// © 2016 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html /******************************************************************** * COPYRIGHT: * Copyright (c) 1997-2015, International Business Machines Corporation and * others. All Rights Reserved. ********************************************************************/ /* file name: strtest.cpp * encoding: UTF-8 * tab size: 8 (not used) * indentation:4 * * created on: 1999nov22 * created by: Markus W. Scherer */ #ifdef U_HAVE_STRING_VIEW #include #endif #include #include #include "unicode/utypes.h" #include "unicode/putil.h" #include "unicode/std_string.h" #include "unicode/stringpiece.h" #include "unicode/unistr.h" #include "unicode/ustring.h" #include "unicode/utf_old.h" // for UTF8_COUNT_TRAIL_BYTES #include "unicode/utf8.h" #include "charstr.h" #include "cstr.h" #include "intltest.h" #include "strtest.h" #include "uinvchar.h" StringTest::~StringTest() {} void StringTest::TestEndian(void) { union { uint8_t byte; uint16_t word; } u; u.word=0x0100; if(U_IS_BIG_ENDIAN!=u.byte) { errln("TestEndian: U_IS_BIG_ENDIAN needs to be fixed in platform.h"); } } void StringTest::TestSizeofTypes(void) { if(U_SIZEOF_WCHAR_T!=sizeof(wchar_t)) { errln("TestSizeofWCharT: U_SIZEOF_WCHAR_T!=sizeof(wchar_t) - U_SIZEOF_WCHAR_T needs to be fixed in platform.h"); } #ifdef U_INT64_T_UNAVAILABLE errln("int64_t and uint64_t are undefined."); #else if(8!=sizeof(int64_t)) { errln("TestSizeofTypes: 8!=sizeof(int64_t) - int64_t needs to be fixed in platform.h"); } if(8!=sizeof(uint64_t)) { errln("TestSizeofTypes: 8!=sizeof(uint64_t) - uint64_t needs to be fixed in platform.h"); } #endif if(8!=sizeof(double)) { errln("8!=sizeof(double) - putil.c code may not work"); } if(4!=sizeof(int32_t)) { errln("4!=sizeof(int32_t)"); } if(4!=sizeof(uint32_t)) { errln("4!=sizeof(uint32_t)"); } if(2!=sizeof(int16_t)) { errln("2!=sizeof(int16_t)"); } if(2!=sizeof(uint16_t)) { errln("2!=sizeof(uint16_t)"); } if(2!=sizeof(UChar)) { errln("2!=sizeof(UChar)"); } if(1!=sizeof(int8_t)) { errln("1!=sizeof(int8_t)"); } if(1!=sizeof(uint8_t)) { errln("1!=sizeof(uint8_t)"); } if(1!=sizeof(UBool)) { errln("1!=sizeof(UBool)"); } } void StringTest::TestCharsetFamily(void) { unsigned char c='A'; if( (U_CHARSET_FAMILY==U_ASCII_FAMILY && c!=0x41) || (U_CHARSET_FAMILY==U_EBCDIC_FAMILY && c!=0xc1) ) { errln("TestCharsetFamily: U_CHARSET_FAMILY needs to be fixed in platform.h"); } } U_STRING_DECL(ustringVar, "aZ0 -", 5); void StringTest::Test_U_STRING() { U_STRING_INIT(ustringVar, "aZ0 -", 5); if( u_strlen(ustringVar)!=5 || ustringVar[0]!=0x61 || ustringVar[1]!=0x5a || ustringVar[2]!=0x30 || ustringVar[3]!=0x20 || ustringVar[4]!=0x2d || ustringVar[5]!=0 ) { errln("Test_U_STRING: U_STRING_DECL with U_STRING_INIT does not work right! " "See putil.h and utypes.h with platform.h."); } } void StringTest::Test_UNICODE_STRING() { UnicodeString ustringVar=UNICODE_STRING("aZ0 -", 5); if( ustringVar.length()!=5 || ustringVar[0]!=0x61 || ustringVar[1]!=0x5a || ustringVar[2]!=0x30 || ustringVar[3]!=0x20 || ustringVar[4]!=0x2d ) { errln("Test_UNICODE_STRING: UNICODE_STRING does not work right! " "See unistr.h and utypes.h with platform.h."); } } void StringTest::Test_UNICODE_STRING_SIMPLE() { UnicodeString ustringVar=UNICODE_STRING_SIMPLE("aZ0 -"); if( ustringVar.length()!=5 || ustringVar[0]!=0x61 || ustringVar[1]!=0x5a || ustringVar[2]!=0x30 || ustringVar[3]!=0x20 || ustringVar[4]!=0x2d ) { errln("Test_UNICODE_STRING_SIMPLE: UNICODE_STRING_SIMPLE does not work right! " "See unistr.h and utypes.h with platform.h."); } } namespace { // See U_CHARSET_FAMILY in unicode/platform.h. const char *nativeInvChars = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz" "0123456789 \"%&'()*+,-./:;<=>?_"; const char16_t *asciiInvChars = u"ABCDEFGHIJKLMNOPQRSTUVWXYZ" u"abcdefghijklmnopqrstuvwxyz" u"0123456789 \"%&'()*+,-./:;<=>?_"; } // namespace void StringTest::TestUpperOrdinal() { for (int32_t i = 0;; ++i) { char ic = nativeInvChars[i]; uint8_t ac = static_cast(asciiInvChars[i]); int32_t expected = ac - 'A'; int32_t actual = uprv_upperOrdinal(ic); if (0 <= expected && expected <= 25) { if (actual != expected) { errln("uprv_upperOrdinal('%c')=%d != expected %d", ic, (int)actual, (int)expected); } } else { if (0 <= actual && actual <= 25) { errln("uprv_upperOrdinal('%c')=%d should have been outside 0..25", ic, (int)actual); } } if (ic == 0) { break; } } } void StringTest::TestLowerOrdinal() { for (int32_t i = 0;; ++i) { char ic = nativeInvChars[i]; uint8_t ac = static_cast(asciiInvChars[i]); int32_t expected = ac - 'a'; int32_t actual = uprv_lowerOrdinal(ic); if (0 <= expected && expected <= 25) { if (actual != expected) { errln("uprv_lowerOrdinal('%c')=%d != expected %d", ic, (int)actual, (int)expected); } } else { if (0 <= actual && actual <= 25) { errln("uprv_lowerOrdinal('%c')=%d should have been outside 0..25", ic, (int)actual); } } if (ic == 0) { break; } } } void StringTest::Test_UTF8_COUNT_TRAIL_BYTES() { #if !U_HIDE_OBSOLETE_UTF_OLD_H if(UTF8_COUNT_TRAIL_BYTES(0x7F) != 0 || UTF8_COUNT_TRAIL_BYTES(0xC2) != 1 || UTF8_COUNT_TRAIL_BYTES(0xE0) != 2 || UTF8_COUNT_TRAIL_BYTES(0xF0) != 3) { errln("UTF8_COUNT_TRAIL_BYTES does not work right! See utf_old.h."); } #endif // Note: U8_COUNT_TRAIL_BYTES (current) and UTF8_COUNT_TRAIL_BYTES (deprecated) // have completely different implementations. if (U8_COUNT_TRAIL_BYTES(0x7F) != 0 || U8_COUNT_TRAIL_BYTES(0xC2) != 1 || U8_COUNT_TRAIL_BYTES(0xE0) != 2 || U8_COUNT_TRAIL_BYTES(0xF0) != 3) { errln("U8_COUNT_TRAIL_BYTES does not work right! See utf8.h."); } } void StringTest::runIndexedTest(int32_t index, UBool exec, const char *&name, char * /*par*/) { if(exec) { logln("TestSuite Character and String Test: "); } TESTCASE_AUTO_BEGIN; TESTCASE_AUTO(TestEndian); TESTCASE_AUTO(TestSizeofTypes); TESTCASE_AUTO(TestCharsetFamily); TESTCASE_AUTO(Test_U_STRING); TESTCASE_AUTO(Test_UNICODE_STRING); TESTCASE_AUTO(Test_UNICODE_STRING_SIMPLE); TESTCASE_AUTO(TestUpperOrdinal); TESTCASE_AUTO(TestLowerOrdinal); TESTCASE_AUTO(Test_UTF8_COUNT_TRAIL_BYTES); TESTCASE_AUTO(TestSTLCompatibility); TESTCASE_AUTO(TestStringPiece); TESTCASE_AUTO(TestStringPieceComparisons); TESTCASE_AUTO(TestStringPieceFind); TESTCASE_AUTO(TestStringPieceOther); #ifdef U_HAVE_STRING_VIEW TESTCASE_AUTO(TestStringPieceStringView); #endif TESTCASE_AUTO(TestStringPieceU8); TESTCASE_AUTO(TestByteSink); TESTCASE_AUTO(TestCheckedArrayByteSink); TESTCASE_AUTO(TestStringByteSink); TESTCASE_AUTO(TestStringByteSinkAppendU8); TESTCASE_AUTO(TestCharString); TESTCASE_AUTO(TestCStr); TESTCASE_AUTO(Testctou); TESTCASE_AUTO_END; } void StringTest::TestStringPiece() { // Default constructor. StringPiece empty; if(!empty.empty() || empty.data()!=NULL || empty.length()!=0 || empty.size()!=0) { errln("StringPiece() failed"); } // Construct from NULL const char * pointer. StringPiece null((const char *)nullptr); if(!null.empty() || null.data()!=NULL || null.length()!=0 || null.size()!=0) { errln("StringPiece(NULL) failed"); } // Construct from const char * pointer. static const char *abc_chars="abc"; StringPiece abc(abc_chars); if(abc.empty() || abc.data()!=abc_chars || abc.length()!=3 || abc.size()!=3) { errln("StringPiece(abc_chars) failed"); } // Construct from const char * pointer and length. static const char *abcdefg_chars="abcdefg"; StringPiece abcd(abcdefg_chars, 4); if(abcd.empty() || abcd.data()!=abcdefg_chars || abcd.length()!=4 || abcd.size()!=4) { errln("StringPiece(abcdefg_chars, 4) failed"); } // Construct from std::string. std::string uvwxyz_string("uvwxyz"); StringPiece uvwxyz(uvwxyz_string); if(uvwxyz.empty() || uvwxyz.data()!=uvwxyz_string.data() || uvwxyz.length()!=6 || uvwxyz.size()!=6) { errln("StringPiece(uvwxyz_string) failed"); } // Substring constructor with pos. StringPiece sp(abcd, -1); if(sp.empty() || sp.data()!=abcdefg_chars || sp.length()!=4 || sp.size()!=4) { errln("StringPiece(abcd, -1) failed"); } sp=StringPiece(abcd, 5); if(!sp.empty() || sp.length()!=0 || sp.size()!=0) { errln("StringPiece(abcd, 5) failed"); } sp=StringPiece(abcd, 2); if(sp.empty() || sp.data()!=abcdefg_chars+2 || sp.length()!=2 || sp.size()!=2) { errln("StringPiece(abcd, -1) failed"); } // Substring constructor with pos and len. sp=StringPiece(abcd, -1, 8); if(sp.empty() || sp.data()!=abcdefg_chars || sp.length()!=4 || sp.size()!=4) { errln("StringPiece(abcd, -1, 8) failed"); } sp=StringPiece(abcd, 5, 8); if(!sp.empty() || sp.length()!=0 || sp.size()!=0) { errln("StringPiece(abcd, 5, 8) failed"); } sp=StringPiece(abcd, 2, 8); if(sp.empty() || sp.data()!=abcdefg_chars+2 || sp.length()!=2 || sp.size()!=2) { errln("StringPiece(abcd, -1) failed"); } sp=StringPiece(abcd, 2, -1); if(!sp.empty() || sp.length()!=0 || sp.size()!=0) { errln("StringPiece(abcd, 5, -1) failed"); } // static const npos const int32_t *ptr_npos=&StringPiece::npos; if(StringPiece::npos!=0x7fffffff || *ptr_npos!=0x7fffffff) { errln("StringPiece::npos!=0x7fffffff"); } // substr() method with pos, using len=npos. sp=abcd.substr(-1); if(sp.empty() || sp.data()!=abcdefg_chars || sp.length()!=4 || sp.size()!=4) { errln("abcd.substr(-1) failed"); } sp=abcd.substr(5); if(!sp.empty() || sp.length()!=0 || sp.size()!=0) { errln("abcd.substr(5) failed"); } sp=abcd.substr(2); if(sp.empty() || sp.data()!=abcdefg_chars+2 || sp.length()!=2 || sp.size()!=2) { errln("abcd.substr(-1) failed"); } // substr() method with pos and len. sp=abcd.substr(-1, 8); if(sp.empty() || sp.data()!=abcdefg_chars || sp.length()!=4 || sp.size()!=4) { errln("abcd.substr(-1, 8) failed"); } sp=abcd.substr(5, 8); if(!sp.empty() || sp.length()!=0 || sp.size()!=0) { errln("abcd.substr(5, 8) failed"); } sp=abcd.substr(2, 8); if(sp.empty() || sp.data()!=abcdefg_chars+2 || sp.length()!=2 || sp.size()!=2) { errln("abcd.substr(-1) failed"); } sp=abcd.substr(2, -1); if(!sp.empty() || sp.length()!=0 || sp.size()!=0) { errln("abcd.substr(5, -1) failed"); } // clear() sp=abcd; sp.clear(); if(!sp.empty() || sp.data()!=NULL || sp.length()!=0 || sp.size()!=0) { errln("abcd.clear() failed"); } // remove_prefix() sp=abcd; sp.remove_prefix(-1); if(sp.empty() || sp.data()!=abcdefg_chars || sp.length()!=4 || sp.size()!=4) { errln("abcd.remove_prefix(-1) failed"); } sp=abcd; sp.remove_prefix(2); if(sp.empty() || sp.data()!=abcdefg_chars+2 || sp.length()!=2 || sp.size()!=2) { errln("abcd.remove_prefix(2) failed"); } sp=abcd; sp.remove_prefix(5); if(!sp.empty() || sp.length()!=0 || sp.size()!=0) { errln("abcd.remove_prefix(5) failed"); } // remove_suffix() sp=abcd; sp.remove_suffix(-1); if(sp.empty() || sp.data()!=abcdefg_chars || sp.length()!=4 || sp.size()!=4) { errln("abcd.remove_suffix(-1) failed"); } sp=abcd; sp.remove_suffix(2); if(sp.empty() || sp.data()!=abcdefg_chars || sp.length()!=2 || sp.size()!=2) { errln("abcd.remove_suffix(2) failed"); } sp=abcd; sp.remove_suffix(5); if(!sp.empty() || sp.length()!=0 || sp.size()!=0) { errln("abcd.remove_suffix(5) failed"); } } void StringTest::TestStringPieceComparisons() { StringPiece empty; StringPiece null(nullptr); StringPiece abc("abc"); StringPiece abcd("abcdefg", 4); StringPiece abx("abx"); if(empty!=null) { errln("empty!=null"); } if(empty==abc) { errln("empty==abc"); } if(abc==abcd) { errln("abc==abcd"); } assertTrue("nullnull", abc.compare(null) > 0); assertTrue("abcabc", abcd.compare(abc) > 0); assertTrue("abcabc", abx.compare(abc) > 0); assertTrue("abx>abcd", abx.compare(abcd) > 0); assertTrue("abcdnull", abc.compare(null) > 0); assertTrue("std: abcabc", abcd.compare(abc) > 0); assertTrue("std: abcabc", abx.compare(abc) > 0); assertTrue("std: abx>abcd", abx.compare(abcd) > 0); assertTrue("std: abcd(stdhaystack.find(stdneedle, 0))); // Test offsets against std::string::find for (int32_t offset = 0; offset < haystack.length(); offset++) { assertEquals(Int64ToUnicodeString(caseNumber) + "u @ " + Int64ToUnicodeString(offset), static_cast(stdhaystack.find(stdneedle, offset)), haystack.find(needle, offset)); } caseNumber++; } } void StringTest::TestStringPieceOther() { static constexpr char msg[] = "Kapow!"; // Another string piece implementation. struct Other { const char* data() { return msg; } size_t size() { return sizeof msg - 1; } }; Other other; StringPiece piece(other); assertEquals("size()", piece.size(), static_cast(other.size())); assertEquals("data()", piece.data(), other.data()); } #ifdef U_HAVE_STRING_VIEW void StringTest::TestStringPieceStringView() { static constexpr char msg[] = "Kapow!"; std::string_view view(msg); // C++17 StringPiece piece(view); assertEquals("size()", piece.size(), view.size()); assertEquals("data()", piece.data(), view.data()); } #endif void StringTest::TestStringPieceU8() { // ICU-20984 "mitigate some C++20 char8_t breakages" // For the following APIs there are overloads for both // const char * and const char8_t *. // A u8"string literal" has one type or the other // depending on C++ version and compiler settings. StringPiece abc(u8"abc"); assertEquals("abc.length", 3, abc.length()); assertEquals("abc", "\x61\x62\x63", abc.data()); StringPiece abc3(u8"abcdef", 3); assertEquals("abc3.length", 3, abc3.length()); assertEquals("abc3[0]", 0x61, abc3.data()[0]); assertEquals("abc3[1]", 0x62, abc3.data()[1]); assertEquals("abc3[2]", 0x63, abc3.data()[2]); StringPiece uvw("q"); uvw.set(u8"uvw"); assertEquals("uvw.length", 3, uvw.length()); assertEquals("uvw", "\x75\x76\x77", uvw.data()); StringPiece xyz("r"); xyz.set(u8"xyzXYZ", 3); assertEquals("xyz.length", 3, xyz.length()); assertEquals("xyz[0]", 0x78, xyz.data()[0]); assertEquals("xyz[1]", 0x79, xyz.data()[1]); assertEquals("xyz[2]", 0x7a, xyz.data()[2]); StringPiece null(nullptr); assertTrue("null is empty", null.empty()); assertTrue("null is null", null.data() == nullptr); #ifdef __cpp_lib_char8_t std::u8string_view u8sv(u8"sv"); // C++20 StringPiece u8svsp(u8sv); assertEquals("u8svsp.length", 2, u8svsp.length()); assertEquals("u8svsp", "\x73\x76", u8svsp.data()); std::u8string u8str(u8"str"); // C++20 StringPiece u8strsp(u8str); assertEquals("u8strsp.length", 3, u8strsp.length()); assertEquals("u8strsp", "\x73\x74\x72", u8strsp.data()); #endif // __cpp_lib_char8_t } // Verify that ByteSink is subclassable and Flush() overridable. class SimpleByteSink : public ByteSink { public: SimpleByteSink(char *outbuf) : fOutbuf(outbuf), fLength(0) {} virtual void Append(const char *bytes, int32_t n) { if(fOutbuf != bytes) { memcpy(fOutbuf, bytes, n); } fOutbuf += n; fLength += n; } virtual void Flush() { Append("z", 1); } int32_t length() { return fLength; } private: char *fOutbuf; int32_t fLength; }; // Test the ByteSink base class. void StringTest::TestByteSink() { char buffer[20]; buffer[4] = '!'; SimpleByteSink sink(buffer); sink.Append("abc", 3); sink.Flush(); if(!(sink.length() == 4 && 0 == memcmp("abcz", buffer, 4) && buffer[4] == '!')) { errln("ByteSink (SimpleByteSink) did not Append() or Flush() as expected"); return; } char scratch[20]; int32_t capacity = -1; char *dest = sink.GetAppendBuffer(0, 50, scratch, (int32_t)sizeof(scratch), &capacity); if(dest != NULL || capacity != 0) { errln("ByteSink.GetAppendBuffer(min_capacity<1) did not properly return NULL[0]"); return; } dest = sink.GetAppendBuffer(10, 50, scratch, 9, &capacity); if(dest != NULL || capacity != 0) { errln("ByteSink.GetAppendBuffer(scratch_capacity sink(&result); sink.Append("def", 3); if(result != "abcdef") { errln("StringByteSink did not Append() as expected"); } StringByteSink sink2(&result, 20); if(result.capacity() < (result.length() + 20)) { errln("StringByteSink should have 20 append capacity, has only %d", (int)(result.capacity() - result.length())); } sink.Append("ghi", 3); if(result != "abcdefghi") { errln("StringByteSink did not Append() as expected"); } } void StringTest::TestStringByteSinkAppendU8() { // ICU-20984 "mitigate some C++20 char8_t breakages" // For the following APIs there are overloads for both // const char * and const char8_t *. // A u8"string literal" has one type or the other // depending on C++ version and compiler settings. std::string result("abc"); StringByteSink sink(&result); sink.AppendU8("def", 3); sink.AppendU8(u8"ghijkl", 4); assertEquals("abcdefghij", "abcdef\x67\x68\x69\x6a", result.c_str()); } #if defined(_MSC_VER) #include #endif void StringTest::TestSTLCompatibility() { #if defined(_MSC_VER) /* Just make sure that it compiles with STL's placement new usage. */ std::vector myvect; myvect.push_back(UnicodeString("blah")); #endif } void StringTest::TestCharString() { IcuTestErrorCode errorCode(*this, "TestCharString()"); char expected[400]; static const char longStr[] = "This is a long string that is meant to cause reallocation of the internal buffer of CharString."; CharString chStr(longStr, errorCode); if (0 != strcmp(longStr, chStr.data()) || (int32_t)strlen(longStr) != chStr.length()) { errln("CharString(longStr) failed."); } CharString test("Test", errorCode); CharString copy(test,errorCode); copy.copyFrom(chStr, errorCode); if (0 != strcmp(longStr, copy.data()) || (int32_t)strlen(longStr) != copy.length()) { errln("CharString.copyFrom() failed."); } StringPiece sp(chStr.toStringPiece()); sp.remove_prefix(4); chStr.append(sp, errorCode).append(chStr, errorCode); strcpy(expected, longStr); strcat(expected, longStr+4); strcat(expected, longStr); strcat(expected, longStr+4); if (0 != strcmp(expected, chStr.data()) || (int32_t)strlen(expected) != chStr.length()) { errln("CharString(longStr).append(substring of self).append(self) failed."); } chStr.clear().append("abc", errorCode).append("defghij", 3, errorCode); if (0 != strcmp("abcdef", chStr.data()) || 6 != chStr.length()) { errln("CharString.clear().append(abc).append(defghij, 3) failed."); } chStr.appendInvariantChars(UNICODE_STRING_SIMPLE( "This is a long string that is meant to cause reallocation of the internal buffer of CharString."), errorCode); strcpy(expected, "abcdef"); strcat(expected, longStr); if (0 != strcmp(expected, chStr.data()) || (int32_t)strlen(expected) != chStr.length()) { errln("CharString.appendInvariantChars(longStr) failed."); } int32_t appendCapacity = 0; char *buffer = chStr.getAppendBuffer(5, 10, appendCapacity, errorCode); if (errorCode.isFailure()) { return; } memcpy(buffer, "*****", 5); chStr.append(buffer, 5, errorCode); chStr.truncate(chStr.length()-3); strcat(expected, "**"); if (0 != strcmp(expected, chStr.data()) || (int32_t)strlen(expected) != chStr.length()) { errln("CharString.getAppendBuffer().append(**) failed."); } UErrorCode ec = U_ZERO_ERROR; chStr.clear(); chStr.appendInvariantChars(UnicodeString("The '@' character is not invariant."), ec); if (ec != U_INVARIANT_CONVERSION_ERROR) { errln("%s:%d expected U_INVARIANT_CONVERSION_ERROR, got %s", __FILE__, __LINE__, u_errorName(ec)); } if (chStr.length() != 0) { errln("%s:%d expected length() = 0, got %d", __FILE__, __LINE__, chStr.length()); } { CharString s1("Short string", errorCode); CharString s2(std::move(s1)); assertEquals("s2 should have content of s1", "Short string", s2.data()); CharString s3("Dummy", errorCode); s3 = std::move(s2); assertEquals("s3 should have content of s2", "Short string", s3.data()); } { CharString s1("Long string over 40 characters to trigger heap allocation", errorCode); CharString s2(std::move(s1)); assertEquals("s2 should have content of s1", "Long string over 40 characters to trigger heap allocation", s2.data()); CharString s3("Dummy string with over 40 characters to trigger heap allocation", errorCode); s3 = std::move(s2); assertEquals("s3 should have content of s2", "Long string over 40 characters to trigger heap allocation", s3.data()); } { // extract() errorCode.reset(); CharString s("abc", errorCode); char buffer[10]; s.extract(buffer, 10, errorCode); assertEquals("abc.extract(10) success", U_ZERO_ERROR, errorCode.get()); assertEquals("abc.extract(10) output", "abc", buffer); strcpy(buffer, "012345"); s.extract(buffer, 3, errorCode); assertEquals("abc.extract(3) not terminated", U_STRING_NOT_TERMINATED_WARNING, errorCode.reset()); assertEquals("abc.extract(3) output", "abc345", buffer); strcpy(buffer, "012345"); s.extract(buffer, 2, errorCode); assertEquals("abc.extract(2) overflow", U_BUFFER_OVERFLOW_ERROR, errorCode.reset()); } } void StringTest::TestCStr() { const char *cs = "This is a test string."; UnicodeString us(cs); if (0 != strcmp(CStr(us)(), cs)) { errln("%s:%d CStr(s)() failed. Expected \"%s\", got \"%s\"", __FILE__, __LINE__, cs, CStr(us)()); } } void StringTest::Testctou() { const char *cs = "Fa\\u0127mu"; UnicodeString u = ctou(cs); assertEquals("Testing unescape@0", (int32_t)0x0046, u.charAt(0)); assertEquals("Testing unescape@2", (int32_t)295, u.charAt(2)); }