//===--- SymbolCollector.cpp -------------------------------------*- C++-*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "SymbolCollector.h" #include "AST.h" #include "CanonicalIncludes.h" #include "CodeComplete.h" #include "CodeCompletionStrings.h" #include "ExpectedTypes.h" #include "SourceCode.h" #include "SymbolLocation.h" #include "URI.h" #include "index/Relation.h" #include "index/SymbolID.h" #include "support/Logger.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclBase.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/Specifiers.h" #include "clang/Index/IndexSymbol.h" #include "clang/Index/IndexingAction.h" #include "clang/Index/USRGeneration.h" #include "clang/Lex/Preprocessor.h" #include "clang/Tooling/Syntax/Tokens.h" #include "llvm/Support/Casting.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" namespace clang { namespace clangd { namespace { /// If \p ND is a template specialization, returns the described template. /// Otherwise, returns \p ND. const NamedDecl &getTemplateOrThis(const NamedDecl &ND) { if (auto T = ND.getDescribedTemplate()) return *T; return ND; } // Returns a URI of \p Path. Firstly, this makes the \p Path absolute using the // current working directory of the given SourceManager if the Path is not an // absolute path. If failed, this resolves relative paths against \p FallbackDir // to get an absolute path. Then, this tries creating an URI for the absolute // path with schemes specified in \p Opts. This returns an URI with the first // working scheme, if there is any; otherwise, this returns None. // // The Path can be a path relative to the build directory, or retrieved from // the SourceManager. std::string toURI(const SourceManager &SM, llvm::StringRef Path, const SymbolCollector::Options &Opts) { llvm::SmallString<128> AbsolutePath(Path); if (auto File = SM.getFileManager().getFile(Path)) { if (auto CanonPath = getCanonicalPath(*File, SM)) { AbsolutePath = *CanonPath; } } // We don't perform is_absolute check in an else branch because makeAbsolute // might return a relative path on some InMemoryFileSystems. if (!llvm::sys::path::is_absolute(AbsolutePath) && !Opts.FallbackDir.empty()) llvm::sys::fs::make_absolute(Opts.FallbackDir, AbsolutePath); llvm::sys::path::remove_dots(AbsolutePath, /*remove_dot_dot=*/true); return URI::create(AbsolutePath).toString(); } // Checks whether the decl is a private symbol in a header generated by // protobuf compiler. // FIXME: make filtering extensible when there are more use cases for symbol // filters. bool isPrivateProtoDecl(const NamedDecl &ND) { const auto &SM = ND.getASTContext().getSourceManager(); if (!isProtoFile(nameLocation(ND, SM), SM)) return false; // ND without identifier can be operators. if (ND.getIdentifier() == nullptr) return false; auto Name = ND.getIdentifier()->getName(); if (!Name.contains('_')) return false; // Nested proto entities (e.g. Message::Nested) have top-level decls // that shouldn't be used (Message_Nested). Ignore them completely. // The nested entities are dangling type aliases, we may want to reconsider // including them in the future. // For enum constants, SOME_ENUM_CONSTANT is not private and should be // indexed. Outer_INNER is private. This heuristic relies on naming style, it // will include OUTER_INNER and exclude some_enum_constant. // FIXME: the heuristic relies on naming style (i.e. no underscore in // user-defined names) and can be improved. return (ND.getKind() != Decl::EnumConstant) || llvm::any_of(Name, islower); } // We only collect #include paths for symbols that are suitable for global code // completion, except for namespaces since #include path for a namespace is hard // to define. bool shouldCollectIncludePath(index::SymbolKind Kind) { using SK = index::SymbolKind; switch (Kind) { case SK::Macro: case SK::Enum: case SK::Struct: case SK::Class: case SK::Union: case SK::TypeAlias: case SK::Using: case SK::Function: case SK::Variable: case SK::EnumConstant: return true; default: return false; } } // Return the symbol range of the token at \p TokLoc. std::pair getTokenRange(SourceLocation TokLoc, const SourceManager &SM, const LangOptions &LangOpts) { auto CreatePosition = [&SM](SourceLocation Loc) { auto LSPLoc = sourceLocToPosition(SM, Loc); SymbolLocation::Position Pos; Pos.setLine(LSPLoc.line); Pos.setColumn(LSPLoc.character); return Pos; }; auto TokenLength = clang::Lexer::MeasureTokenLength(TokLoc, SM, LangOpts); return {CreatePosition(TokLoc), CreatePosition(TokLoc.getLocWithOffset(TokenLength))}; } // Return the symbol location of the token at \p TokLoc. llvm::Optional getTokenLocation(SourceLocation TokLoc, const SourceManager &SM, const SymbolCollector::Options &Opts, const clang::LangOptions &LangOpts, std::string &FileURIStorage) { auto Path = SM.getFilename(TokLoc); if (Path.empty()) return None; FileURIStorage = toURI(SM, Path, Opts); SymbolLocation Result; Result.FileURI = FileURIStorage.c_str(); auto Range = getTokenRange(TokLoc, SM, LangOpts); Result.Start = Range.first; Result.End = Range.second; return Result; } // Checks whether \p ND is a good candidate to be the *canonical* declaration of // its symbol (e.g. a go-to-declaration target). This overrides the default of // using Clang's canonical declaration, which is the first in the TU. // // Example: preferring a class declaration over its forward declaration. bool isPreferredDeclaration(const NamedDecl &ND, index::SymbolRoleSet Roles) { const auto &SM = ND.getASTContext().getSourceManager(); if (isa(ND)) return (Roles & static_cast(index::SymbolRole::Definition)) && !isInsideMainFile(ND.getLocation(), SM); if (const auto *ID = dyn_cast(&ND)) return ID->isThisDeclarationADefinition(); if (const auto *PD = dyn_cast(&ND)) return PD->isThisDeclarationADefinition(); return false; } RefKind toRefKind(index::SymbolRoleSet Roles, bool Spelled = false) { RefKind Result = RefKind::Unknown; if (Roles & static_cast(index::SymbolRole::Declaration)) Result |= RefKind::Declaration; if (Roles & static_cast(index::SymbolRole::Definition)) Result |= RefKind::Definition; if (Roles & static_cast(index::SymbolRole::Reference)) Result |= RefKind::Reference; if (Spelled) Result |= RefKind::Spelled; return Result; } llvm::Optional indexableRelation(const index::SymbolRelation &R) { if (R.Roles & static_cast(index::SymbolRole::RelationBaseOf)) return RelationKind::BaseOf; if (R.Roles & static_cast(index::SymbolRole::RelationOverrideOf)) return RelationKind::OverriddenBy; return None; } } // namespace SymbolCollector::SymbolCollector(Options Opts) : Opts(std::move(Opts)) {} void SymbolCollector::initialize(ASTContext &Ctx) { ASTCtx = &Ctx; CompletionAllocator = std::make_shared(); CompletionTUInfo = std::make_unique(CompletionAllocator); } bool SymbolCollector::shouldCollectSymbol(const NamedDecl &ND, const ASTContext &ASTCtx, const Options &Opts, bool IsMainFileOnly) { // Skip anonymous declarations, e.g (anonymous enum/class/struct). if (ND.getDeclName().isEmpty()) return false; // Skip main-file symbols if we are not collecting them. if (IsMainFileOnly && !Opts.CollectMainFileSymbols) return false; // Skip symbols in anonymous namespaces in header files. if (!IsMainFileOnly && ND.isInAnonymousNamespace()) return false; // We want most things but not "local" symbols such as symbols inside // FunctionDecl, BlockDecl, ObjCMethodDecl and OMPDeclareReductionDecl. // FIXME: Need a matcher for ExportDecl in order to include symbols declared // within an export. const auto *DeclCtx = ND.getDeclContext(); switch (DeclCtx->getDeclKind()) { case Decl::TranslationUnit: case Decl::Namespace: case Decl::LinkageSpec: case Decl::Enum: case Decl::ObjCProtocol: case Decl::ObjCInterface: case Decl::ObjCCategory: case Decl::ObjCCategoryImpl: case Decl::ObjCImplementation: break; default: // Record has a few derivations (e.g. CXXRecord, Class specialization), it's // easier to cast. if (!isa(DeclCtx)) return false; } // Avoid indexing internal symbols in protobuf generated headers. if (isPrivateProtoDecl(ND)) return false; return true; } // Always return true to continue indexing. bool SymbolCollector::handleDeclOccurrence( const Decl *D, index::SymbolRoleSet Roles, llvm::ArrayRef Relations, SourceLocation Loc, index::IndexDataConsumer::ASTNodeInfo ASTNode) { assert(ASTCtx && PP.get() && "ASTContext and Preprocessor must be set."); assert(CompletionAllocator && CompletionTUInfo); assert(ASTNode.OrigD); // Indexing API puts canonical decl into D, which might not have a valid // source location for implicit/built-in decls. Fallback to original decl in // such cases. if (D->getLocation().isInvalid()) D = ASTNode.OrigD; // If OrigD is an declaration associated with a friend declaration and it's // not a definition, skip it. Note that OrigD is the occurrence that the // collector is currently visiting. if ((ASTNode.OrigD->getFriendObjectKind() != Decl::FriendObjectKind::FOK_None) && !(Roles & static_cast(index::SymbolRole::Definition))) return true; // A declaration created for a friend declaration should not be used as the // canonical declaration in the index. Use OrigD instead, unless we've already // picked a replacement for D if (D->getFriendObjectKind() != Decl::FriendObjectKind::FOK_None) D = CanonicalDecls.try_emplace(D, ASTNode.OrigD).first->second; // Flag to mark that D should be considered canonical meaning its declaration // will override any previous declaration for the Symbol. bool DeclIsCanonical = false; // Avoid treating ObjCImplementationDecl as a canonical declaration if it has // a corresponding non-implicit and non-forward declared ObjcInterfaceDecl. if (const auto *IID = dyn_cast(D)) { DeclIsCanonical = true; if (const auto *CID = IID->getClassInterface()) if (const auto *DD = CID->getDefinition()) if (!DD->isImplicitInterfaceDecl()) D = DD; } // Avoid treating ObjCCategoryImplDecl as a canonical declaration in favor of // its ObjCCategoryDecl if it has one. if (const auto *CID = dyn_cast(D)) { DeclIsCanonical = true; if (const auto *CD = CID->getCategoryDecl()) D = CD; } const NamedDecl *ND = dyn_cast(D); if (!ND) return true; // Mark D as referenced if this is a reference coming from the main file. // D may not be an interesting symbol, but it's cheaper to check at the end. auto &SM = ASTCtx->getSourceManager(); if (Opts.CountReferences && (Roles & static_cast(index::SymbolRole::Reference)) && SM.getFileID(SM.getSpellingLoc(Loc)) == SM.getMainFileID()) ReferencedDecls.insert(ND); auto ID = getSymbolID(ND); if (!ID) return true; // ND is the canonical (i.e. first) declaration. If it's in the main file // (which is not a header), then no public declaration was visible, so assume // it's main-file only. bool IsMainFileOnly = SM.isWrittenInMainFile(SM.getExpansionLoc(ND->getBeginLoc())) && !isHeaderFile(SM.getFileEntryForID(SM.getMainFileID())->getName(), ASTCtx->getLangOpts()); // In C, printf is a redecl of an implicit builtin! So check OrigD instead. if (ASTNode.OrigD->isImplicit() || !shouldCollectSymbol(*ND, *ASTCtx, Opts, IsMainFileOnly)) return true; // Note: we need to process relations for all decl occurrences, including // refs, because the indexing code only populates relations for specific // occurrences. For example, RelationBaseOf is only populated for the // occurrence inside the base-specifier. processRelations(*ND, ID, Relations); bool CollectRef = static_cast(Opts.RefFilter & toRefKind(Roles)); bool IsOnlyRef = !(Roles & (static_cast(index::SymbolRole::Declaration) | static_cast(index::SymbolRole::Definition))); if (IsOnlyRef && !CollectRef) return true; // Unlike other fields, e.g. Symbols (which use spelling locations), we use // file locations for references (as it aligns the behavior of clangd's // AST-based xref). // FIXME: we should try to use the file locations for other fields. if (CollectRef && (!IsMainFileOnly || Opts.CollectMainFileRefs || ND->isExternallyVisible()) && !isa(ND) && (Opts.RefsInHeaders || SM.getFileID(SM.getFileLoc(Loc)) == SM.getMainFileID())) DeclRefs[ND].push_back( SymbolRef{SM.getFileLoc(Loc), Roles, ASTNode.Parent}); // Don't continue indexing if this is a mere reference. if (IsOnlyRef) return true; // FIXME: ObjCPropertyDecl are not properly indexed here: // - ObjCPropertyDecl may have an OrigD of ObjCPropertyImplDecl, which is // not a NamedDecl. auto *OriginalDecl = dyn_cast(ASTNode.OrigD); if (!OriginalDecl) return true; const Symbol *BasicSymbol = Symbols.find(ID); if (isPreferredDeclaration(*OriginalDecl, Roles)) // If OriginalDecl is preferred, replace/create the existing canonical // declaration (e.g. a class forward declaration). There should be at most // one duplicate as we expect to see only one preferred declaration per // TU, because in practice they are definitions. BasicSymbol = addDeclaration(*OriginalDecl, std::move(ID), IsMainFileOnly); else if (!BasicSymbol || DeclIsCanonical) BasicSymbol = addDeclaration(*ND, std::move(ID), IsMainFileOnly); if (Roles & static_cast(index::SymbolRole::Definition)) addDefinition(*OriginalDecl, *BasicSymbol); return true; } void SymbolCollector::handleMacros(const MainFileMacros &MacroRefsToIndex) { assert(PP.get()); const auto &SM = PP->getSourceManager(); const auto *MainFileEntry = SM.getFileEntryForID(SM.getMainFileID()); assert(MainFileEntry); const auto MainFileURI = toURI(SM, MainFileEntry->getName(), Opts); // Add macro references. for (const auto &IDToRefs : MacroRefsToIndex.MacroRefs) { for (const auto &Range : IDToRefs.second) { Ref R; R.Location.Start.setLine(Range.start.line); R.Location.Start.setColumn(Range.start.character); R.Location.End.setLine(Range.end.line); R.Location.End.setColumn(Range.end.character); R.Location.FileURI = MainFileURI.c_str(); // FIXME: Add correct RefKind information to MainFileMacros. R.Kind = RefKind::Reference; Refs.insert(IDToRefs.first, R); } } } bool SymbolCollector::handleMacroOccurrence(const IdentifierInfo *Name, const MacroInfo *MI, index::SymbolRoleSet Roles, SourceLocation Loc) { assert(PP.get()); // Builtin macros don't have useful locations and aren't needed in completion. if (MI->isBuiltinMacro()) return true; const auto &SM = PP->getSourceManager(); auto DefLoc = MI->getDefinitionLoc(); // Also avoid storing predefined macros like __DBL_MIN__. if (SM.isWrittenInBuiltinFile(DefLoc)) return true; auto ID = getSymbolID(Name->getName(), MI, SM); if (!ID) return true; auto SpellingLoc = SM.getSpellingLoc(Loc); bool IsMainFileOnly = SM.isInMainFile(SM.getExpansionLoc(DefLoc)) && !isHeaderFile(SM.getFileEntryForID(SM.getMainFileID())->getName(), ASTCtx->getLangOpts()); // Do not store references to main-file macros. if ((static_cast(Opts.RefFilter) & Roles) && !IsMainFileOnly && (Opts.RefsInHeaders || SM.getFileID(SpellingLoc) == SM.getMainFileID())) // FIXME: Populate container information for macro references. MacroRefs[ID].push_back({Loc, Roles, /*Container=*/nullptr}); // Collect symbols. if (!Opts.CollectMacro) return true; // Skip main-file macros if we are not collecting them. if (IsMainFileOnly && !Opts.CollectMainFileSymbols) return false; // Mark the macro as referenced if this is a reference coming from the main // file. The macro may not be an interesting symbol, but it's cheaper to check // at the end. if (Opts.CountReferences && (Roles & static_cast(index::SymbolRole::Reference)) && SM.getFileID(SpellingLoc) == SM.getMainFileID()) ReferencedMacros.insert(Name); // Don't continue indexing if this is a mere reference. // FIXME: remove macro with ID if it is undefined. if (!(Roles & static_cast(index::SymbolRole::Declaration) || Roles & static_cast(index::SymbolRole::Definition))) return true; // Only collect one instance in case there are multiple. if (Symbols.find(ID) != nullptr) return true; Symbol S; S.ID = std::move(ID); S.Name = Name->getName(); if (!IsMainFileOnly) { S.Flags |= Symbol::IndexedForCodeCompletion; S.Flags |= Symbol::VisibleOutsideFile; } S.SymInfo = index::getSymbolInfoForMacro(*MI); S.Origin = Opts.Origin; std::string FileURI; // FIXME: use the result to filter out symbols. shouldIndexFile(SM.getFileID(Loc)); if (auto DeclLoc = getTokenLocation(DefLoc, SM, Opts, PP->getLangOpts(), FileURI)) S.CanonicalDeclaration = *DeclLoc; CodeCompletionResult SymbolCompletion(Name); const auto *CCS = SymbolCompletion.CreateCodeCompletionStringForMacro( *PP, *CompletionAllocator, *CompletionTUInfo); std::string Signature; std::string SnippetSuffix; getSignature(*CCS, &Signature, &SnippetSuffix); S.Signature = Signature; S.CompletionSnippetSuffix = SnippetSuffix; IndexedMacros.insert(Name); setIncludeLocation(S, DefLoc); Symbols.insert(S); return true; } void SymbolCollector::processRelations( const NamedDecl &ND, const SymbolID &ID, ArrayRef Relations) { for (const auto &R : Relations) { auto RKind = indexableRelation(R); if (!RKind) continue; const Decl *Object = R.RelatedSymbol; auto ObjectID = getSymbolID(Object); if (!ObjectID) continue; // Record the relation. // TODO: There may be cases where the object decl is not indexed for some // reason. Those cases should probably be removed in due course, but for // now there are two possible ways to handle it: // (A) Avoid storing the relation in such cases. // (B) Store it anyways. Clients will likely lookup() the SymbolID // in the index and find nothing, but that's a situation they // probably need to handle for other reasons anyways. // We currently do (B) because it's simpler. if (*RKind == RelationKind::BaseOf) this->Relations.insert({ID, *RKind, ObjectID}); else if (*RKind == RelationKind::OverriddenBy) this->Relations.insert({ObjectID, *RKind, ID}); } } void SymbolCollector::setIncludeLocation(const Symbol &S, SourceLocation Loc) { if (Opts.CollectIncludePath) if (shouldCollectIncludePath(S.SymInfo.Kind)) // Use the expansion location to get the #include header since this is // where the symbol is exposed. IncludeFiles[S.ID] = PP->getSourceManager().getDecomposedExpansionLoc(Loc).first; } void SymbolCollector::finish() { // At the end of the TU, add 1 to the refcount of all referenced symbols. auto IncRef = [this](const SymbolID &ID) { if (const auto *S = Symbols.find(ID)) { Symbol Inc = *S; ++Inc.References; Symbols.insert(Inc); } }; for (const NamedDecl *ND : ReferencedDecls) { if (auto ID = getSymbolID(ND)) { IncRef(ID); } } if (Opts.CollectMacro) { assert(PP); // First, drop header guards. We can't identify these until EOF. for (const IdentifierInfo *II : IndexedMacros) { if (const auto *MI = PP->getMacroDefinition(II).getMacroInfo()) if (auto ID = getSymbolID(II->getName(), MI, PP->getSourceManager())) if (MI->isUsedForHeaderGuard()) Symbols.erase(ID); } // Now increment refcounts. for (const IdentifierInfo *II : ReferencedMacros) { if (const auto *MI = PP->getMacroDefinition(II).getMacroInfo()) if (auto ID = getSymbolID(II->getName(), MI, PP->getSourceManager())) IncRef(ID); } } // Fill in IncludeHeaders. // We delay this until end of TU so header guards are all resolved. // Symbols in slabs aren't mutable, so insert() has to walk all the strings // :-( for (const auto &Entry : IncludeFiles) if (const Symbol *S = Symbols.find(Entry.first)) { if (auto Header = getIncludeHeader(*S, Entry.second)) { Symbol NewSym = *S; NewSym.IncludeHeaders.push_back({std::move(*Header), 1}); Symbols.insert(NewSym); } } const auto &SM = ASTCtx->getSourceManager(); llvm::DenseMap URICache; auto GetURI = [&](FileID FID) -> llvm::Optional { auto Found = URICache.find(FID); if (Found == URICache.end()) { if (auto *FileEntry = SM.getFileEntryForID(FID)) { auto FileURI = toURI(SM, FileEntry->getName(), Opts); Found = URICache.insert({FID, FileURI}).first; } else { // Ignore cases where we can not find a corresponding file entry for // given location, e.g. symbols formed via macro concatenation. return None; } } return Found->second; }; auto CollectRef = [&](SymbolID ID, const SymbolRef &LocAndRole, bool Spelled = false) { auto FileID = SM.getFileID(LocAndRole.Loc); // FIXME: use the result to filter out references. shouldIndexFile(FileID); if (auto FileURI = GetURI(FileID)) { auto Range = getTokenRange(LocAndRole.Loc, SM, ASTCtx->getLangOpts()); Ref R; R.Location.Start = Range.first; R.Location.End = Range.second; R.Location.FileURI = FileURI->c_str(); R.Kind = toRefKind(LocAndRole.Roles, Spelled); R.Container = getSymbolID(LocAndRole.Container); Refs.insert(ID, R); } }; // Populate Refs slab from MacroRefs. // FIXME: All MacroRefs are marked as Spelled now, but this should be checked. for (const auto &IDAndRefs : MacroRefs) for (const auto &LocAndRole : IDAndRefs.second) CollectRef(IDAndRefs.first, LocAndRole, /*Spelled=*/true); // Populate Refs slab from DeclRefs. llvm::DenseMap> FilesToTokensCache; for (auto &DeclAndRef : DeclRefs) { if (auto ID = getSymbolID(DeclAndRef.first)) { for (auto &LocAndRole : DeclAndRef.second) { const auto FileID = SM.getFileID(LocAndRole.Loc); // FIXME: It's better to use TokenBuffer by passing spelled tokens from // the caller of SymbolCollector. if (!FilesToTokensCache.count(FileID)) FilesToTokensCache[FileID] = syntax::tokenize(FileID, SM, ASTCtx->getLangOpts()); llvm::ArrayRef Tokens = FilesToTokensCache[FileID]; // Check if the referenced symbol is spelled exactly the same way the // corresponding NamedDecl is. If it is, mark this reference as spelled. const auto *IdentifierToken = spelledIdentifierTouching(LocAndRole.Loc, Tokens); DeclarationName Name = DeclAndRef.first->getDeclName(); const auto NameKind = Name.getNameKind(); bool IsTargetKind = NameKind == DeclarationName::Identifier || NameKind == DeclarationName::CXXConstructorName; bool Spelled = IdentifierToken && IsTargetKind && Name.getAsString() == IdentifierToken->text(SM); CollectRef(ID, LocAndRole, Spelled); } } } ReferencedDecls.clear(); ReferencedMacros.clear(); DeclRefs.clear(); FilesToIndexCache.clear(); HeaderIsSelfContainedCache.clear(); IncludeFiles.clear(); } const Symbol *SymbolCollector::addDeclaration(const NamedDecl &ND, SymbolID ID, bool IsMainFileOnly) { auto &Ctx = ND.getASTContext(); auto &SM = Ctx.getSourceManager(); Symbol S; S.ID = std::move(ID); std::string QName = printQualifiedName(ND); // FIXME: this returns foo:bar: for objective-C methods, we prefer only foo: // for consistency with CodeCompletionString and a clean name/signature split. std::tie(S.Scope, S.Name) = splitQualifiedName(QName); std::string TemplateSpecializationArgs = printTemplateSpecializationArgs(ND); S.TemplateSpecializationArgs = TemplateSpecializationArgs; // We collect main-file symbols, but do not use them for code completion. if (!IsMainFileOnly && isIndexedForCodeCompletion(ND, Ctx)) S.Flags |= Symbol::IndexedForCodeCompletion; if (isImplementationDetail(&ND)) S.Flags |= Symbol::ImplementationDetail; if (!IsMainFileOnly) S.Flags |= Symbol::VisibleOutsideFile; S.SymInfo = index::getSymbolInfo(&ND); std::string FileURI; auto Loc = nameLocation(ND, SM); assert(Loc.isValid() && "Invalid source location for NamedDecl"); // FIXME: use the result to filter out symbols. shouldIndexFile(SM.getFileID(Loc)); if (auto DeclLoc = getTokenLocation(Loc, SM, Opts, ASTCtx->getLangOpts(), FileURI)) S.CanonicalDeclaration = *DeclLoc; S.Origin = Opts.Origin; if (ND.getAvailability() == AR_Deprecated) S.Flags |= Symbol::Deprecated; // Add completion info. // FIXME: we may want to choose a different redecl, or combine from several. assert(ASTCtx && PP.get() && "ASTContext and Preprocessor must be set."); // We use the primary template, as clang does during code completion. CodeCompletionResult SymbolCompletion(&getTemplateOrThis(ND), 0); const auto *CCS = SymbolCompletion.CreateCodeCompletionString( *ASTCtx, *PP, CodeCompletionContext::CCC_Symbol, *CompletionAllocator, *CompletionTUInfo, /*IncludeBriefComments*/ false); std::string Documentation = formatDocumentation(*CCS, getDocComment(Ctx, SymbolCompletion, /*CommentsFromHeaders=*/true)); if (!(S.Flags & Symbol::IndexedForCodeCompletion)) { if (Opts.StoreAllDocumentation) S.Documentation = Documentation; Symbols.insert(S); return Symbols.find(S.ID); } S.Documentation = Documentation; std::string Signature; std::string SnippetSuffix; getSignature(*CCS, &Signature, &SnippetSuffix); S.Signature = Signature; S.CompletionSnippetSuffix = SnippetSuffix; std::string ReturnType = getReturnType(*CCS); S.ReturnType = ReturnType; llvm::Optional TypeStorage; if (S.Flags & Symbol::IndexedForCodeCompletion) { TypeStorage = OpaqueType::fromCompletionResult(*ASTCtx, SymbolCompletion); if (TypeStorage) S.Type = TypeStorage->raw(); } Symbols.insert(S); setIncludeLocation(S, ND.getLocation()); return Symbols.find(S.ID); } void SymbolCollector::addDefinition(const NamedDecl &ND, const Symbol &DeclSym) { if (DeclSym.Definition) return; // If we saw some forward declaration, we end up copying the symbol. // This is not ideal, but avoids duplicating the "is this a definition" check // in clang::index. We should only see one definition. Symbol S = DeclSym; std::string FileURI; const auto &SM = ND.getASTContext().getSourceManager(); auto Loc = nameLocation(ND, SM); // FIXME: use the result to filter out symbols. shouldIndexFile(SM.getFileID(Loc)); if (auto DefLoc = getTokenLocation(Loc, SM, Opts, ASTCtx->getLangOpts(), FileURI)) S.Definition = *DefLoc; Symbols.insert(S); } /// Gets a canonical include (URI of the header or
or "header") for /// header of \p FID (which should usually be the *expansion* file). /// Returns None if includes should not be inserted for this file. llvm::Optional SymbolCollector::getIncludeHeader(const Symbol &S, FileID FID) { const SourceManager &SM = ASTCtx->getSourceManager(); const FileEntry *FE = SM.getFileEntryForID(FID); if (!FE || FE->getName().empty()) return llvm::None; llvm::StringRef Filename = FE->getName(); // If a file is mapped by canonical headers, use that mapping, regardless // of whether it's an otherwise-good header (header guards etc). if (Opts.Includes) { llvm::SmallString<256> QName = S.Scope; QName.append(S.Name); llvm::StringRef Canonical = Opts.Includes->mapHeader(Filename, QName); // If we had a mapping, always use it. if (Canonical.startswith("<") || Canonical.startswith("\"")) { // Hack: there are two std::move() overloads from different headers. // CanonicalIncludes returns the common one-arg one from . if (Canonical == "" && S.Name == "move" && S.Signature.contains(',')) Canonical = ""; return Canonical.str(); } if (Canonical != Filename) return toURI(SM, Canonical, Opts); } if (!isSelfContainedHeader(FID)) { // A .inc or .def file is often included into a real header to define // symbols (e.g. LLVM tablegen files). if (Filename.endswith(".inc") || Filename.endswith(".def")) return getIncludeHeader(S, SM.getFileID(SM.getIncludeLoc(FID))); // Conservatively refuse to insert #includes to files without guards. return llvm::None; } // Standard case: just insert the file itself. return toURI(SM, Filename, Opts); } bool SymbolCollector::isSelfContainedHeader(FileID FID) { // The real computation (which will be memoized). auto Compute = [&] { const SourceManager &SM = ASTCtx->getSourceManager(); const FileEntry *FE = SM.getFileEntryForID(FID); if (!FE) return false; // FIXME: Should files that have been #import'd be considered // self-contained? That's really a property of the includer, // not of the file. if (!PP->getHeaderSearchInfo().isFileMultipleIncludeGuarded(FE) && !PP->getHeaderSearchInfo().hasFileBeenImported(FE)) return false; // This pattern indicates that a header can't be used without // particular preprocessor state, usually set up by another header. if (isDontIncludeMeHeader(SM.getBufferData(FID))) return false; return true; }; auto R = HeaderIsSelfContainedCache.try_emplace(FID, false); if (R.second) R.first->second = Compute(); return R.first->second; } // Is Line an #if or #ifdef directive? static bool isIf(llvm::StringRef Line) { Line = Line.ltrim(); if (!Line.consume_front("#")) return false; Line = Line.ltrim(); return Line.startswith("if"); } // Is Line an #error directive mentioning includes? static bool isErrorAboutInclude(llvm::StringRef Line) { Line = Line.ltrim(); if (!Line.consume_front("#")) return false; Line = Line.ltrim(); if (!Line.startswith("error")) return false; return Line.contains_lower("includ"); // Matches "include" or "including". } bool SymbolCollector::isDontIncludeMeHeader(llvm::StringRef Content) { llvm::StringRef Line; // Only sniff up to 100 lines or 10KB. Content = Content.take_front(100 * 100); for (unsigned I = 0; I < 100 && !Content.empty(); ++I) { std::tie(Line, Content) = Content.split('\n'); if (isIf(Line) && isErrorAboutInclude(Content.split('\n').first)) return true; } return false; } bool SymbolCollector::shouldIndexFile(FileID FID) { if (!Opts.FileFilter) return true; auto I = FilesToIndexCache.try_emplace(FID); if (I.second) I.first->second = Opts.FileFilter(ASTCtx->getSourceManager(), FID); return I.first->second; } } // namespace clangd } // namespace clang