// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/message_loop/message_pump_android.h"

#include <android/looper.h>
#include <errno.h>
#include <fcntl.h>
#include <jni.h>
#include <sys/eventfd.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>
#include <utility>

#include "base/android/jni_android.h"
#include "base/android/scoped_java_ref.h"
#include "base/callback_helpers.h"
#include "base/lazy_instance.h"
#include "base/logging.h"
#include "base/run_loop.h"

// Android stripped sys/timerfd.h out of their platform headers, so we have to
// use syscall to make use of timerfd. Once the min API level is 20, we can
// directly use timerfd.h.
#ifndef __NR_timerfd_create
#error "Unable to find syscall for __NR_timerfd_create"
#endif

#ifndef TFD_TIMER_ABSTIME
#define TFD_TIMER_ABSTIME (1 << 0)
#endif

using base::android::JavaParamRef;
using base::android::ScopedJavaLocalRef;

namespace base {

namespace {

// See sys/timerfd.h
int timerfd_create(int clockid, int flags) {
  return syscall(__NR_timerfd_create, clockid, flags);
}

// See sys/timerfd.h
int timerfd_settime(int ufc,
                    int flags,
                    const struct itimerspec* utmr,
                    struct itimerspec* otmr) {
  return syscall(__NR_timerfd_settime, ufc, flags, utmr, otmr);
}

int NonDelayedLooperCallback(int fd, int events, void* data) {
  if (events & ALOOPER_EVENT_HANGUP)
    return 0;

  DCHECK(events & ALOOPER_EVENT_INPUT);
  MessagePumpForUI* pump = reinterpret_cast<MessagePumpForUI*>(data);
  pump->OnNonDelayedLooperCallback();
  return 1;  // continue listening for events
}

int DelayedLooperCallback(int fd, int events, void* data) {
  if (events & ALOOPER_EVENT_HANGUP)
    return 0;

  DCHECK(events & ALOOPER_EVENT_INPUT);
  MessagePumpForUI* pump = reinterpret_cast<MessagePumpForUI*>(data);
  pump->OnDelayedLooperCallback();
  return 1;  // continue listening for events
}

}  // namespace

MessagePumpForUI::MessagePumpForUI() {
  // The Android native ALooper uses epoll to poll our file descriptors and wake
  // us up. We use a simple level-triggered eventfd to signal that non-delayed
  // work is available, and a timerfd to signal when delayed work is ready to
  // be run.
  non_delayed_fd_ = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
  CHECK_NE(non_delayed_fd_, -1);
  DCHECK_EQ(TimeTicks::GetClock(), TimeTicks::Clock::LINUX_CLOCK_MONOTONIC);

  // We can't create the timerfd with TFD_NONBLOCK | TFD_CLOEXEC as we can't
  // include timerfd.h. See comments above on __NR_timerfd_create. It looks like
  // they're just aliases to O_NONBLOCK and O_CLOEXEC anyways, so this should be
  // fine.
  delayed_fd_ = timerfd_create(CLOCK_MONOTONIC, O_NONBLOCK | O_CLOEXEC);
  CHECK_NE(delayed_fd_, -1);

  looper_ = ALooper_prepare(0);
  DCHECK(looper_);
  // Add a reference to the looper so it isn't deleted on us.
  ALooper_acquire(looper_);
  ALooper_addFd(looper_, non_delayed_fd_, 0, ALOOPER_EVENT_INPUT,
                &NonDelayedLooperCallback, reinterpret_cast<void*>(this));
  ALooper_addFd(looper_, delayed_fd_, 0, ALOOPER_EVENT_INPUT,
                &DelayedLooperCallback, reinterpret_cast<void*>(this));
}

MessagePumpForUI::~MessagePumpForUI() {
  DCHECK_EQ(ALooper_forThread(), looper_);
  ALooper_removeFd(looper_, non_delayed_fd_);
  ALooper_removeFd(looper_, delayed_fd_);
  ALooper_release(looper_);
  looper_ = nullptr;

  close(non_delayed_fd_);
  close(delayed_fd_);
}

void MessagePumpForUI::OnDelayedLooperCallback() {
  if (ShouldQuit())
    return;

  // Clear the fd.
  uint64_t value;
  int ret = read(delayed_fd_, &value, sizeof(value));
  DCHECK_GE(ret, 0);
  delayed_scheduled_time_ = base::TimeTicks();

  base::TimeTicks next_delayed_work_time;
  delegate_->DoDelayedWork(&next_delayed_work_time);
  if (!next_delayed_work_time.is_null()) {
    ScheduleDelayedWork(next_delayed_work_time);
  }
  if (ShouldQuit())
    return;
  // We may be idle now, so pump the loop to find out.
  ScheduleWork();
}

void MessagePumpForUI::OnNonDelayedLooperCallback() {
  base::TimeTicks next_delayed_work_time;
  bool did_any_work = false;

  // Runs all native tasks scheduled to run, scheduling delayed work if
  // necessary.
  while (true) {
    bool did_work_this_loop = false;
    if (ShouldQuit())
      return;
    did_work_this_loop = delegate_->DoWork();
    if (ShouldQuit())
      return;

    did_work_this_loop |= delegate_->DoDelayedWork(&next_delayed_work_time);

    did_any_work |= did_work_this_loop;

    // If we didn't do any work, we're out of native tasks to run, and we should
    // return control to the looper to run Java tasks.
    if (!did_work_this_loop)
      break;
  }
  // If we did any work, return control to the looper to run java tasks before
  // we call DoIdleWork(). We haven't cleared the fd yet, so we'll get woken up
  // again soon to check for idle-ness.
  if (did_any_work)
    return;
  if (ShouldQuit())
    return;

  // Read the file descriptor, resetting its contents to 0 and reading back the
  // stored value.
  // See http://man7.org/linux/man-pages/man2/eventfd.2.html
  uint64_t value = 0;
  int ret = read(non_delayed_fd_, &value, sizeof(value));
  DCHECK_GE(ret, 0);

  // If we read a value > 1, it means we lost the race to clear the fd before a
  // new task was posted. This is okay, we can just re-schedule work.
  if (value > 1) {
    ScheduleWork();
  } else {
    // At this point, the java looper might not be idle - it's impossible to
    // know pre-Android-M, so we may end up doing Idle work while java tasks are
    // still queued up. Note that this won't cause us to fail to run java tasks
    // using QuitWhenIdle, as the JavaHandlerThread will finish running all
    // currently scheduled tasks before it quits. Also note that we can't just
    // add an idle callback to the java looper, as that will fire even if native
    // tasks are still queued up.
    DoIdleWork();
    if (!next_delayed_work_time.is_null()) {
      ScheduleDelayedWork(next_delayed_work_time);
    }
  }
}

void MessagePumpForUI::DoIdleWork() {
  if (delegate_->DoIdleWork()) {
    // If DoIdleWork() resulted in any work, we're not idle yet. We need to pump
    // the loop here because we may in fact be idle after doing idle work
    // without any new tasks being queued.
    ScheduleWork();
  }
}

void MessagePumpForUI::Run(Delegate* delegate) {
  DCHECK(IsTestImplementation());
  // This function is only called in tests. We manually pump the native looper
  // which won't run any java tasks.
  quit_ = false;

  SetDelegate(delegate);

  // Pump the loop once in case we're starting off idle as ALooper_pollOnce will
  // never return in that case.
  ScheduleWork();
  while (true) {
    // Waits for either the delayed, or non-delayed fds to be signalled, calling
    // either OnDelayedLooperCallback, or OnNonDelayedLooperCallback,
    // respectively. This uses Android's Looper implementation, which is based
    // off of epoll.
    ALooper_pollOnce(-1, nullptr, nullptr, nullptr);
    if (quit_)
      break;
  }
}

void MessagePumpForUI::Attach(Delegate* delegate) {
  DCHECK(!quit_);

  // Since the Looper is controlled by the UI thread or JavaHandlerThread, we
  // can't use Run() like we do on other platforms or we would prevent Java
  // tasks from running. Instead we create and initialize a run loop here, then
  // return control back to the Looper.

  SetDelegate(delegate);
  run_loop_ = std::make_unique<RunLoop>();
  // Since the RunLoop was just created above, BeforeRun should be guaranteed to
  // return true (it only returns false if the RunLoop has been Quit already).
  if (!run_loop_->BeforeRun())
    NOTREACHED();
}

void MessagePumpForUI::Quit() {
  if (quit_)
    return;

  quit_ = true;

  int64_t value;
  // Clear any pending timer.
  read(delayed_fd_, &value, sizeof(value));
  // Clear the eventfd.
  read(non_delayed_fd_, &value, sizeof(value));

  if (run_loop_) {
    run_loop_->AfterRun();
    run_loop_ = nullptr;
  }
  if (on_quit_callback_) {
    std::move(on_quit_callback_).Run();
  }
}

void MessagePumpForUI::ScheduleWork() {
  if (ShouldQuit())
    return;

  // Write (add) 1 to the eventfd. This tells the Looper to wake up and call our
  // callback, allowing us to run tasks. This also allows us to detect, when we
  // clear the fd, whether additional work was scheduled after we finished
  // performing work, but before we cleared the fd, as we'll read back >=2
  // instead of 1 in that case.
  // See the eventfd man pages
  // (http://man7.org/linux/man-pages/man2/eventfd.2.html) for details on how
  // the read and write APIs for this file descriptor work, specifically without
  // EFD_SEMAPHORE.
  uint64_t value = 1;
  int ret = write(non_delayed_fd_, &value, sizeof(value));
  DCHECK_GE(ret, 0);
}

void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
  if (ShouldQuit())
    return;

  if (!delayed_scheduled_time_.is_null() &&
      delayed_work_time >= delayed_scheduled_time_) {
    return;
  }

  DCHECK(!delayed_work_time.is_null());
  delayed_scheduled_time_ = delayed_work_time;
  int64_t nanos = delayed_work_time.since_origin().InNanoseconds();
  struct itimerspec ts;
  ts.it_interval.tv_sec = 0;  // Don't repeat.
  ts.it_interval.tv_nsec = 0;
  ts.it_value.tv_sec = nanos / TimeTicks::kNanosecondsPerSecond;
  ts.it_value.tv_nsec = nanos % TimeTicks::kNanosecondsPerSecond;

  int ret = timerfd_settime(delayed_fd_, TFD_TIMER_ABSTIME, &ts, nullptr);
  DCHECK_GE(ret, 0);
}

void MessagePumpForUI::QuitWhenIdle(base::OnceClosure callback) {
  DCHECK(!on_quit_callback_);
  DCHECK(run_loop_);
  on_quit_callback_ = std::move(callback);
  run_loop_->QuitWhenIdle();
  // Pump the loop in case we're already idle.
  ScheduleWork();
}

bool MessagePumpForUI::IsTestImplementation() const {
  return false;
}

}  // namespace base