// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "ui/gfx/geometry/quad_f.h" #include #include "base/strings/stringprintf.h" namespace gfx { void QuadF::operator=(const RectF& rect) { p1_ = PointF(rect.x(), rect.y()); p2_ = PointF(rect.right(), rect.y()); p3_ = PointF(rect.right(), rect.bottom()); p4_ = PointF(rect.x(), rect.bottom()); } std::string QuadF::ToString() const { return base::StringPrintf("%s;%s;%s;%s", p1_.ToString().c_str(), p2_.ToString().c_str(), p3_.ToString().c_str(), p4_.ToString().c_str()); } static inline bool WithinEpsilon(float a, float b) { return std::abs(a - b) < std::numeric_limits::epsilon(); } bool QuadF::IsRectilinear() const { return (WithinEpsilon(p1_.x(), p2_.x()) && WithinEpsilon(p2_.y(), p3_.y()) && WithinEpsilon(p3_.x(), p4_.x()) && WithinEpsilon(p4_.y(), p1_.y())) || (WithinEpsilon(p1_.y(), p2_.y()) && WithinEpsilon(p2_.x(), p3_.x()) && WithinEpsilon(p3_.y(), p4_.y()) && WithinEpsilon(p4_.x(), p1_.x())); } bool QuadF::IsCounterClockwise() const { // This math computes the signed area of the quad. Positive area // indicates the quad is clockwise; negative area indicates the quad is // counter-clockwise. Note carefully: this is backwards from conventional // math because our geometric space uses screen coordiantes with y-axis // pointing downards. // Reference: http://mathworld.wolfram.com/PolygonArea.html. // The equation can be written: // Signed area = determinant1 + determinant2 + determinant3 + determinant4 // In practise, Refactoring the computation of adding determinants so that // reducing the number of operations. The equation is: // Signed area = element1 + element2 - element3 - element4 float p24 = p2_.y() - p4_.y(); float p31 = p3_.y() - p1_.y(); // Up-cast to double so this cannot overflow. double element1 = static_cast(p1_.x()) * p24; double element2 = static_cast(p2_.x()) * p31; double element3 = static_cast(p3_.x()) * p24; double element4 = static_cast(p4_.x()) * p31; return element1 + element2 < element3 + element4; } static inline bool PointIsInTriangle(const PointF& point, const PointF& r1, const PointF& r2, const PointF& r3) { // Compute the barycentric coordinates (u, v, w) of |point| relative to the // triangle (r1, r2, r3) by the solving the system of equations: // 1) point = u * r1 + v * r2 + w * r3 // 2) u + v + w = 1 // This algorithm comes from Christer Ericson's Real-Time Collision Detection. Vector2dF r31 = r1 - r3; Vector2dF r32 = r2 - r3; Vector2dF r3p = point - r3; // Promote to doubles so all the math below is done with doubles, because // otherwise it gets incorrect results on arm64. double r31x = r31.x(); double r31y = r31.y(); double r32x = r32.x(); double r32y = r32.y(); double denom = r32y * r31x - r32x * r31y; double u = (r32y * r3p.x() - r32x * r3p.y()) / denom; double v = (r31x * r3p.y() - r31y * r3p.x()) / denom; double w = 1.0 - u - v; // Use the barycentric coordinates to test if |point| is inside the // triangle (r1, r2, r2). return (u >= 0) && (v >= 0) && (w >= 0); } bool QuadF::Contains(const PointF& point) const { return PointIsInTriangle(point, p1_, p2_, p3_) || PointIsInTriangle(point, p1_, p3_, p4_); } void QuadF::Scale(float x_scale, float y_scale) { p1_.Scale(x_scale, y_scale); p2_.Scale(x_scale, y_scale); p3_.Scale(x_scale, y_scale); p4_.Scale(x_scale, y_scale); } void QuadF::operator+=(const Vector2dF& rhs) { p1_ += rhs; p2_ += rhs; p3_ += rhs; p4_ += rhs; } void QuadF::operator-=(const Vector2dF& rhs) { p1_ -= rhs; p2_ -= rhs; p3_ -= rhs; p4_ -= rhs; } QuadF operator+(const QuadF& lhs, const Vector2dF& rhs) { QuadF result = lhs; result += rhs; return result; } QuadF operator-(const QuadF& lhs, const Vector2dF& rhs) { QuadF result = lhs; result -= rhs; return result; } } // namespace gfx