// © 2017 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html #include "unicode/utypes.h" #if !UCONFIG_NO_FORMATTING #include "number_decimalquantity.h" #include "number_decnum.h" #include "math.h" #include #include "number_utils.h" #include "numbertest.h" void DecimalQuantityTest::runIndexedTest(int32_t index, UBool exec, const char *&name, char *) { if (exec) { logln("TestSuite DecimalQuantityTest: "); } TESTCASE_AUTO_BEGIN; TESTCASE_AUTO(testDecimalQuantityBehaviorStandalone); TESTCASE_AUTO(testSwitchStorage); TESTCASE_AUTO(testCopyMove); TESTCASE_AUTO(testAppend); if (!quick) { // Slow test: run in exhaustive mode only TESTCASE_AUTO(testConvertToAccurateDouble); } TESTCASE_AUTO(testUseApproximateDoubleWhenAble); TESTCASE_AUTO(testHardDoubleConversion); TESTCASE_AUTO(testToDouble); TESTCASE_AUTO(testMaxDigits); TESTCASE_AUTO(testNickelRounding); TESTCASE_AUTO(testCompactDecimalSuppressedExponent); TESTCASE_AUTO(testSuppressedExponentUnchangedByInitialScaling); TESTCASE_AUTO_END; } void DecimalQuantityTest::assertDoubleEquals(UnicodeString message, double a, double b) { if (a == b) { return; } double diff = a - b; diff = diff < 0 ? -diff : diff; double bound = a < 0 ? -a * 1e-6 : a * 1e-6; if (diff > bound) { errln(message + u": " + DoubleToUnicodeString(a) + u" vs " + DoubleToUnicodeString(b) + u" differ by " + DoubleToUnicodeString(diff)); } } void DecimalQuantityTest::assertHealth(const DecimalQuantity &fq) { const char16_t* health = fq.checkHealth(); if (health != nullptr) { errln(UnicodeString(u"HEALTH FAILURE: ") + UnicodeString(health) + u": " + fq.toString()); } } void DecimalQuantityTest::assertToStringAndHealth(const DecimalQuantity &fq, const UnicodeString &expected) { UnicodeString actual = fq.toString(); assertEquals("DecimalQuantity toString failed", expected, actual); assertHealth(fq); } void DecimalQuantityTest::checkDoubleBehavior(double d, bool explicitRequired) { DecimalQuantity fq; fq.setToDouble(d); if (explicitRequired) { assertTrue("Should be using approximate double", !fq.isExplicitExactDouble()); } UnicodeString baseStr = fq.toString(); fq.roundToInfinity(); UnicodeString newStr = fq.toString(); if (explicitRequired) { assertTrue("Should not be using approximate double", fq.isExplicitExactDouble()); } assertDoubleEquals( UnicodeString(u"After conversion to exact BCD (double): ") + baseStr + u" vs " + newStr, d, fq.toDouble()); } void DecimalQuantityTest::testDecimalQuantityBehaviorStandalone() { UErrorCode status = U_ZERO_ERROR; DecimalQuantity fq; assertToStringAndHealth(fq, u""); fq.setToInt(51423); assertToStringAndHealth(fq, u""); fq.adjustMagnitude(-3); assertToStringAndHealth(fq, u""); fq.setToLong(90909090909000L); assertToStringAndHealth(fq, u""); fq.setMinInteger(2); fq.applyMaxInteger(5); assertToStringAndHealth(fq, u""); fq.setMinFraction(3); assertToStringAndHealth(fq, u""); fq.setToDouble(987.654321); assertToStringAndHealth(fq, u""); fq.roundToInfinity(); assertToStringAndHealth(fq, u""); fq.roundToIncrement(0.005, RoundingMode::UNUM_ROUND_HALFEVEN, status); assertSuccess("Rounding to increment", status); assertToStringAndHealth(fq, u""); fq.roundToMagnitude(-2, RoundingMode::UNUM_ROUND_HALFEVEN, status); assertSuccess("Rounding to magnitude", status); assertToStringAndHealth(fq, u""); } void DecimalQuantityTest::testSwitchStorage() { UErrorCode status = U_ZERO_ERROR; DecimalQuantity fq; fq.setToLong(1234123412341234L); assertFalse("Should not be using byte array", fq.isUsingBytes()); assertEquals("Failed on initialize", u"1.234123412341234E+15", fq.toScientificString()); assertHealth(fq); // Long -> Bytes fq.appendDigit(5, 0, true); assertTrue("Should be using byte array", fq.isUsingBytes()); assertEquals("Failed on multiply", u"1.2341234123412345E+16", fq.toScientificString()); assertHealth(fq); // Bytes -> Long fq.roundToMagnitude(5, RoundingMode::UNUM_ROUND_HALFEVEN, status); assertSuccess("Rounding to magnitude", status); assertFalse("Should not be using byte array", fq.isUsingBytes()); assertEquals("Failed on round", u"1.23412341234E+16", fq.toScientificString()); assertHealth(fq); // Bytes with popFromLeft fq.setToDecNumber({"999999999999999999"}, status); assertToStringAndHealth(fq, u""); fq.applyMaxInteger(17); assertToStringAndHealth(fq, u""); fq.applyMaxInteger(16); assertToStringAndHealth(fq, u""); fq.applyMaxInteger(15); assertToStringAndHealth(fq, u""); } void DecimalQuantityTest::testCopyMove() { // Small numbers (fits in BCD long) { DecimalQuantity a; a.setToLong(1234123412341234L); DecimalQuantity b = a; // copy constructor assertToStringAndHealth(a, u""); assertToStringAndHealth(b, u""); DecimalQuantity c(std::move(a)); // move constructor assertToStringAndHealth(c, u""); c.setToLong(54321L); assertToStringAndHealth(c, u""); c = b; // copy assignment assertToStringAndHealth(b, u""); assertToStringAndHealth(c, u""); b.setToLong(45678); c.setToLong(56789); c = std::move(b); // move assignment assertToStringAndHealth(c, u""); a = std::move(c); // move assignment to a defunct object assertToStringAndHealth(a, u""); } // Large numbers (requires byte allocation) { IcuTestErrorCode status(*this, "testCopyMove"); DecimalQuantity a; a.setToDecNumber({"1234567890123456789", -1}, status); DecimalQuantity b = a; // copy constructor assertToStringAndHealth(a, u""); assertToStringAndHealth(b, u""); DecimalQuantity c(std::move(a)); // move constructor assertToStringAndHealth(c, u""); c.setToDecNumber({"9876543210987654321", -1}, status); assertToStringAndHealth(c, u""); c = b; // copy assignment assertToStringAndHealth(b, u""); assertToStringAndHealth(c, u""); b.setToDecNumber({"876543210987654321", -1}, status); c.setToDecNumber({"987654321098765432", -1}, status); c = std::move(b); // move assignment assertToStringAndHealth(c, u""); a = std::move(c); // move assignment to a defunct object assertToStringAndHealth(a, u""); } } void DecimalQuantityTest::testAppend() { DecimalQuantity fq; fq.appendDigit(1, 0, true); assertEquals("Failed on append", u"1E+0", fq.toScientificString()); assertHealth(fq); fq.appendDigit(2, 0, true); assertEquals("Failed on append", u"1.2E+1", fq.toScientificString()); assertHealth(fq); fq.appendDigit(3, 1, true); assertEquals("Failed on append", u"1.203E+3", fq.toScientificString()); assertHealth(fq); fq.appendDigit(0, 1, true); assertEquals("Failed on append", u"1.203E+5", fq.toScientificString()); assertHealth(fq); fq.appendDigit(4, 0, true); assertEquals("Failed on append", u"1.203004E+6", fq.toScientificString()); assertHealth(fq); fq.appendDigit(0, 0, true); assertEquals("Failed on append", u"1.203004E+7", fq.toScientificString()); assertHealth(fq); fq.appendDigit(5, 0, false); assertEquals("Failed on append", u"1.20300405E+7", fq.toScientificString()); assertHealth(fq); fq.appendDigit(6, 0, false); assertEquals("Failed on append", u"1.203004056E+7", fq.toScientificString()); assertHealth(fq); fq.appendDigit(7, 3, false); assertEquals("Failed on append", u"1.2030040560007E+7", fq.toScientificString()); assertHealth(fq); UnicodeString baseExpected(u"1.2030040560007"); for (int i = 0; i < 10; i++) { fq.appendDigit(8, 0, false); baseExpected.append(u'8'); UnicodeString expected(baseExpected); expected.append(u"E+7"); assertEquals("Failed on append", expected, fq.toScientificString()); assertHealth(fq); } fq.appendDigit(9, 2, false); baseExpected.append(u"009"); UnicodeString expected(baseExpected); expected.append(u"E+7"); assertEquals("Failed on append", expected, fq.toScientificString()); assertHealth(fq); } void DecimalQuantityTest::testConvertToAccurateDouble() { // based on https://github.com/google/double-conversion/issues/28 static double hardDoubles[] = { 1651087494906221570.0, 2.207817077636718750000000000000, 1.818351745605468750000000000000, 3.941719055175781250000000000000, 3.738609313964843750000000000000, 3.967735290527343750000000000000, 1.328025817871093750000000000000, 3.920967102050781250000000000000, 1.015235900878906250000000000000, 1.335227966308593750000000000000, 1.344520568847656250000000000000, 2.879127502441406250000000000000, 3.695838928222656250000000000000, 1.845344543457031250000000000000, 3.793952941894531250000000000000, 3.211402893066406250000000000000, 2.565971374511718750000000000000, 0.965156555175781250000000000000, 2.700004577636718750000000000000, 0.767097473144531250000000000000, 1.780448913574218750000000000000, 2.624839782714843750000000000000, 1.305290222167968750000000000000, 3.834922790527343750000000000000,}; static double exactDoubles[] = { 51423, 51423e10, -5074790912492772E-327, 83602530019752571E-327, 4.503599627370496E15, 6.789512076111555E15, 9.007199254740991E15, 9.007199254740992E15}; for (double d : hardDoubles) { checkDoubleBehavior(d, true); } for (double d : exactDoubles) { checkDoubleBehavior(d, false); } assertDoubleEquals(u"NaN check failed", NAN, DecimalQuantity().setToDouble(NAN).toDouble()); assertDoubleEquals( u"Inf check failed", INFINITY, DecimalQuantity().setToDouble(INFINITY).toDouble()); assertDoubleEquals( u"-Inf check failed", -INFINITY, DecimalQuantity().setToDouble(-INFINITY).toDouble()); // Generate random doubles for (int32_t i = 0; i < 10000; i++) { uint8_t bytes[8]; for (int32_t j = 0; j < 8; j++) { bytes[j] = static_cast(rand() % 256); } double d; uprv_memcpy(&d, bytes, 8); if (std::isnan(d) || !std::isfinite(d)) { continue; } checkDoubleBehavior(d, false); } } void DecimalQuantityTest::testUseApproximateDoubleWhenAble() { static const struct TestCase { double d; int32_t maxFrac; RoundingMode roundingMode; bool usesExact; } cases[] = {{1.2345678, 1, RoundingMode::UNUM_ROUND_HALFEVEN, false}, {1.2345678, 7, RoundingMode::UNUM_ROUND_HALFEVEN, false}, {1.2345678, 12, RoundingMode::UNUM_ROUND_HALFEVEN, false}, {1.2345678, 13, RoundingMode::UNUM_ROUND_HALFEVEN, true}, {1.235, 1, RoundingMode::UNUM_ROUND_HALFEVEN, false}, {1.235, 2, RoundingMode::UNUM_ROUND_HALFEVEN, true}, {1.235, 3, RoundingMode::UNUM_ROUND_HALFEVEN, false}, {1.000000000000001, 0, RoundingMode::UNUM_ROUND_HALFEVEN, false}, {1.000000000000001, 0, RoundingMode::UNUM_ROUND_CEILING, true}, {1.235, 1, RoundingMode::UNUM_ROUND_CEILING, false}, {1.235, 2, RoundingMode::UNUM_ROUND_CEILING, false}, {1.235, 3, RoundingMode::UNUM_ROUND_CEILING, true}}; UErrorCode status = U_ZERO_ERROR; for (TestCase cas : cases) { DecimalQuantity fq; fq.setToDouble(cas.d); assertTrue("Should be using approximate double", !fq.isExplicitExactDouble()); fq.roundToMagnitude(-cas.maxFrac, cas.roundingMode, status); assertSuccess("Rounding to magnitude", status); if (cas.usesExact != fq.isExplicitExactDouble()) { errln(UnicodeString(u"Using approximate double after rounding: ") + fq.toString()); } } } void DecimalQuantityTest::testHardDoubleConversion() { static const struct TestCase { double input; const char16_t* expectedOutput; } cases[] = { { 512.0000000000017, u"512.0000000000017" }, { 4095.9999999999977, u"4095.9999999999977" }, { 4095.999999999998, u"4095.999999999998" }, { 4095.9999999999986, u"4095.9999999999986" }, { 4095.999999999999, u"4095.999999999999" }, { 4095.9999999999995, u"4095.9999999999995" }, { 4096.000000000001, u"4096.000000000001" }, { 4096.000000000002, u"4096.000000000002" }, { 4096.000000000003, u"4096.000000000003" }, { 4096.000000000004, u"4096.000000000004" }, { 4096.000000000005, u"4096.000000000005" }, { 4096.0000000000055, u"4096.0000000000055" }, { 4096.000000000006, u"4096.000000000006" }, { 4096.000000000007, u"4096.000000000007" } }; for (auto& cas : cases) { DecimalQuantity q; q.setToDouble(cas.input); q.roundToInfinity(); UnicodeString actualOutput = q.toPlainString(); assertEquals("", cas.expectedOutput, actualOutput); } } void DecimalQuantityTest::testToDouble() { IcuTestErrorCode status(*this, "testToDouble"); static const struct TestCase { const char* input; // char* for the decNumber constructor double expected; } cases[] = { { "0", 0.0 }, { "514.23", 514.23 }, { "-3.142E-271", -3.142e-271 } }; for (auto& cas : cases) { status.setScope(cas.input); DecimalQuantity q; q.setToDecNumber({cas.input, -1}, status); double actual = q.toDouble(); assertEquals("Doubles should exactly equal", cas.expected, actual); } } void DecimalQuantityTest::testMaxDigits() { IcuTestErrorCode status(*this, "testMaxDigits"); DecimalQuantity dq; dq.setToDouble(876.543); dq.roundToInfinity(); dq.setMinInteger(0); dq.applyMaxInteger(2); dq.setMinFraction(0); dq.roundToMagnitude(-2, UNUM_ROUND_FLOOR, status); assertEquals("Should trim, toPlainString", "76.54", dq.toPlainString()); assertEquals("Should trim, toScientificString", "7.654E+1", dq.toScientificString()); assertEquals("Should trim, toLong", 76LL, dq.toLong(true)); assertEquals("Should trim, toFractionLong", (int64_t) 54, (int64_t) dq.toFractionLong(false)); assertEquals("Should trim, toDouble", 76.54, dq.toDouble()); // To test DecNum output, check the round-trip. DecNum dn; dq.toDecNum(dn, status); DecimalQuantity copy; copy.setToDecNum(dn, status); assertEquals("Should trim, toDecNum", "76.54", copy.toPlainString()); } void DecimalQuantityTest::testNickelRounding() { IcuTestErrorCode status(*this, "testNickelRounding"); struct TestCase { double input; int32_t magnitude; UNumberFormatRoundingMode roundingMode; const char16_t* expected; } cases[] = { {1.000, -2, UNUM_ROUND_HALFEVEN, u"1"}, {1.001, -2, UNUM_ROUND_HALFEVEN, u"1"}, {1.010, -2, UNUM_ROUND_HALFEVEN, u"1"}, {1.020, -2, UNUM_ROUND_HALFEVEN, u"1"}, {1.024, -2, UNUM_ROUND_HALFEVEN, u"1"}, {1.025, -2, UNUM_ROUND_HALFEVEN, u"1"}, {1.025, -2, UNUM_ROUND_HALFDOWN, u"1"}, {1.025, -2, UNUM_ROUND_HALFUP, u"1.05"}, {1.026, -2, UNUM_ROUND_HALFEVEN, u"1.05"}, {1.030, -2, UNUM_ROUND_HALFEVEN, u"1.05"}, {1.040, -2, UNUM_ROUND_HALFEVEN, u"1.05"}, {1.050, -2, UNUM_ROUND_HALFEVEN, u"1.05"}, {1.060, -2, UNUM_ROUND_HALFEVEN, u"1.05"}, {1.070, -2, UNUM_ROUND_HALFEVEN, u"1.05"}, {1.074, -2, UNUM_ROUND_HALFEVEN, u"1.05"}, {1.075, -2, UNUM_ROUND_HALFDOWN, u"1.05"}, {1.075, -2, UNUM_ROUND_HALFUP, u"1.1"}, {1.075, -2, UNUM_ROUND_HALFEVEN, u"1.1"}, {1.076, -2, UNUM_ROUND_HALFEVEN, u"1.1"}, {1.080, -2, UNUM_ROUND_HALFEVEN, u"1.1"}, {1.090, -2, UNUM_ROUND_HALFEVEN, u"1.1"}, {1.099, -2, UNUM_ROUND_HALFEVEN, u"1.1"}, {1.999, -2, UNUM_ROUND_HALFEVEN, u"2"}, {2.25, -1, UNUM_ROUND_HALFEVEN, u"2"}, {2.25, -1, UNUM_ROUND_HALFUP, u"2.5"}, {2.75, -1, UNUM_ROUND_HALFDOWN, u"2.5"}, {2.75, -1, UNUM_ROUND_HALFEVEN, u"3"}, {3.00, -1, UNUM_ROUND_CEILING, u"3"}, {3.25, -1, UNUM_ROUND_CEILING, u"3.5"}, {3.50, -1, UNUM_ROUND_CEILING, u"3.5"}, {3.75, -1, UNUM_ROUND_CEILING, u"4"}, {4.00, -1, UNUM_ROUND_FLOOR, u"4"}, {4.25, -1, UNUM_ROUND_FLOOR, u"4"}, {4.50, -1, UNUM_ROUND_FLOOR, u"4.5"}, {4.75, -1, UNUM_ROUND_FLOOR, u"4.5"}, {5.00, -1, UNUM_ROUND_UP, u"5"}, {5.25, -1, UNUM_ROUND_UP, u"5.5"}, {5.50, -1, UNUM_ROUND_UP, u"5.5"}, {5.75, -1, UNUM_ROUND_UP, u"6"}, {6.00, -1, UNUM_ROUND_DOWN, u"6"}, {6.25, -1, UNUM_ROUND_DOWN, u"6"}, {6.50, -1, UNUM_ROUND_DOWN, u"6.5"}, {6.75, -1, UNUM_ROUND_DOWN, u"6.5"}, {7.00, -1, UNUM_ROUND_UNNECESSARY, u"7"}, {7.50, -1, UNUM_ROUND_UNNECESSARY, u"7.5"}, }; for (const auto& cas : cases) { UnicodeString message = DoubleToUnicodeString(cas.input) + u" @ " + Int64ToUnicodeString(cas.magnitude) + u" / " + Int64ToUnicodeString(cas.roundingMode); status.setScope(message); DecimalQuantity dq; dq.setToDouble(cas.input); dq.roundToNickel(cas.magnitude, cas.roundingMode, status); status.errIfFailureAndReset(); UnicodeString actual = dq.toPlainString(); assertEquals(message, cas.expected, actual); } status.setScope(""); DecimalQuantity dq; dq.setToDouble(7.1); dq.roundToNickel(-1, UNUM_ROUND_UNNECESSARY, status); status.expectErrorAndReset(U_FORMAT_INEXACT_ERROR); } void DecimalQuantityTest::testCompactDecimalSuppressedExponent() { IcuTestErrorCode status(*this, "testCompactDecimalSuppressedExponent"); Locale ulocale("fr-FR"); struct TestCase { UnicodeString skeleton; double input; const char16_t* expectedString; int64_t expectedLong; double expectedDouble; const char16_t* expectedPlainString; int32_t expectedSuppressedExponent; } cases[] = { // unlocalized formatter skeleton, input, string output, long output, double output, BigDecimal output, plain string, suppressed exponent {u"", 123456789, u"123 456 789", 123456789L, 123456789.0, u"123456789", 0}, {u"compact-long", 123456789, u"123 millions", 123000000L, 123000000.0, u"123000000", 6}, {u"compact-short", 123456789, u"123 M", 123000000L, 123000000.0, u"123000000", 6}, {u"scientific", 123456789, u"1,234568E8", 123456800L, 123456800.0, u"123456800", 8}, {u"", 1234567, u"1 234 567", 1234567L, 1234567.0, u"1234567", 0}, {u"compact-long", 1234567, u"1,2 million", 1200000L, 1200000.0, u"1200000", 6}, {u"compact-short", 1234567, u"1,2 M", 1200000L, 1200000.0, u"1200000", 6}, {u"scientific", 1234567, u"1,234567E6", 1234567L, 1234567.0, u"1234567", 6}, {u"", 123456, u"123 456", 123456L, 123456.0, u"123456", 0}, {u"compact-long", 123456, u"123 mille", 123000L, 123000.0, u"123000", 3}, {u"compact-short", 123456, u"123 k", 123000L, 123000.0, u"123000", 3}, {u"scientific", 123456, u"1,23456E5", 123456L, 123456.0, u"123456", 5}, {u"", 123, u"123", 123L, 123.0, u"123", 0}, {u"compact-long", 123, u"123", 123L, 123.0, u"123", 0}, {u"compact-short", 123, u"123", 123L, 123.0, u"123", 0}, {u"scientific", 123, u"1,23E2", 123L, 123.0, u"123", 2}, {u"", 1.2, u"1,2", 1L, 1.2, u"1.2", 0}, {u"compact-long", 1.2, u"1,2", 1L, 1.2, u"1.2", 0}, {u"compact-short", 1.2, u"1,2", 1L, 1.2, u"1.2", 0}, {u"scientific", 1.2, u"1,2E0", 1L, 1.2, u"1.2", 0}, {u"", 0.12, u"0,12", 0L, 0.12, u"0.12", 0}, {u"compact-long", 0.12, u"0,12", 0L, 0.12, u"0.12", 0}, {u"compact-short", 0.12, u"0,12", 0L, 0.12, u"0.12", 0}, {u"scientific", 0.12, u"1,2E-1", 0L, 0.12, u"0.12", -1}, {u"", 0.012, u"0,012", 0L, 0.012, u"0.012", 0}, {u"compact-long", 0.012, u"0,012", 0L, 0.012, u"0.012", 0}, {u"compact-short", 0.012, u"0,012", 0L, 0.012, u"0.012", 0}, {u"scientific", 0.012, u"1,2E-2", 0L, 0.012, u"0.012", -2}, {u"", 999.9, u"999,9", 999L, 999.9, u"999.9", 0}, {u"compact-long", 999.9, u"1 millier", 1000L, 1000.0, u"1000", 3}, {u"compact-short", 999.9, u"1 k", 1000L, 1000.0, u"1000", 3}, {u"scientific", 999.9, u"9,999E2", 999L, 999.9, u"999.9", 2}, {u"", 1000.0, u"1 000", 1000L, 1000.0, u"1000", 0}, {u"compact-long", 1000.0, u"1 millier", 1000L, 1000.0, u"1000", 3}, {u"compact-short", 1000.0, u"1 k", 1000L, 1000.0, u"1000", 3}, {u"scientific", 1000.0, u"1E3", 1000L, 1000.0, u"1000", 3}, }; for (const auto& cas : cases) { // test the helper methods used to compute plural operand values LocalizedNumberFormatter formatter = NumberFormatter::forSkeleton(cas.skeleton, status) .locale(ulocale); FormattedNumber fn = formatter.formatDouble(cas.input, status); DecimalQuantity dq; fn.getDecimalQuantity(dq, status); UnicodeString actualString = fn.toString(status); int64_t actualLong = dq.toLong(); double actualDouble = dq.toDouble(); UnicodeString actualPlainString = dq.toPlainString(); int32_t actualSuppressedExponent = dq.getExponent(); assertEquals( u"formatted number " + cas.skeleton + u" toString: " + cas.input, cas.expectedString, actualString); assertEquals( u"compact decimal " + cas.skeleton + u" toLong: " + cas.input, cas.expectedLong, actualLong); assertDoubleEquals( u"compact decimal " + cas.skeleton + u" toDouble: " + cas.input, cas.expectedDouble, actualDouble); assertEquals( u"formatted number " + cas.skeleton + u" toPlainString: " + cas.input, cas.expectedPlainString, actualPlainString); assertEquals( u"compact decimal " + cas.skeleton + u" suppressed exponent: " + cas.input, cas.expectedSuppressedExponent, actualSuppressedExponent); // test the actual computed values of the plural operands double expectedNOperand = cas.expectedDouble; double expectedIOperand = cas.expectedLong; double expectedEOperand = cas.expectedSuppressedExponent; double actualNOperand = dq.getPluralOperand(PLURAL_OPERAND_N); double actualIOperand = dq.getPluralOperand(PLURAL_OPERAND_I); double actualEOperand = dq.getPluralOperand(PLURAL_OPERAND_E); assertDoubleEquals( u"compact decimal " + cas.skeleton + u" n operand: " + cas.input, expectedNOperand, actualNOperand); assertDoubleEquals( u"compact decimal " + cas.skeleton + u" i operand: " + cas.input, expectedIOperand, actualIOperand); assertDoubleEquals( u"compact decimal " + cas.skeleton + " e operand: " + cas.input, expectedEOperand, actualEOperand); } } void DecimalQuantityTest::testSuppressedExponentUnchangedByInitialScaling() { IcuTestErrorCode status(*this, "testCompactDecimalSuppressedExponent"); Locale ulocale("fr-FR"); LocalizedNumberFormatter withLocale = NumberFormatter::withLocale(ulocale); LocalizedNumberFormatter compactLong = withLocale.notation(Notation::compactLong()); LocalizedNumberFormatter compactScaled = compactLong.scale(Scale::powerOfTen(3)); struct TestCase { int32_t input; UnicodeString expectedString; double expectedNOperand; double expectedIOperand; double expectedEOperand; } cases[] = { // input, compact long string output, // compact n operand, compact i operand, compact e operand {123456789, "123 millions", 123000000.0, 123000000.0, 6.0}, {1234567, "1,2 million", 1200000.0, 1200000.0, 6.0}, {123456, "123 mille", 123000.0, 123000.0, 3.0}, {123, "123", 123.0, 123.0, 0.0}, }; for (const auto& cas : cases) { FormattedNumber fnCompactScaled = compactScaled.formatInt(cas.input, status); DecimalQuantity dqCompactScaled; fnCompactScaled.getDecimalQuantity(dqCompactScaled, status); double compactScaledEOperand = dqCompactScaled.getPluralOperand(PLURAL_OPERAND_E); FormattedNumber fnCompact = compactLong.formatInt(cas.input, status); DecimalQuantity dqCompact; fnCompact.getDecimalQuantity(dqCompact, status); UnicodeString actualString = fnCompact.toString(status); double compactNOperand = dqCompact.getPluralOperand(PLURAL_OPERAND_N); double compactIOperand = dqCompact.getPluralOperand(PLURAL_OPERAND_I); double compactEOperand = dqCompact.getPluralOperand(PLURAL_OPERAND_E); assertEquals( u"formatted number " + Int64ToUnicodeString(cas.input) + " compactLong toString: ", cas.expectedString, actualString); assertDoubleEquals( u"compact decimal " + DoubleToUnicodeString(cas.input) + ", n operand vs. expected", cas.expectedNOperand, compactNOperand); assertDoubleEquals( u"compact decimal " + DoubleToUnicodeString(cas.input) + ", i operand vs. expected", cas.expectedIOperand, compactIOperand); assertDoubleEquals( u"compact decimal " + DoubleToUnicodeString(cas.input) + ", e operand vs. expected", cas.expectedEOperand, compactEOperand); // By scaling by 10^3 in a locale that has words / compact notation // based on powers of 10^3, we guarantee that the suppressed // exponent will differ by 3. assertDoubleEquals( u"decimal " + DoubleToUnicodeString(cas.input) + ", e operand for compact vs. compact scaled", compactEOperand + 3, compactScaledEOperand); } } #endif /* #if !UCONFIG_NO_FORMATTING */