// © 2016 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html /* ******************************************************************************* * * Copyright (C) 2003-2014, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * file name: convtest.cpp * encoding: UTF-8 * tab size: 8 (not used) * indentation:4 * * created on: 2003jul15 * created by: Markus W. Scherer * * Test file for data-driven conversion tests. */ #include "unicode/utypes.h" #if !UCONFIG_NO_LEGACY_CONVERSION /* * Note: Turning off all of convtest.cpp if !UCONFIG_NO_LEGACY_CONVERSION * is slightly unnecessary - it removes tests for Unicode charsets * like UTF-8 that should work. * However, there is no easy way for the test to detect whether a test case * is for a Unicode charset, so it would be difficult to only exclude those. * Also, regular testing of ICU is done with all modules on, therefore * not testing conversion for a custom configuration like this should be ok. */ #include "unicode/ucnv.h" #include "unicode/unistr.h" #include "unicode/parsepos.h" #include "unicode/uniset.h" #include "unicode/ustring.h" #include "unicode/ures.h" #include "unicode/utf16.h" #include "convtest.h" #include "cmemory.h" #include "unicode/tstdtmod.h" #include #include enum { // characters used in test data for callbacks SUB_CB='?', SKIP_CB='0', STOP_CB='.', ESC_CB='&' }; ConversionTest::ConversionTest() { UErrorCode errorCode=U_ZERO_ERROR; utf8Cnv=ucnv_open("UTF-8", &errorCode); ucnv_setToUCallBack(utf8Cnv, UCNV_TO_U_CALLBACK_STOP, NULL, NULL, NULL, &errorCode); if(U_FAILURE(errorCode)) { errln("unable to open UTF-8 converter"); } } ConversionTest::~ConversionTest() { ucnv_close(utf8Cnv); } void ConversionTest::runIndexedTest(int32_t index, UBool exec, const char *&name, char * /*par*/) { if (exec) logln("TestSuite ConversionTest: "); TESTCASE_AUTO_BEGIN; #if !UCONFIG_NO_FILE_IO TESTCASE_AUTO(TestToUnicode); TESTCASE_AUTO(TestFromUnicode); TESTCASE_AUTO(TestGetUnicodeSet); #endif TESTCASE_AUTO(TestGetUnicodeSet2); TESTCASE_AUTO(TestDefaultIgnorableCallback); TESTCASE_AUTO(TestUTF8ToUTF8Overflow); TESTCASE_AUTO(TestUTF8ToUTF8Streaming); TESTCASE_AUTO_END; } // test data interface ----------------------------------------------------- *** void ConversionTest::TestToUnicode() { ConversionCase cc; char charset[100], cbopt[4]; const char *option; UnicodeString s, unicode; int32_t offsetsLength; UConverterToUCallback callback; TestDataModule *dataModule; TestData *testData; const DataMap *testCase; UErrorCode errorCode; int32_t i; errorCode=U_ZERO_ERROR; dataModule=TestDataModule::getTestDataModule("conversion", *this, errorCode); if(U_SUCCESS(errorCode)) { testData=dataModule->createTestData("toUnicode", errorCode); if(U_SUCCESS(errorCode)) { for(i=0; testData->nextCase(testCase, errorCode); ++i) { if(U_FAILURE(errorCode)) { errln("error retrieving conversion/toUnicode test case %d - %s", i, u_errorName(errorCode)); errorCode=U_ZERO_ERROR; continue; } cc.caseNr=i; s=testCase->getString("charset", errorCode); s.extract(0, 0x7fffffff, charset, sizeof(charset), ""); cc.charset=charset; // BEGIN android-added // To save space, Android does not build full ISO-2022-CN tables. // We skip the TestGetKeywordValuesForLocale for counting available collations. if (strlen(charset) >= 8 && strncmp(charset+4, "2022-CN", 4) == 0) { continue; } // END android-added cc.bytes=testCase->getBinary(cc.bytesLength, "bytes", errorCode); unicode=testCase->getString("unicode", errorCode); cc.unicode=unicode.getBuffer(); cc.unicodeLength=unicode.length(); offsetsLength=0; cc.offsets=testCase->getIntVector(offsetsLength, "offsets", errorCode); if(offsetsLength==0) { cc.offsets=NULL; } else if(offsetsLength!=unicode.length()) { errln("toUnicode[%d] unicode[%d] and offsets[%d] must have the same length", i, unicode.length(), offsetsLength); errorCode=U_ILLEGAL_ARGUMENT_ERROR; } cc.finalFlush= 0!=testCase->getInt28("flush", errorCode); cc.fallbacks= 0!=testCase->getInt28("fallbacks", errorCode); s=testCase->getString("errorCode", errorCode); if(s==UNICODE_STRING("invalid", 7)) { cc.outErrorCode=U_INVALID_CHAR_FOUND; } else if(s==UNICODE_STRING("illegal", 7)) { cc.outErrorCode=U_ILLEGAL_CHAR_FOUND; } else if(s==UNICODE_STRING("truncated", 9)) { cc.outErrorCode=U_TRUNCATED_CHAR_FOUND; } else if(s==UNICODE_STRING("illesc", 6)) { cc.outErrorCode=U_ILLEGAL_ESCAPE_SEQUENCE; } else if(s==UNICODE_STRING("unsuppesc", 9)) { cc.outErrorCode=U_UNSUPPORTED_ESCAPE_SEQUENCE; } else { cc.outErrorCode=U_ZERO_ERROR; } s=testCase->getString("callback", errorCode); s.extract(0, 0x7fffffff, cbopt, sizeof(cbopt), ""); cc.cbopt=cbopt; switch(cbopt[0]) { case SUB_CB: callback=UCNV_TO_U_CALLBACK_SUBSTITUTE; break; case SKIP_CB: callback=UCNV_TO_U_CALLBACK_SKIP; break; case STOP_CB: callback=UCNV_TO_U_CALLBACK_STOP; break; case ESC_CB: callback=UCNV_TO_U_CALLBACK_ESCAPE; break; default: callback=NULL; break; } option=callback==NULL ? cbopt : cbopt+1; if(*option==0) { option=NULL; } cc.invalidChars=testCase->getBinary(cc.invalidLength, "invalidChars", errorCode); if(U_FAILURE(errorCode)) { errln("error parsing conversion/toUnicode test case %d - %s", i, u_errorName(errorCode)); errorCode=U_ZERO_ERROR; } else { logln("TestToUnicode[%d] %s", i, charset); ToUnicodeCase(cc, callback, option); } } delete testData; } delete dataModule; } else { dataerrln("Could not load test conversion data"); } } void ConversionTest::TestFromUnicode() { ConversionCase cc; char charset[100], cbopt[4]; const char *option; UnicodeString s, unicode, invalidUChars; int32_t offsetsLength, index; UConverterFromUCallback callback; TestDataModule *dataModule; TestData *testData; const DataMap *testCase; const UChar *p; UErrorCode errorCode; int32_t i, length; errorCode=U_ZERO_ERROR; dataModule=TestDataModule::getTestDataModule("conversion", *this, errorCode); if(U_SUCCESS(errorCode)) { testData=dataModule->createTestData("fromUnicode", errorCode); if(U_SUCCESS(errorCode)) { for(i=0; testData->nextCase(testCase, errorCode); ++i) { if(U_FAILURE(errorCode)) { errln("error retrieving conversion/fromUnicode test case %d - %s", i, u_errorName(errorCode)); errorCode=U_ZERO_ERROR; continue; } cc.caseNr=i; s=testCase->getString("charset", errorCode); s.extract(0, 0x7fffffff, charset, sizeof(charset), ""); cc.charset=charset; // BEGIN android-added // To save space, Android does not build full ISO-2022-CN tables. // We skip the TestGetKeywordValuesForLocale for counting available collations. if (strlen(charset) >= 8 && strncmp(charset+4, "2022-CN", 4) == 0) { continue; } // END android-added unicode=testCase->getString("unicode", errorCode); cc.unicode=unicode.getBuffer(); cc.unicodeLength=unicode.length(); cc.bytes=testCase->getBinary(cc.bytesLength, "bytes", errorCode); offsetsLength=0; cc.offsets=testCase->getIntVector(offsetsLength, "offsets", errorCode); if(offsetsLength==0) { cc.offsets=NULL; } else if(offsetsLength!=cc.bytesLength) { errln("fromUnicode[%d] bytes[%d] and offsets[%d] must have the same length", i, cc.bytesLength, offsetsLength); errorCode=U_ILLEGAL_ARGUMENT_ERROR; } cc.finalFlush= 0!=testCase->getInt28("flush", errorCode); cc.fallbacks= 0!=testCase->getInt28("fallbacks", errorCode); s=testCase->getString("errorCode", errorCode); if(s==UNICODE_STRING("invalid", 7)) { cc.outErrorCode=U_INVALID_CHAR_FOUND; } else if(s==UNICODE_STRING("illegal", 7)) { cc.outErrorCode=U_ILLEGAL_CHAR_FOUND; } else if(s==UNICODE_STRING("truncated", 9)) { cc.outErrorCode=U_TRUNCATED_CHAR_FOUND; } else { cc.outErrorCode=U_ZERO_ERROR; } s=testCase->getString("callback", errorCode); cc.setSub=0; // default: no subchar if((index=s.indexOf((UChar)0))>0) { // read NUL-separated subchar first, if any // copy the subchar from Latin-1 characters // start after the NUL p=s.getTerminatedBuffer(); length=index+1; p+=length; length=s.length()-length; if(length<=0 || length>=(int32_t)sizeof(cc.subchar)) { errorCode=U_ILLEGAL_ARGUMENT_ERROR; } else { int32_t j; for(j=0; j0) /* '=' */ { // read a substitution string, separated by an equal sign p=s.getBuffer()+index+1; length=s.length()-(index+1); if(length<0 || length>=UPRV_LENGTHOF(cc.subString)) { errorCode=U_ILLEGAL_ARGUMENT_ERROR; } else { u_memcpy(cc.subString, p, length); // NUL-terminate the subString cc.subString[length]=0; cc.setSub=-1; } // remove the equal sign and subString from s s.truncate(index); } s.extract(0, 0x7fffffff, cbopt, sizeof(cbopt), ""); cc.cbopt=cbopt; switch(cbopt[0]) { case SUB_CB: callback=UCNV_FROM_U_CALLBACK_SUBSTITUTE; break; case SKIP_CB: callback=UCNV_FROM_U_CALLBACK_SKIP; break; case STOP_CB: callback=UCNV_FROM_U_CALLBACK_STOP; break; case ESC_CB: callback=UCNV_FROM_U_CALLBACK_ESCAPE; break; default: callback=NULL; break; } option=callback==NULL ? cbopt : cbopt+1; if(*option==0) { option=NULL; } invalidUChars=testCase->getString("invalidUChars", errorCode); cc.invalidUChars=invalidUChars.getBuffer(); cc.invalidLength=invalidUChars.length(); if(U_FAILURE(errorCode)) { errln("error parsing conversion/fromUnicode test case %d - %s", i, u_errorName(errorCode)); errorCode=U_ZERO_ERROR; } else { logln("TestFromUnicode[%d] %s", i, charset); FromUnicodeCase(cc, callback, option); } } delete testData; } delete dataModule; } else { dataerrln("Could not load test conversion data"); } } static const UChar ellipsis[]={ 0x2e, 0x2e, 0x2e }; void ConversionTest::TestGetUnicodeSet() { char charset[100]; UnicodeString s, map, mapnot; int32_t which; ParsePosition pos; UnicodeSet cnvSet, mapSet, mapnotSet, diffSet; UnicodeSet *cnvSetPtr = &cnvSet; LocalUConverterPointer cnv; TestDataModule *dataModule; TestData *testData; const DataMap *testCase; UErrorCode errorCode; int32_t i; errorCode=U_ZERO_ERROR; dataModule=TestDataModule::getTestDataModule("conversion", *this, errorCode); if(U_SUCCESS(errorCode)) { testData=dataModule->createTestData("getUnicodeSet", errorCode); if(U_SUCCESS(errorCode)) { for(i=0; testData->nextCase(testCase, errorCode); ++i) { if(U_FAILURE(errorCode)) { errln("error retrieving conversion/getUnicodeSet test case %d - %s", i, u_errorName(errorCode)); errorCode=U_ZERO_ERROR; continue; } s=testCase->getString("charset", errorCode); s.extract(0, 0x7fffffff, charset, sizeof(charset), ""); // BEGIN android-added // To save space, Android does not build full ISO-2022-CN tables. // We skip the TestGetKeywordValuesForLocale for counting available collations. if (strlen(charset) >= 8 && strncmp(charset+4, "2022-CN", 4) == 0) { continue; } // END android-added map=testCase->getString("map", errorCode); mapnot=testCase->getString("mapnot", errorCode); which=testCase->getInt28("which", errorCode); if(U_FAILURE(errorCode)) { errln("error parsing conversion/getUnicodeSet test case %d - %s", i, u_errorName(errorCode)); errorCode=U_ZERO_ERROR; continue; } // test this test case mapSet.clear(); mapnotSet.clear(); pos.setIndex(0); mapSet.applyPattern(map, pos, 0, NULL, errorCode); if(U_FAILURE(errorCode) || pos.getIndex()!=map.length()) { errln("error creating the map set for conversion/getUnicodeSet test case %d - %s\n" " error index %d index %d U+%04x", i, u_errorName(errorCode), pos.getErrorIndex(), pos.getIndex(), map.char32At(pos.getIndex())); errorCode=U_ZERO_ERROR; continue; } pos.setIndex(0); mapnotSet.applyPattern(mapnot, pos, 0, NULL, errorCode); if(U_FAILURE(errorCode) || pos.getIndex()!=mapnot.length()) { errln("error creating the mapnot set for conversion/getUnicodeSet test case %d - %s\n" " error index %d index %d U+%04x", i, u_errorName(errorCode), pos.getErrorIndex(), pos.getIndex(), mapnot.char32At(pos.getIndex())); errorCode=U_ZERO_ERROR; continue; } logln("TestGetUnicodeSet[%d] %s", i, charset); cnv.adoptInstead(cnv_open(charset, errorCode)); if(U_FAILURE(errorCode)) { errcheckln(errorCode, "error opening \"%s\" for conversion/getUnicodeSet test case %d - %s", charset, i, u_errorName(errorCode)); errorCode=U_ZERO_ERROR; continue; } ucnv_getUnicodeSet(cnv.getAlias(), cnvSetPtr->toUSet(), (UConverterUnicodeSet)which, &errorCode); if(U_FAILURE(errorCode)) { errln("error in ucnv_getUnicodeSet(\"%s\") for conversion/getUnicodeSet test case %d - %s", charset, i, u_errorName(errorCode)); errorCode=U_ZERO_ERROR; continue; } // are there items that must be in cnvSet but are not? (diffSet=mapSet).removeAll(cnvSet); if(!diffSet.isEmpty()) { diffSet.toPattern(s, TRUE); if(s.length()>100) { s.replace(100, 0x7fffffff, ellipsis, UPRV_LENGTHOF(ellipsis)); } errln("error: ucnv_getUnicodeSet(\"%s\") is missing items - conversion/getUnicodeSet test case %d", charset, i); errln(s); } // are there items that must not be in cnvSet but are? (diffSet=mapnotSet).retainAll(cnvSet); if(!diffSet.isEmpty()) { diffSet.toPattern(s, TRUE); if(s.length()>100) { s.replace(100, 0x7fffffff, ellipsis, UPRV_LENGTHOF(ellipsis)); } errln("error: ucnv_getUnicodeSet(\"%s\") contains unexpected items - conversion/getUnicodeSet test case %d", charset, i); errln(s); } } delete testData; } delete dataModule; } else { dataerrln("Could not load test conversion data"); } } U_CDECL_BEGIN static void U_CALLCONV getUnicodeSetCallback(const void *context, UConverterFromUnicodeArgs * /*fromUArgs*/, const UChar* /*codeUnits*/, int32_t /*length*/, UChar32 codePoint, UConverterCallbackReason reason, UErrorCode *pErrorCode) { if(reason<=UCNV_IRREGULAR) { ((UnicodeSet *)context)->remove(codePoint); // the converter cannot convert this code point *pErrorCode=U_ZERO_ERROR; // skip } // else ignore the reset, close and clone calls. } U_CDECL_END // Compare ucnv_getUnicodeSet() with the set of characters that can be converted. void ConversionTest::TestGetUnicodeSet2() { // Build a string with all code points. UChar32 cpLimit; int32_t s0Length; if(quick) { cpLimit=s0Length=0x10000; // BMP only } else { cpLimit=0x110000; s0Length=0x10000+0x200000; // BMP + surrogate pairs } UChar *s0=new UChar[s0Length]; if(s0==NULL) { return; } UChar *s=s0; UChar32 c; UChar c2; // low BMP for(c=0; c<=0xd7ff; ++c) { *s++=(UChar)c; } // trail surrogates for(c=0xdc00; c<=0xdfff; ++c) { *s++=(UChar)c; } // lead surrogates // (after trails so that there is not even one surrogate pair in between) for(c=0xd800; c<=0xdbff; ++c) { *s++=(UChar)c; } // high BMP for(c=0xe000; c<=0xffff; ++c) { *s++=(UChar)c; } // supplementary code points = surrogate pairs if(cpLimit==0x110000) { for(c=0xd800; c<=0xdbff; ++c) { for(c2=0xdc00; c2<=0xdfff; ++c2) { *s++=(UChar)c; *s++=c2; } } } static const char *const cnvNames[]={ "UTF-8", "UTF-7", "UTF-16", "US-ASCII", "ISO-8859-1", "windows-1252", "Shift-JIS", "ibm-1390", // EBCDIC_STATEFUL table "ibm-16684", // DBCS-only extension table based on EBCDIC_STATEFUL table "HZ", "ISO-2022-JP", "JIS7", "ISO-2022-CN", "ISO-2022-CN-EXT", "LMBCS" }; LocalUConverterPointer cnv; char buffer[1024]; int32_t i; for(i=0; i100) { out.replace(100, 0x7fffffff, ellipsis, UPRV_LENGTHOF(ellipsis)); } errln("error: ucnv_getUnicodeSet(\"%s\") is missing items - which set: %d", cnvNames[i], which); errln(out); } // are there items that must not be in the set but are? (diffSet=set).removeAll(expected); if(!diffSet.isEmpty()) { diffSet.toPattern(out, TRUE); if(out.length()>100) { out.replace(100, 0x7fffffff, ellipsis, UPRV_LENGTHOF(ellipsis)); } errln("error: ucnv_getUnicodeSet(\"%s\") contains unexpected items - which set: %d", cnvNames[i], which); errln(out); } } } } delete [] s0; } // Test all codepoints which has the default ignorable Unicode property are ignored if they have no mapping // If there are any failures, the hard coded list (IS_DEFAULT_IGNORABLE_CODE_POINT) in ucnv_err.c should be updated void ConversionTest::TestDefaultIgnorableCallback() { UErrorCode status = U_ZERO_ERROR; const char *cnv_name = "euc-jp-2007"; const char *pattern_ignorable = "[:Default_Ignorable_Code_Point:]"; const char *pattern_not_ignorable = "[:^Default_Ignorable_Code_Point:]"; LocalPointer set_ignorable(new UnicodeSet(pattern_ignorable, status)); if (U_FAILURE(status)) { dataerrln("Unable to create Unicodeset: %s - %s\n", pattern_ignorable, u_errorName(status)); return; } LocalPointer set_not_ignorable(new UnicodeSet(pattern_not_ignorable, status)); if (U_FAILURE(status)) { dataerrln("Unable to create Unicodeset: %s - %s\n", pattern_not_ignorable, u_errorName(status)); return; } LocalUConverterPointer cnv(cnv_open(cnv_name, status)); if (U_FAILURE(status)) { dataerrln("Unable to open converter: %s - %s\n", cnv_name, u_errorName(status)); return; } // set callback for the converter ucnv_setFromUCallBack(cnv.getAlias(), UCNV_FROM_U_CALLBACK_SUBSTITUTE, NULL, NULL, NULL, &status); UChar32 input[1]; char output[10]; int32_t outputLength; // test default ignorables are ignored int size = set_ignorable->size(); for (int i = 0; i < size; i++) { status = U_ZERO_ERROR; outputLength= 0; input[0] = set_ignorable->charAt(i); outputLength = ucnv_fromUChars(cnv.getAlias(), output, 10, UnicodeString::fromUTF32(input, 1).getTerminatedBuffer(), -1, &status); if (U_FAILURE(status) || outputLength != 0) { errln("Ignorable code point: U+%04X not skipped as expected - %s", input[0], u_errorName(status)); } } // test non-ignorables are not ignored size = set_not_ignorable->size(); for (int i = 0; i < size; i++) { status = U_ZERO_ERROR; outputLength= 0; input[0] = set_not_ignorable->charAt(i); if (input[0] == 0) { continue; } outputLength = ucnv_fromUChars(cnv.getAlias(), output, 10, UnicodeString::fromUTF32(input, 1).getTerminatedBuffer(), -1, &status); if (U_FAILURE(status) || outputLength <= 0) { errln("Non-ignorable code point: U+%04X skipped unexpectedly - %s", input[0], u_errorName(status)); } } } void ConversionTest::TestUTF8ToUTF8Overflow() { IcuTestErrorCode errorCode(*this, "TestUTF8ToUTF8Overflow"); LocalUConverterPointer cnv1(ucnv_open("UTF-8", errorCode)); LocalUConverterPointer cnv2(ucnv_open("UTF-8", errorCode)); static const char *text = "aä"; // ä: 2 bytes const char *source = text; const char *sourceLimit = text + strlen(text); char result[20]; char *target = result; const char *targetLimit = result + sizeof(result); UChar buffer16[20]; UChar *pivotSource = buffer16; UChar *pivotTarget = buffer16; const UChar *pivotLimit = buffer16 + UPRV_LENGTHOF(buffer16); int32_t length; // Convert with insufficient target capacity. result[2] = 5; ucnv_convertEx(cnv2.getAlias(), cnv1.getAlias(), &target, result + 2, &source, sourceLimit, buffer16, &pivotSource, &pivotTarget, pivotLimit, FALSE, FALSE, errorCode); assertEquals("overflow", U_BUFFER_OVERFLOW_ERROR, errorCode.reset()); length = (int32_t)(target - result); assertEquals("number of bytes written", 2, length); assertEquals("next byte not clobbered", 5, result[2]); // Convert the rest and flush. ucnv_convertEx(cnv2.getAlias(), cnv1.getAlias(), &target, targetLimit, &source, sourceLimit, buffer16, &pivotSource, &pivotTarget, pivotLimit, FALSE, TRUE, errorCode); assertSuccess("UTF-8->UTF-8", errorCode); length = (int32_t)(target - result); assertEquals("3 bytes", 3, length); if (length == 3) { assertTrue("result same as input", memcmp(text, result, length) == 0); } ucnv_reset(cnv1.getAlias()); ucnv_reset(cnv2.getAlias()); memset(result, 0, sizeof(result)); static const char *text2 = "a🚲"; // U+1F6B2 bicycle: 4 bytes source = text2; sourceLimit = text2 + strlen(text2); target = result; pivotSource = pivotTarget = buffer16; // Convert with insufficient target capacity. result[3] = 5; ucnv_convertEx(cnv2.getAlias(), cnv1.getAlias(), &target, result + 3, &source, sourceLimit, buffer16, &pivotSource, &pivotTarget, pivotLimit, FALSE, FALSE, errorCode); assertEquals("text2 overflow", U_BUFFER_OVERFLOW_ERROR, errorCode.reset()); length = (int32_t)(target - result); assertEquals("text2 number of bytes written", 3, length); assertEquals("text2 next byte not clobbered", 5, result[3]); // Convert the rest and flush. ucnv_convertEx(cnv2.getAlias(), cnv1.getAlias(), &target, targetLimit, &source, sourceLimit, buffer16, &pivotSource, &pivotTarget, pivotLimit, FALSE, TRUE, errorCode); assertSuccess("text2 UTF-8->UTF-8", errorCode); length = (int32_t)(target - result); assertEquals("text2 5 bytes", 5, length); if (length == 5) { assertTrue("text2 result same as input", memcmp(text2, result, length) == 0); } ucnv_reset(cnv1.getAlias()); ucnv_reset(cnv2.getAlias()); memset(result, 0, sizeof(result)); static const char *illFormed = "\xf1\x91\x93\x96\x91\x94"; // U+514D6 + two more trail bytes source = illFormed; sourceLimit = illFormed + strlen(illFormed); target = result; pivotSource = pivotTarget = buffer16; ucnv_setToUCallBack(cnv1.getAlias(), UCNV_TO_U_CALLBACK_STOP, nullptr, nullptr, nullptr, errorCode); // Convert only two bytes and flush (but expect failure). char errorBytes[10]; int8_t errorLength; result[0] = 5; ucnv_convertEx(cnv2.getAlias(), cnv1.getAlias(), &target, targetLimit, &source, source + 2, buffer16, &pivotSource, &pivotTarget, pivotLimit, FALSE, TRUE, errorCode); assertEquals("illFormed truncated", U_TRUNCATED_CHAR_FOUND, errorCode.reset()); length = (int32_t)(target - result); assertEquals("illFormed number of bytes written", 0, length); errorLength = UPRV_LENGTHOF(errorBytes); ucnv_getInvalidChars(cnv1.getAlias(), errorBytes, &errorLength, errorCode); assertEquals("illFormed truncated errorLength", 2, (int32_t)errorLength); if (errorLength == 2) { assertEquals("illFormed truncated errorBytes", 0xf191, ((int32_t)(uint8_t)errorBytes[0] << 8) | (uint8_t)errorBytes[1]); } // Continue conversion starting with a trail byte. ucnv_convertEx(cnv2.getAlias(), cnv1.getAlias(), &target, targetLimit, &source, sourceLimit, buffer16, &pivotSource, &pivotTarget, pivotLimit, FALSE, TRUE, errorCode); assertEquals("illFormed trail byte", U_ILLEGAL_CHAR_FOUND, errorCode.reset()); length = (int32_t)(target - result); assertEquals("illFormed trail byte number of bytes written", 0, length); errorLength = UPRV_LENGTHOF(errorBytes); ucnv_getInvalidChars(cnv1.getAlias(), errorBytes, &errorLength, errorCode); assertEquals("illFormed trail byte errorLength", 1, (int32_t)errorLength); if (errorLength == 1) { assertEquals("illFormed trail byte errorBytes", 0x93, (int32_t)(uint8_t)errorBytes[0]); } } void ConversionTest::TestUTF8ToUTF8Streaming() { IcuTestErrorCode errorCode(*this, "TestUTF8ToUTF8Streaming"); LocalUConverterPointer cnv1(ucnv_open("UTF-8", errorCode)); LocalUConverterPointer cnv2(ucnv_open("UTF-8", errorCode)); // UTF8 encoded cyrillic part of 'Lorem ipsum' static const char* text = "\xd0\xb5\xd1\x82\x20\xd1\x81\xd1\x86\xd0\xb0\xd0\xb5\xd0\xb2\xd0" "\xbe\xd0\xbb\xd0\xb0\x20\xd1\x81\xd0\xb0\xd0\xb4\xd0\xb8\xd0\xbf" "\xd1\x81\xd1\x86\xd0\xb8\xd0\xbd\xd0\xb3\x20\xd0\xb0\xd1\x86\xd1" "\x86\xd0\xbe\xd0\xbc\xd0\xbc\xd0\xbe\xd0\xb4\xd0\xb0\xd1\x80\xd0" "\xb5\x20\xd1\x85\xd0\xb0\xd1\x81"; int32_t chunk1 = 25; // partial lead at the end: 0xd0 int32_t chunk2 = 47; // partial tail at the beginning: 0xb0 char result[128]; int32_t sourceLen = (int32_t)strlen(text); const char* source = text; const char* sourceLimit = text + chunk1; int32_t targetLen = sizeof(result); char* target = result; const char* targetLimit = result + targetLen; UChar buffer16[20]; UChar* pivotSource = buffer16; UChar* pivotTarget = buffer16; const UChar* pivotLimit = buffer16 + UPRV_LENGTHOF(buffer16); int32_t length; ucnv_convertEx(cnv2.getAlias(), cnv1.getAlias(), &target, result + targetLen, &source, sourceLimit, buffer16, &pivotSource, &pivotTarget, pivotLimit, FALSE, FALSE, errorCode); length = (int32_t)(target - result); targetLen -= length; assertEquals("First chunk -1 doesn't match converted length", chunk1 - 1, length); source = text + chunk1; sourceLimit = source + chunk2; // Convert the rest and flush. ucnv_convertEx(cnv2.getAlias(), cnv1.getAlias(), &target, targetLimit, &source, sourceLimit, buffer16, &pivotSource, &pivotTarget, pivotLimit, FALSE, TRUE, errorCode); length = (int32_t)(target - result - length); targetLen -= length; assertEquals("Second chunk + 2 doesn't match converted length", chunk2 + 1, length); assertEquals("Full text length match", sourceLen, sizeof(result) - targetLen); assertSuccess("UTF-8->UTF-8", errorCode); } // open testdata or ICU data converter ------------------------------------- *** UConverter * ConversionTest::cnv_open(const char *name, UErrorCode &errorCode) { if(name!=NULL && *name=='+') { // Converter names that start with '+' are ignored in ICU4J tests. ++name; } if(name!=NULL && *name=='*') { /* loadTestData(): set the data directory */ return ucnv_openPackage(loadTestData(errorCode), name+1, &errorCode); } else { return ucnv_open(name, &errorCode); } } // output helpers ---------------------------------------------------------- *** static inline char hexDigit(uint8_t digit) { return digit<=9 ? (char)('0'+digit) : (char)('a'-10+digit); } static char * printBytes(const uint8_t *bytes, int32_t length, char *out) { uint8_t b; if(length>0) { b=*bytes++; --length; *out++=hexDigit((uint8_t)(b>>4)); *out++=hexDigit((uint8_t)(b&0xf)); } while(length>0) { b=*bytes++; --length; *out++=' '; *out++=hexDigit((uint8_t)(b>>4)); *out++=hexDigit((uint8_t)(b&0xf)); } *out++=0; return out; } static char * printUnicode(const UChar *unicode, int32_t length, char *out) { UChar32 c; int32_t i; for(i=0; i0) { *out++=' '; } U16_NEXT(unicode, i, length, c); // write 4..6 digits if(c>=0x100000) { *out++='1'; } if(c>=0x10000) { *out++=hexDigit((uint8_t)((c>>16)&0xf)); } *out++=hexDigit((uint8_t)((c>>12)&0xf)); *out++=hexDigit((uint8_t)((c>>8)&0xf)); *out++=hexDigit((uint8_t)((c>>4)&0xf)); *out++=hexDigit((uint8_t)(c&0xf)); } *out++=0; return out; } static char * printOffsets(const int32_t *offsets, int32_t length, char *out) { int32_t i, o, d; if(offsets==NULL) { length=0; } for(i=0; i0) { *out++=' '; } o=offsets[i]; // print all offsets with 2 characters each (-x, -9..99, xx) if(o<-9) { *out++='-'; *out++='x'; } else if(o<0) { *out++='-'; *out++=(char)('0'-o); } else if(o<=99) { *out++=(d=o/10)==0 ? ' ' : (char)('0'+d); *out++=(char)('0'+o%10); } else /* o>99 */ { *out++='x'; *out++='x'; } } *out++=0; return out; } // toUnicode test worker functions ----------------------------------------- *** static int32_t stepToUnicode(ConversionCase &cc, UConverter *cnv, UChar *result, int32_t resultCapacity, int32_t *resultOffsets, /* also resultCapacity */ int32_t step, UErrorCode *pErrorCode) { const char *source, *sourceLimit, *bytesLimit; UChar *target, *targetLimit, *resultLimit; UBool flush; source=(const char *)cc.bytes; target=result; bytesLimit=source+cc.bytesLength; resultLimit=result+resultCapacity; if(step>=0) { // call ucnv_toUnicode() with in/out buffers no larger than (step) at a time // move only one buffer (in vs. out) at a time to be extra mean // step==0 performs bulk conversion and generates offsets // initialize the partial limits for the loop if(step==0) { // use the entire buffers sourceLimit=bytesLimit; targetLimit=resultLimit; flush=cc.finalFlush; } else { // start with empty partial buffers sourceLimit=source; targetLimit=target; flush=FALSE; // output offsets only for bulk conversion resultOffsets=NULL; } for(;;) { // resetting the opposite conversion direction must not affect this one ucnv_resetFromUnicode(cnv); // convert ucnv_toUnicode(cnv, &target, targetLimit, &source, sourceLimit, resultOffsets, flush, pErrorCode); // check pointers and errors if(source>sourceLimit || target>targetLimit) { *pErrorCode=U_INTERNAL_PROGRAM_ERROR; break; } else if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR) { if(target!=targetLimit) { // buffer overflow must only be set when the target is filled *pErrorCode=U_INTERNAL_PROGRAM_ERROR; break; } else if(targetLimit==resultLimit) { // not just a partial overflow break; } // the partial target is filled, set a new limit, reset the error and continue targetLimit=(resultLimit-target)>=step ? target+step : resultLimit; *pErrorCode=U_ZERO_ERROR; } else if(U_FAILURE(*pErrorCode)) { // some other error occurred, done break; } else { if(source!=sourceLimit) { // when no error occurs, then the input must be consumed *pErrorCode=U_INTERNAL_PROGRAM_ERROR; break; } if(sourceLimit==bytesLimit) { // we are done break; } // the partial conversion succeeded, set a new limit and continue sourceLimit=(bytesLimit-source)>=step ? source+step : bytesLimit; flush=(UBool)(cc.finalFlush && sourceLimit==bytesLimit); } } } else /* step<0 */ { /* * step==-1: call only ucnv_getNextUChar() * otherwise alternate between ucnv_toUnicode() and ucnv_getNextUChar() * if step==-2 or -3, then give ucnv_toUnicode() the whole remaining input, * else give it at most (-step-2)/2 bytes */ UChar32 c; // end the loop by getting an index out of bounds error for(;;) { // resetting the opposite conversion direction must not affect this one ucnv_resetFromUnicode(cnv); // convert if((step&1)!=0 /* odd: -1, -3, -5, ... */) { sourceLimit=source; // use sourceLimit not as a real limit // but to remember the pre-getNextUChar source pointer c=ucnv_getNextUChar(cnv, &source, bytesLimit, pErrorCode); // check pointers and errors if(*pErrorCode==U_INDEX_OUTOFBOUNDS_ERROR) { if(source!=bytesLimit) { *pErrorCode=U_INTERNAL_PROGRAM_ERROR; } else { *pErrorCode=U_ZERO_ERROR; } break; } else if(U_FAILURE(*pErrorCode)) { break; } // source may not move if c is from previous overflow if(target==resultLimit) { *pErrorCode=U_BUFFER_OVERFLOW_ERROR; break; } if(c<=0xffff) { *target++=(UChar)c; } else { *target++=U16_LEAD(c); if(target==resultLimit) { *pErrorCode=U_BUFFER_OVERFLOW_ERROR; break; } *target++=U16_TRAIL(c); } // alternate between -n-1 and -n but leave -1 alone if(step<-1) { ++step; } } else /* step is even */ { // allow only one UChar output targetLimit=targetbytesLimit) { sourceLimit=bytesLimit; } } ucnv_toUnicode(cnv, &target, targetLimit, &source, sourceLimit, NULL, (UBool)(sourceLimit==bytesLimit), pErrorCode); // check pointers and errors if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR) { if(target!=targetLimit) { // buffer overflow must only be set when the target is filled *pErrorCode=U_INTERNAL_PROGRAM_ERROR; break; } else if(targetLimit==resultLimit) { // not just a partial overflow break; } // the partial target is filled, set a new limit and continue *pErrorCode=U_ZERO_ERROR; } else if(U_FAILURE(*pErrorCode)) { // some other error occurred, done break; } else { if(source!=sourceLimit) { // when no error occurs, then the input must be consumed *pErrorCode=U_INTERNAL_PROGRAM_ERROR; break; } // we are done (flush==TRUE) but we continue, to get the index out of bounds error above } --step; } } } return (int32_t)(target-result); } UBool ConversionTest::ToUnicodeCase(ConversionCase &cc, UConverterToUCallback callback, const char *option) { // open the converter IcuTestErrorCode errorCode(*this, "ToUnicodeCase"); LocalUConverterPointer cnv(cnv_open(cc.charset, errorCode)); // with no data, the above crashes with "pointer being freed was not allocated" for charset "x11-compound-text", see #13078 if(errorCode.isFailure()) { errcheckln(errorCode, "toUnicode[%d](%s cb=\"%s\" fb=%d flush=%d) ucnv_open() failed - %s", cc.caseNr, cc.charset, cc.cbopt, cc.fallbacks, cc.finalFlush, errorCode.errorName()); errorCode.reset(); return FALSE; } // set the callback if(callback!=NULL) { ucnv_setToUCallBack(cnv.getAlias(), callback, option, NULL, NULL, errorCode); if(U_FAILURE(errorCode)) { errln("toUnicode[%d](%s cb=\"%s\" fb=%d flush=%d) ucnv_setToUCallBack() failed - %s", cc.caseNr, cc.charset, cc.cbopt, cc.fallbacks, cc.finalFlush, u_errorName(errorCode)); return FALSE; } } int32_t resultOffsets[256]; UChar result[256]; int32_t resultLength; UBool ok; static const struct { int32_t step; const char *name; } steps[]={ { 0, "bulk" }, // must be first for offsets to be checked { 1, "step=1" }, { 3, "step=3" }, { 7, "step=7" }, { -1, "getNext" }, { -2, "toU(bulk)+getNext" }, { -3, "getNext+toU(bulk)" }, { -4, "toU(1)+getNext" }, { -5, "getNext+toU(1)" }, { -12, "toU(5)+getNext" }, { -13, "getNext+toU(5)" }, }; int32_t i, step; ok=TRUE; for(i=0; i(int32_t)sizeof(buffer)) { errln("toUnicode[%d](%s cb=\"%s\" fb=%d flush=%d %s) fatal error: checkToUnicode() test output buffer overflow writing %d chars\n", cc.caseNr, cc.charset, cc.cbopt, cc.fallbacks, cc.finalFlush, name, (int)(s-buffer)); exit(1); } errln("toUnicode[%d](%s cb=\"%s\" fb=%d flush=%d %s) failed: %s\n" " bytes <%s>[%d]\n" " expected <%s>[%d]\n" " result <%s>[%d]\n" " offsets <%s>\n" " result offsets <%s>\n" " error code expected %s got %s\n" " invalidChars expected <%s> got <%s>\n", cc.caseNr, cc.charset, cc.cbopt, cc.fallbacks, cc.finalFlush, name, msg, bytesString, cc.bytesLength, unicodeString, cc.unicodeLength, resultString, resultLength, offsetsString, resultOffsetsString, u_errorName(cc.outErrorCode), u_errorName(resultErrorCode), invalidCharsString, resultInvalidCharsString); return FALSE; } } // fromUnicode test worker functions --------------------------------------- *** static int32_t stepFromUTF8(ConversionCase &cc, UConverter *utf8Cnv, UConverter *cnv, char *result, int32_t resultCapacity, int32_t step, UErrorCode *pErrorCode) { const char *source, *sourceLimit, *utf8Limit; UChar pivotBuffer[32]; UChar *pivotSource, *pivotTarget, *pivotLimit; char *target, *targetLimit, *resultLimit; UBool flush; source=cc.utf8; pivotSource=pivotTarget=pivotBuffer; target=result; utf8Limit=source+cc.utf8Length; resultLimit=result+resultCapacity; // call ucnv_convertEx() with in/out buffers no larger than (step) at a time // move only one buffer (in vs. out) at a time to be extra mean // step==0 performs bulk conversion // initialize the partial limits for the loop if(step==0) { // use the entire buffers sourceLimit=utf8Limit; targetLimit=resultLimit; flush=cc.finalFlush; pivotLimit=pivotBuffer+UPRV_LENGTHOF(pivotBuffer); } else { // start with empty partial buffers sourceLimit=source; targetLimit=target; flush=FALSE; // empty pivot is not allowed, make it of length step pivotLimit=pivotBuffer+step; } for(;;) { // resetting the opposite conversion direction must not affect this one ucnv_resetFromUnicode(utf8Cnv); ucnv_resetToUnicode(cnv); // convert ucnv_convertEx(cnv, utf8Cnv, &target, targetLimit, &source, sourceLimit, pivotBuffer, &pivotSource, &pivotTarget, pivotLimit, FALSE, flush, pErrorCode); // check pointers and errors if(source>sourceLimit || target>targetLimit) { *pErrorCode=U_INTERNAL_PROGRAM_ERROR; break; } else if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR) { if(target!=targetLimit) { // buffer overflow must only be set when the target is filled *pErrorCode=U_INTERNAL_PROGRAM_ERROR; break; } else if(targetLimit==resultLimit) { // not just a partial overflow break; } // the partial target is filled, set a new limit, reset the error and continue targetLimit=(resultLimit-target)>=step ? target+step : resultLimit; *pErrorCode=U_ZERO_ERROR; } else if(U_FAILURE(*pErrorCode)) { if(pivotSource==pivotBuffer) { // toUnicode error, should not occur // toUnicode errors are tested in cintltst TestConvertExFromUTF8() break; } else { // fromUnicode error // some other error occurred, done break; } } else { if(source!=sourceLimit) { // when no error occurs, then the input must be consumed *pErrorCode=U_INTERNAL_PROGRAM_ERROR; break; } if(sourceLimit==utf8Limit) { // we are done if(*pErrorCode==U_STRING_NOT_TERMINATED_WARNING) { // ucnv_convertEx() warns about not terminating the output // but ucnv_fromUnicode() does not and so // checkFromUnicode() does not expect it *pErrorCode=U_ZERO_ERROR; } break; } // the partial conversion succeeded, set a new limit and continue sourceLimit=(utf8Limit-source)>=step ? source+step : utf8Limit; flush=(UBool)(cc.finalFlush && sourceLimit==utf8Limit); } } return (int32_t)(target-result); } static int32_t stepFromUnicode(ConversionCase &cc, UConverter *cnv, char *result, int32_t resultCapacity, int32_t *resultOffsets, /* also resultCapacity */ int32_t step, UErrorCode *pErrorCode) { const UChar *source, *sourceLimit, *unicodeLimit; char *target, *targetLimit, *resultLimit; UBool flush; source=cc.unicode; target=result; unicodeLimit=source+cc.unicodeLength; resultLimit=result+resultCapacity; // call ucnv_fromUnicode() with in/out buffers no larger than (step) at a time // move only one buffer (in vs. out) at a time to be extra mean // step==0 performs bulk conversion and generates offsets // initialize the partial limits for the loop if(step==0) { // use the entire buffers sourceLimit=unicodeLimit; targetLimit=resultLimit; flush=cc.finalFlush; } else { // start with empty partial buffers sourceLimit=source; targetLimit=target; flush=FALSE; // output offsets only for bulk conversion resultOffsets=NULL; } for(;;) { // resetting the opposite conversion direction must not affect this one ucnv_resetToUnicode(cnv); // convert ucnv_fromUnicode(cnv, &target, targetLimit, &source, sourceLimit, resultOffsets, flush, pErrorCode); // check pointers and errors if(source>sourceLimit || target>targetLimit) { *pErrorCode=U_INTERNAL_PROGRAM_ERROR; break; } else if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR) { if(target!=targetLimit) { // buffer overflow must only be set when the target is filled *pErrorCode=U_INTERNAL_PROGRAM_ERROR; break; } else if(targetLimit==resultLimit) { // not just a partial overflow break; } // the partial target is filled, set a new limit, reset the error and continue targetLimit=(resultLimit-target)>=step ? target+step : resultLimit; *pErrorCode=U_ZERO_ERROR; } else if(U_FAILURE(*pErrorCode)) { // some other error occurred, done break; } else { if(source!=sourceLimit) { // when no error occurs, then the input must be consumed *pErrorCode=U_INTERNAL_PROGRAM_ERROR; break; } if(sourceLimit==unicodeLimit) { // we are done break; } // the partial conversion succeeded, set a new limit and continue sourceLimit=(unicodeLimit-source)>=step ? source+step : unicodeLimit; flush=(UBool)(cc.finalFlush && sourceLimit==unicodeLimit); } } return (int32_t)(target-result); } UBool ConversionTest::FromUnicodeCase(ConversionCase &cc, UConverterFromUCallback callback, const char *option) { UConverter *cnv; UErrorCode errorCode; // open the converter errorCode=U_ZERO_ERROR; cnv=cnv_open(cc.charset, errorCode); if(U_FAILURE(errorCode)) { errcheckln(errorCode, "fromUnicode[%d](%s cb=\"%s\" fb=%d flush=%d) ucnv_open() failed - %s", cc.caseNr, cc.charset, cc.cbopt, cc.fallbacks, cc.finalFlush, u_errorName(errorCode)); return FALSE; } ucnv_resetToUnicode(utf8Cnv); // set the callback if(callback!=NULL) { ucnv_setFromUCallBack(cnv, callback, option, NULL, NULL, &errorCode); if(U_FAILURE(errorCode)) { errln("fromUnicode[%d](%s cb=\"%s\" fb=%d flush=%d) ucnv_setFromUCallBack() failed - %s", cc.caseNr, cc.charset, cc.cbopt, cc.fallbacks, cc.finalFlush, u_errorName(errorCode)); ucnv_close(cnv); return FALSE; } } // set the fallbacks flag // TODO change with Jitterbug 2401, then add a similar call for toUnicode too ucnv_setFallback(cnv, cc.fallbacks); // set the subchar int32_t length; if(cc.setSub>0) { length=(int32_t)strlen(cc.subchar); ucnv_setSubstChars(cnv, cc.subchar, (int8_t)length, &errorCode); if(U_FAILURE(errorCode)) { errln("fromUnicode[%d](%s cb=\"%s\" fb=%d flush=%d) ucnv_setSubstChars() failed - %s", cc.caseNr, cc.charset, cc.cbopt, cc.fallbacks, cc.finalFlush, u_errorName(errorCode)); ucnv_close(cnv); return FALSE; } } else if(cc.setSub<0) { ucnv_setSubstString(cnv, cc.subString, -1, &errorCode); if(U_FAILURE(errorCode)) { errln("fromUnicode[%d](%s cb=\"%s\" fb=%d flush=%d) ucnv_setSubstString() failed - %s", cc.caseNr, cc.charset, cc.cbopt, cc.fallbacks, cc.finalFlush, u_errorName(errorCode)); ucnv_close(cnv); return FALSE; } } // convert unicode to utf8 char utf8[256]; cc.utf8=utf8; u_strToUTF8(utf8, UPRV_LENGTHOF(utf8), &cc.utf8Length, cc.unicode, cc.unicodeLength, &errorCode); if(U_FAILURE(errorCode)) { // skip UTF-8 testing of a string with an unpaired surrogate, // or of one that's too long // toUnicode errors are tested in cintltst TestConvertExFromUTF8() cc.utf8Length=-1; } int32_t resultOffsets[256]; char result[256]; int32_t resultLength; UBool ok; static const struct { int32_t step; const char *name, *utf8Name; } steps[]={ { 0, "bulk", "utf8" }, // must be first for offsets to be checked { 1, "step=1", "utf8 step=1" }, { 3, "step=3", "utf8 step=3" }, { 7, "step=7", "utf8 step=7" } }; int32_t i, step; ok=TRUE; for(i=0; i=0) { errorCode=U_ZERO_ERROR; resultLength=stepFromUTF8(cc, utf8Cnv, cnv, result, UPRV_LENGTHOF(result), step, &errorCode); ok=checkFromUnicode( cc, cnv, steps[i].utf8Name, (uint8_t *)result, resultLength, NULL, errorCode); if(U_FAILURE(errorCode) || !cc.finalFlush) { // reset if an error occurred or we did not flush // otherwise do nothing to make sure that flushing resets ucnv_resetToUnicode(utf8Cnv); ucnv_resetFromUnicode(cnv); } } } // not a real loop, just a convenience for breaking out of the block while(ok && cc.finalFlush) { // test ucnv_fromUChars() memset(result, 0, sizeof(result)); errorCode=U_ZERO_ERROR; resultLength=ucnv_fromUChars(cnv, result, UPRV_LENGTHOF(result), cc.unicode, cc.unicodeLength, &errorCode); ok=checkFromUnicode( cc, cnv, "fromUChars", (uint8_t *)result, resultLength, NULL, errorCode); if(!ok) { break; } // test preflighting // keep the correct result for simple checking errorCode=U_ZERO_ERROR; resultLength=ucnv_fromUChars(cnv, NULL, 0, cc.unicode, cc.unicodeLength, &errorCode); if(errorCode==U_STRING_NOT_TERMINATED_WARNING || errorCode==U_BUFFER_OVERFLOW_ERROR) { errorCode=U_ZERO_ERROR; } ok=checkFromUnicode( cc, cnv, "preflight fromUChars", (uint8_t *)result, resultLength, NULL, errorCode); break; } ucnv_close(cnv); return ok; } UBool ConversionTest::checkFromUnicode(ConversionCase &cc, UConverter *cnv, const char *name, const uint8_t *result, int32_t resultLength, const int32_t *resultOffsets, UErrorCode resultErrorCode) { UChar resultInvalidUChars[8]; int8_t resultInvalidLength; UErrorCode errorCode; const char *msg; // reset the message; NULL will mean "ok" msg=NULL; errorCode=U_ZERO_ERROR; resultInvalidLength=UPRV_LENGTHOF(resultInvalidUChars); ucnv_getInvalidUChars(cnv, resultInvalidUChars, &resultInvalidLength, &errorCode); if(U_FAILURE(errorCode)) { errln("fromUnicode[%d](%s cb=\"%s\" fb=%d flush=%d %s) ucnv_getInvalidUChars() failed - %s", cc.caseNr, cc.charset, cc.cbopt, cc.fallbacks, cc.finalFlush, name, u_errorName(errorCode)); return FALSE; } // check everything that might have gone wrong if(cc.bytesLength!=resultLength) { msg="wrong result length"; } else if(0!=memcmp(cc.bytes, result, cc.bytesLength)) { msg="wrong result string"; } else if(cc.offsets!=NULL && 0!=memcmp(cc.offsets, resultOffsets, cc.bytesLength*sizeof(*cc.offsets))) { msg="wrong offsets"; } else if(cc.outErrorCode!=resultErrorCode) { msg="wrong error code"; } else if(cc.invalidLength!=resultInvalidLength) { msg="wrong length of last invalid input"; } else if(0!=u_memcmp(cc.invalidUChars, resultInvalidUChars, cc.invalidLength)) { msg="wrong last invalid input"; } if(msg==NULL) { return TRUE; } else { char buffer[2000]; // one buffer for all strings char *s, *unicodeString, *bytesString, *resultString, *offsetsString, *resultOffsetsString, *invalidCharsString, *resultInvalidUCharsString; unicodeString=s=buffer; s=printUnicode(cc.unicode, cc.unicodeLength, unicodeString); s=printBytes(cc.bytes, cc.bytesLength, bytesString=s); s=printBytes(result, resultLength, resultString=s); s=printOffsets(cc.offsets, cc.bytesLength, offsetsString=s); s=printOffsets(resultOffsets, resultLength, resultOffsetsString=s); s=printUnicode(cc.invalidUChars, cc.invalidLength, invalidCharsString=s); s=printUnicode(resultInvalidUChars, resultInvalidLength, resultInvalidUCharsString=s); if((s-buffer)>(int32_t)sizeof(buffer)) { errln("fromUnicode[%d](%s cb=\"%s\" fb=%d flush=%d %s) fatal error: checkFromUnicode() test output buffer overflow writing %d chars\n", cc.caseNr, cc.charset, cc.cbopt, cc.fallbacks, cc.finalFlush, name, (int)(s-buffer)); exit(1); } errln("fromUnicode[%d](%s cb=\"%s\" fb=%d flush=%d %s) failed: %s\n" " unicode <%s>[%d]\n" " expected <%s>[%d]\n" " result <%s>[%d]\n" " offsets <%s>\n" " result offsets <%s>\n" " error code expected %s got %s\n" " invalidChars expected <%s> got <%s>\n", cc.caseNr, cc.charset, cc.cbopt, cc.fallbacks, cc.finalFlush, name, msg, unicodeString, cc.unicodeLength, bytesString, cc.bytesLength, resultString, resultLength, offsetsString, resultOffsetsString, u_errorName(cc.outErrorCode), u_errorName(resultErrorCode), invalidCharsString, resultInvalidUCharsString); return FALSE; } } #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */