a word-encoded run of deltas, a single value # in the range (-128..127) should be encoded literally # because it is more compact. For example, the sequence # [0x6666, 2, 0x7777] becomes 7 bytes when storing # the value literally (42 66 66 00 02 77 77), but 8 bytes # when starting a new run (40 66 66 00 02 40 77 77). isByteEncodable = lambda value: value >= -128 and value <= 127 if isByteEncodable(value) and pos+1 < numDeltas and isByteEncodable(deltas[pos+1]): break pos += 1 runLength += 1 assert runLength >= 1 and runLength <= 64 stream.write(bytechr(DELTAS_ARE_WORDS | (runLength - 1))) for i in range(offset, pos): stream.write(struct.pack('>h', otRound(deltas[i]))) return pos @staticmethod def decompileDeltas_(numDeltas, data, offset): """(numDeltas, data, offset) --> ([delta, delta, ...], newOffset)""" result = [] pos = offset while len(result) < numDeltas: runHeader = byteord(data[pos]) pos += 1 numDeltasInRun = (runHeader & DELTA_RUN_COUNT_MASK) + 1 if (runHeader & DELTAS_ARE_ZERO) != 0: result.extend([0] * numDeltasInRun) else: if (runHeader & DELTAS_ARE_WORDS) != 0: deltas = array.array("h") deltasSize = numDeltasInRun * 2 else: deltas = array.array("b") deltasSize = numDeltasInRun deltas.frombytes(data[pos:pos+deltasSize]) if sys.byteorder != "big": deltas.byteswap() assert len(deltas) == numDeltasInRun pos += deltasSize result.extend(deltas) assert len(result) == numDeltas return (result, pos) @staticmethod def getTupleSize_(flags, axisCount): size = 4 if (flags & EMBEDDED_PEAK_TUPLE) != 0: size += axisCount * 2 if (flags & INTERMEDIATE_REGION) != 0: size += axisCount * 4 return size def getCoordWidth(self): """ Return 2 if coordinates are (x, y) as in gvar, 1 if single values as in cvar, or 0 if empty. """ firstDelta = next((c for c in self.coordinates if c is not None), None) if firstDelta is None: return 0 # empty or has no impact if type(firstDelta) in (int, float): return 1 if type(firstDelta) is tuple and len(firstDelta) == 2: return 2 raise TypeError( "invalid type of delta; expected (int or float) number, or " "Tuple[number, number]: %r" % firstDelta ) def scaleDeltas(self, scalar): if scalar == 1.0: return # no change coordWidth = self.getCoordWidth() self.coordinates = [ None if d is None else d * scalar if coordWidth == 1 else (d[0] * scalar, d[1] * scalar) for d in self.coordinates ] def roundDeltas(self): coordWidth = self.getCoordWidth() self.coordinates = [ None if d is None else otRound(d) if coordWidth == 1 else (otRound(d[0]), otRound(d[1])) for d in self.coordinates ] def calcInferredDeltas(self, origCoords, endPts): from fontTools.varLib.iup import iup_delta if self.getCoordWidth() == 1: raise TypeError( "Only 'gvar' TupleVariation can have inferred deltas" ) if None in self.coordinates: if len(self.coordinates) != len(origCoords): raise ValueError( "Expected len(origCoords) == %d; found %d" % (len(self.coordinates), len(origCoords)) ) self.coordinates = iup_delta(self.coordinates, origCoords, endPts) def optimize(self, origCoords, endPts, tolerance=0.5, isComposite=False): from fontTools.varLib.iup import iup_delta_optimize if None in self.coordinates: return # already optimized deltaOpt = iup_delta_optimize( self.coordinates, origCoords, endPts, tolerance=tolerance ) if None in deltaOpt: if isComposite and all(d is None for d in deltaOpt): # Fix for macOS composites # https://github.com/fonttools/fonttools/issues/1381 deltaOpt = [(0, 0)] + [None] * (len(deltaOpt) - 1) # Use "optimized" version only if smaller... varOpt = TupleVariation(self.axes, deltaOpt) # Shouldn't matter that this is different from fvar...? axisTags = sorted(self.axes.keys()) tupleData, auxData, _ = self.compile(axisTags, [], None) unoptimizedLength = len(tupleData) + len(auxData) tupleData, auxData, _ = varOpt.compile(axisTags, [], None) optimizedLength = len(tupleData) + len(auxData) if optimizedLength < unoptimizedLength: self.coordinates = varOpt.coordinates def __iadd__(self, other): if not isinstance(other, TupleVariation): return NotImplemented deltas1 = self.coordinates length = len(deltas1) deltas2 = other.coordinates if len(deltas2) != length: raise ValueError( "cannot sum TupleVariation deltas with different lengths" ) # 'None' values have different meanings in gvar vs cvar TupleVariations: # within the gvar, when deltas are not provided explicitly for some points, # they need to be inferred; whereas for the 'cvar' table, if deltas are not # provided for some CVT values, then no adjustments are made (i.e. None == 0). # Thus, we cannot sum deltas for gvar TupleVariations if they contain # inferred inferred deltas (the latter need to be computed first using # 'calcInferredDeltas' method), but we can treat 'None' values in cvar # deltas as if they are zeros. if self.getCoordWidth() == 2: for i, d2 in zip(range(length), deltas2): d1 = deltas1[i] try: deltas1[i] = (d1[0] + d2[0], d1[1] + d2[1]) except TypeError: raise ValueError( "cannot sum gvar deltas with inferred points" ) else: for i, d2 in zip(range(length), deltas2): d1 = deltas1[i] if d1 is not None and d2 is not None: deltas1[i] = d1 + d2 elif d1 is None and d2 is not None: deltas1[i] = d2 # elif d2 is None do nothing return self def decompileSharedTuples(axisTags, sharedTupleCount, data, offset): result = [] for _ in range(sharedTupleCount): t, offset = TupleVariation.decompileCoord_(axisTags, data, offset) result.append(t) return result def compileSharedTuples(axisTags, variations): coordCount = {} for var in variations: coord = var.compileCoord(axisTags) coordCount[coord] = coordCount.get(coord, 0) + 1 sharedCoords = [(count, coord) for (coord, count) in coordCount.items() if count > 1] sharedCoords.sort(reverse=True) MAX_NUM_SHARED_COORDS = TUPLE_INDEX_MASK + 1 sharedCoords = sharedCoords[:MAX_NUM_SHARED_COORDS] return [c[1] for c in sharedCoords] # Strip off counts. def compileTupleVariationStore(variations, pointCount, axisTags, sharedTupleIndices, useSharedPoints=True): variations = [v for v in variations if v.hasImpact()] if len(variations) == 0: return (0, b"", b"") # Each glyph variation tuples modifies a set of control points. To # indicate which exact points are getting modified, a single tuple # can either refer to a shared set of points, or the tuple can # supply its private point numbers. Because the impact of sharing # can be positive (no need for a private point list) or negative # (need to supply 0,0 deltas for unused points), it is not obvious # how to determine which tuples should take their points from the # shared pool versus have their own. Perhaps we should resort to # brute force, and try all combinations? However, if a glyph has n # variation tuples, we would need to try 2^n combinations (because # each tuple may or may not be part of the shared set). How many # variations tuples do glyphs have? # # Skia.ttf: {3: 1, 5: 11, 6: 41, 7: 62, 8: 387, 13: 1, 14: 3} # JamRegular.ttf: {3: 13, 4: 122, 5: 1, 7: 4, 8: 1, 9: 1, 10: 1} # BuffaloGalRegular.ttf: {1: 16, 2: 13, 4: 2, 5: 4, 6: 19, 7: 1, 8: 3, 9: 8} # (Reading example: In Skia.ttf, 41 glyphs have 6 variation tuples). # # Is this even worth optimizing? If we never use a shared point # list, the private lists will consume 112K for Skia, 5K for # BuffaloGalRegular, and 15K for JamRegular. If we always use a # shared point list, the shared lists will consume 16K for Skia, # 3K for BuffaloGalRegular, and 10K for JamRegular. However, in # the latter case the delta arrays will become larger, but I # haven't yet measured by how much. From gut feeling (which may be # wrong), the optimum is to share some but not all points; # however, then we would need to try all combinations. # # For the time being, we try two variants and then pick the better one: # (a) each tuple supplies its own private set of points; # (b) all tuples refer to a shared set of points, which consists of # "every control point in the glyph that has explicit deltas". usedPoints = set() for v in variations: usedPoints |= v.getUsedPoints() tuples = [] data = [] someTuplesSharePoints = False sharedPointVariation = None # To keep track of a variation that uses shared points for v in variations: privateTuple, privateData, _ = v.compile( axisTags, sharedTupleIndices, sharedPoints=None) sharedTuple, sharedData, usesSharedPoints = v.compile( axisTags, sharedTupleIndices, sharedPoints=usedPoints) if useSharedPoints and (len(sharedTuple) + len(sharedData)) < (len(privateTuple) + len(privateData)): tuples.append(sharedTuple) data.append(sharedData) someTuplesSharePoints |= usesSharedPoints sharedPointVariation = v else: tuples.append(privateTuple) data.append(privateData) if someTuplesSharePoints: # Use the last of the variations that share points for compiling the packed point data data = sharedPointVariation.compilePoints(usedPoints, len(sharedPointVariation.coordinates)) + bytesjoin(data) tupleVariationCount = TUPLES_SHARE_POINT_NUMBERS | len(tuples) else: data = bytesjoin(data) tupleVariationCount = len(tuples) tuples = bytesjoin(tuples) return tupleVariationCount, tuples, data def decompileTupleVariationStore(tableTag, axisTags, tupleVariationCount, pointCount, sharedTuples, data, pos, dataPos): numAxes = len(axisTags) result = [] if (tupleVariationCount & TUPLES_SHARE_POINT_NUMBERS) != 0: sharedPoints, dataPos = TupleVariation.decompilePoints_( pointCount, data, dataPos, tableTag) else: sharedPoints = [] for _ in range(tupleVariationCount & TUPLE_COUNT_MASK): dataSize, flags = struct.unpack(">HH", data[pos:pos+4]) tupleSize = TupleVariation.getTupleSize_(flags, numAxes) tupleData = data[pos : pos + tupleSize] pointDeltaData = data[dataPos : dataPos + dataSize] result.append(decompileTupleVariation_( pointCount, sharedTuples, sharedPoints, tableTag, axisTags, tupleData, pointDeltaData)) pos += tupleSize dataPos += dataSize return result def decompileTupleVariation_(pointCount, sharedTuples, sharedPoints, tableTag, axisTags, data, tupleData): assert tableTag in ("cvar", "gvar"), tableTag flags = struct.unpack(">H", data[2:4])[0] pos = 4 if (flags & EMBEDDED_PEAK_TUPLE) == 0: peak = sharedTuples[flags & TUPLE_INDEX_MASK] else: peak, pos = TupleVariation.decompileCoord_(axisTags, data, pos) if (flags & INTERMEDIATE_REGION) != 0: start, pos = TupleVariation.decompileCoord_(axisTags, data, pos) end, pos = TupleVariation.decompileCoord_(axisTags, data, pos) else: start, end = inferRegion_(peak) axes = {} for axis in axisTags: region = start[axis], peak[axis], end[axis] if region != (0.0, 0.0, 0.0): axes[axis] = region pos = 0 if (flags & PRIVATE_POINT_NUMBERS) != 0: points, pos = TupleVariation.decompilePoints_( pointCount, tupleData, pos, tableTag) else: points = sharedPoints deltas = [None] * pointCount if tableTag == "cvar": deltas_cvt, pos = TupleVariation.decompileDeltas_( len(points), tupleData, pos) for p, delta in zip(points, deltas_cvt): if 0 <= p < pointCount: deltas[p] = delta elif tableTag == "gvar": deltas_x, pos = TupleVariation.decompileDeltas_( len(points), tupleData, pos) deltas_y, pos = TupleVariation.decompileDeltas_( len(points), tupleData, pos) for p, x, y in zip(points, deltas_x, deltas_y): if 0 <= p < pointCount: deltas[p] = (x, y) return TupleVariation(axes, deltas) def inferRegion_(peak): """Infer start and end for a (non-intermediate) region This helper function computes the applicability region for variation tuples whose INTERMEDIATE_REGION flag is not set in the TupleVariationHeader structure. Variation tuples apply only to certain regions of the variation space; outside that region, the tuple has no effect. To make the binary encoding more compact, TupleVariationHeaders can omit the intermediateStartTuple and intermediateEndTuple fields. """ start, end = {}, {} for (axis, value) in peak.items(): start[axis] = min(value, 0.0) # -0.3 --> -0.3; 0.7 --> 0.0 end[axis] = max(value, 0.0) # -0.3 --> 0.0; 0.7 --> 0.7 return (start, end)