//===-- sanitizer_fuchsia.cpp ---------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file is shared between AddressSanitizer and other sanitizer // run-time libraries and implements Fuchsia-specific functions from // sanitizer_common.h. //===----------------------------------------------------------------------===// #include "sanitizer_fuchsia.h" #if SANITIZER_FUCHSIA #include #include #include #include #include #include #include #include #include "sanitizer_common.h" #include "sanitizer_libc.h" #include "sanitizer_mutex.h" namespace __sanitizer { void NORETURN internal__exit(int exitcode) { _zx_process_exit(exitcode); } uptr internal_sched_yield() { zx_status_t status = _zx_nanosleep(0); CHECK_EQ(status, ZX_OK); return 0; // Why doesn't this return void? } static void internal_nanosleep(zx_time_t ns) { zx_status_t status = _zx_nanosleep(_zx_deadline_after(ns)); CHECK_EQ(status, ZX_OK); } unsigned int internal_sleep(unsigned int seconds) { internal_nanosleep(ZX_SEC(seconds)); return 0; } u64 NanoTime() { zx_handle_t utc_clock = _zx_utc_reference_get(); CHECK_NE(utc_clock, ZX_HANDLE_INVALID); zx_time_t time; zx_status_t status = _zx_clock_read(utc_clock, &time); CHECK_EQ(status, ZX_OK); return time; } u64 MonotonicNanoTime() { return _zx_clock_get_monotonic(); } uptr internal_getpid() { zx_info_handle_basic_t info; zx_status_t status = _zx_object_get_info(_zx_process_self(), ZX_INFO_HANDLE_BASIC, &info, sizeof(info), NULL, NULL); CHECK_EQ(status, ZX_OK); uptr pid = static_cast(info.koid); CHECK_EQ(pid, info.koid); return pid; } int internal_dlinfo(void *handle, int request, void *p) { UNIMPLEMENTED(); } uptr GetThreadSelf() { return reinterpret_cast(thrd_current()); } tid_t GetTid() { return GetThreadSelf(); } void Abort() { abort(); } int Atexit(void (*function)(void)) { return atexit(function); } void SleepForSeconds(int seconds) { internal_sleep(seconds); } void SleepForMillis(int millis) { internal_nanosleep(ZX_MSEC(millis)); } void GetThreadStackTopAndBottom(bool, uptr *stack_top, uptr *stack_bottom) { pthread_attr_t attr; CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0); void *base; size_t size; CHECK_EQ(pthread_attr_getstack(&attr, &base, &size), 0); CHECK_EQ(pthread_attr_destroy(&attr), 0); *stack_bottom = reinterpret_cast(base); *stack_top = *stack_bottom + size; } void InitializePlatformEarly() {} void MaybeReexec() {} void CheckASLR() {} void CheckMPROTECT() {} void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {} void DisableCoreDumperIfNecessary() {} void InstallDeadlySignalHandlers(SignalHandlerType handler) {} void SetAlternateSignalStack() {} void UnsetAlternateSignalStack() {} void InitTlsSize() {} bool SignalContext::IsStackOverflow() const { return false; } void SignalContext::DumpAllRegisters(void *context) { UNIMPLEMENTED(); } const char *SignalContext::Describe() const { UNIMPLEMENTED(); } enum MutexState : int { MtxUnlocked = 0, MtxLocked = 1, MtxSleeping = 2 }; BlockingMutex::BlockingMutex() { // NOTE! It's important that this use internal_memset, because plain // memset might be intercepted (e.g., actually be __asan_memset). // Defining this so the compiler initializes each field, e.g.: // BlockingMutex::BlockingMutex() : BlockingMutex(LINKER_INITIALIZED) {} // might result in the compiler generating a call to memset, which would // have the same problem. internal_memset(this, 0, sizeof(*this)); } void BlockingMutex::Lock() { CHECK_EQ(owner_, 0); atomic_uint32_t *m = reinterpret_cast(&opaque_storage_); if (atomic_exchange(m, MtxLocked, memory_order_acquire) == MtxUnlocked) return; while (atomic_exchange(m, MtxSleeping, memory_order_acquire) != MtxUnlocked) { zx_status_t status = _zx_futex_wait(reinterpret_cast(m), MtxSleeping, ZX_HANDLE_INVALID, ZX_TIME_INFINITE); if (status != ZX_ERR_BAD_STATE) // Normal race. CHECK_EQ(status, ZX_OK); } } void BlockingMutex::Unlock() { atomic_uint32_t *m = reinterpret_cast(&opaque_storage_); u32 v = atomic_exchange(m, MtxUnlocked, memory_order_release); CHECK_NE(v, MtxUnlocked); if (v == MtxSleeping) { zx_status_t status = _zx_futex_wake(reinterpret_cast(m), 1); CHECK_EQ(status, ZX_OK); } } void BlockingMutex::CheckLocked() { atomic_uint32_t *m = reinterpret_cast(&opaque_storage_); CHECK_NE(MtxUnlocked, atomic_load(m, memory_order_relaxed)); } uptr GetPageSize() { return PAGE_SIZE; } uptr GetMmapGranularity() { return PAGE_SIZE; } sanitizer_shadow_bounds_t ShadowBounds; uptr GetMaxUserVirtualAddress() { ShadowBounds = __sanitizer_shadow_bounds(); return ShadowBounds.memory_limit - 1; } uptr GetMaxVirtualAddress() { return GetMaxUserVirtualAddress(); } static void *DoAnonymousMmapOrDie(uptr size, const char *mem_type, bool raw_report, bool die_for_nomem) { size = RoundUpTo(size, PAGE_SIZE); zx_handle_t vmo; zx_status_t status = _zx_vmo_create(size, 0, &vmo); if (status != ZX_OK) { if (status != ZX_ERR_NO_MEMORY || die_for_nomem) ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, raw_report); return nullptr; } _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type, internal_strlen(mem_type)); // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that? uintptr_t addr; status = _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0, vmo, 0, size, &addr); _zx_handle_close(vmo); if (status != ZX_OK) { if (status != ZX_ERR_NO_MEMORY || die_for_nomem) ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, raw_report); return nullptr; } IncreaseTotalMmap(size); return reinterpret_cast(addr); } void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) { return DoAnonymousMmapOrDie(size, mem_type, raw_report, true); } void *MmapNoReserveOrDie(uptr size, const char *mem_type) { return MmapOrDie(size, mem_type); } void *MmapOrDieOnFatalError(uptr size, const char *mem_type) { return DoAnonymousMmapOrDie(size, mem_type, false, false); } uptr ReservedAddressRange::Init(uptr init_size, const char *name, uptr fixed_addr) { init_size = RoundUpTo(init_size, PAGE_SIZE); DCHECK_EQ(os_handle_, ZX_HANDLE_INVALID); uintptr_t base; zx_handle_t vmar; zx_status_t status = _zx_vmar_allocate( _zx_vmar_root_self(), ZX_VM_CAN_MAP_READ | ZX_VM_CAN_MAP_WRITE | ZX_VM_CAN_MAP_SPECIFIC, 0, init_size, &vmar, &base); if (status != ZX_OK) ReportMmapFailureAndDie(init_size, name, "zx_vmar_allocate", status); base_ = reinterpret_cast(base); size_ = init_size; name_ = name; os_handle_ = vmar; return reinterpret_cast(base_); } static uptr DoMmapFixedOrDie(zx_handle_t vmar, uptr fixed_addr, uptr map_size, void *base, const char *name, bool die_for_nomem) { uptr offset = fixed_addr - reinterpret_cast(base); map_size = RoundUpTo(map_size, PAGE_SIZE); zx_handle_t vmo; zx_status_t status = _zx_vmo_create(map_size, 0, &vmo); if (status != ZX_OK) { if (status != ZX_ERR_NO_MEMORY || die_for_nomem) ReportMmapFailureAndDie(map_size, name, "zx_vmo_create", status); return 0; } _zx_object_set_property(vmo, ZX_PROP_NAME, name, internal_strlen(name)); DCHECK_GE(base + size_, map_size + offset); uintptr_t addr; status = _zx_vmar_map(vmar, ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC, offset, vmo, 0, map_size, &addr); _zx_handle_close(vmo); if (status != ZX_OK) { if (status != ZX_ERR_NO_MEMORY || die_for_nomem) { ReportMmapFailureAndDie(map_size, name, "zx_vmar_map", status); } return 0; } IncreaseTotalMmap(map_size); return addr; } uptr ReservedAddressRange::Map(uptr fixed_addr, uptr map_size, const char *name) { return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_, name_, false); } uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr map_size, const char *name) { return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_, name_, true); } void UnmapOrDieVmar(void *addr, uptr size, zx_handle_t target_vmar) { if (!addr || !size) return; size = RoundUpTo(size, PAGE_SIZE); zx_status_t status = _zx_vmar_unmap(target_vmar, reinterpret_cast(addr), size); if (status != ZX_OK) { Report("ERROR: %s failed to deallocate 0x%zx (%zd) bytes at address %p\n", SanitizerToolName, size, size, addr); CHECK("unable to unmap" && 0); } DecreaseTotalMmap(size); } void ReservedAddressRange::Unmap(uptr addr, uptr size) { CHECK_LE(size, size_); const zx_handle_t vmar = static_cast(os_handle_); if (addr == reinterpret_cast(base_)) { if (size == size_) { // Destroying the vmar effectively unmaps the whole mapping. _zx_vmar_destroy(vmar); _zx_handle_close(vmar); os_handle_ = static_cast(ZX_HANDLE_INVALID); DecreaseTotalMmap(size); return; } } else { CHECK_EQ(addr + size, reinterpret_cast(base_) + size_); } // Partial unmapping does not affect the fact that the initial range is still // reserved, and the resulting unmapped memory can't be reused. UnmapOrDieVmar(reinterpret_cast(addr), size, vmar); } // This should never be called. void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) { UNIMPLEMENTED(); } void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment, const char *mem_type) { CHECK_GE(size, PAGE_SIZE); CHECK(IsPowerOfTwo(size)); CHECK(IsPowerOfTwo(alignment)); zx_handle_t vmo; zx_status_t status = _zx_vmo_create(size, 0, &vmo); if (status != ZX_OK) { if (status != ZX_ERR_NO_MEMORY) ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, false); return nullptr; } _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type, internal_strlen(mem_type)); // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that? // Map a larger size to get a chunk of address space big enough that // it surely contains an aligned region of the requested size. Then // overwrite the aligned middle portion with a mapping from the // beginning of the VMO, and unmap the excess before and after. size_t map_size = size + alignment; uintptr_t addr; status = _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0, vmo, 0, map_size, &addr); if (status == ZX_OK) { uintptr_t map_addr = addr; uintptr_t map_end = map_addr + map_size; addr = RoundUpTo(map_addr, alignment); uintptr_t end = addr + size; if (addr != map_addr) { zx_info_vmar_t info; status = _zx_object_get_info(_zx_vmar_root_self(), ZX_INFO_VMAR, &info, sizeof(info), NULL, NULL); if (status == ZX_OK) { uintptr_t new_addr; status = _zx_vmar_map( _zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC_OVERWRITE, addr - info.base, vmo, 0, size, &new_addr); if (status == ZX_OK) CHECK_EQ(new_addr, addr); } } if (status == ZX_OK && addr != map_addr) status = _zx_vmar_unmap(_zx_vmar_root_self(), map_addr, addr - map_addr); if (status == ZX_OK && end != map_end) status = _zx_vmar_unmap(_zx_vmar_root_self(), end, map_end - end); } _zx_handle_close(vmo); if (status != ZX_OK) { if (status != ZX_ERR_NO_MEMORY) ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, false); return nullptr; } IncreaseTotalMmap(size); return reinterpret_cast(addr); } void UnmapOrDie(void *addr, uptr size) { UnmapOrDieVmar(addr, size, _zx_vmar_root_self()); } // This is used on the shadow mapping, which cannot be changed. // Zircon doesn't have anything like MADV_DONTNEED. void ReleaseMemoryPagesToOS(uptr beg, uptr end) {} void DumpProcessMap() { // TODO(mcgrathr): write it return; } bool IsAccessibleMemoryRange(uptr beg, uptr size) { // TODO(mcgrathr): Figure out a better way. zx_handle_t vmo; zx_status_t status = _zx_vmo_create(size, 0, &vmo); if (status == ZX_OK) { status = _zx_vmo_write(vmo, reinterpret_cast(beg), 0, size); _zx_handle_close(vmo); } return status == ZX_OK; } // FIXME implement on this platform. void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) {} bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size, uptr *read_len, uptr max_len, error_t *errno_p) { zx_handle_t vmo; zx_status_t status = __sanitizer_get_configuration(file_name, &vmo); if (status == ZX_OK) { uint64_t vmo_size; status = _zx_vmo_get_size(vmo, &vmo_size); if (status == ZX_OK) { if (vmo_size < max_len) max_len = vmo_size; size_t map_size = RoundUpTo(max_len, PAGE_SIZE); uintptr_t addr; status = _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ, 0, vmo, 0, map_size, &addr); if (status == ZX_OK) { *buff = reinterpret_cast(addr); *buff_size = map_size; *read_len = max_len; } } _zx_handle_close(vmo); } if (status != ZX_OK && errno_p) *errno_p = status; return status == ZX_OK; } void RawWrite(const char *buffer) { constexpr size_t size = 128; static _Thread_local char line[size]; static _Thread_local size_t lastLineEnd = 0; static _Thread_local size_t cur = 0; while (*buffer) { if (cur >= size) { if (lastLineEnd == 0) lastLineEnd = size; __sanitizer_log_write(line, lastLineEnd); internal_memmove(line, line + lastLineEnd, cur - lastLineEnd); cur = cur - lastLineEnd; lastLineEnd = 0; } if (*buffer == '\n') lastLineEnd = cur + 1; line[cur++] = *buffer++; } // Flush all complete lines before returning. if (lastLineEnd != 0) { __sanitizer_log_write(line, lastLineEnd); internal_memmove(line, line + lastLineEnd, cur - lastLineEnd); cur = cur - lastLineEnd; lastLineEnd = 0; } } void CatastrophicErrorWrite(const char *buffer, uptr length) { __sanitizer_log_write(buffer, length); } char **StoredArgv; char **StoredEnviron; char **GetArgv() { return StoredArgv; } char **GetEnviron() { return StoredEnviron; } const char *GetEnv(const char *name) { if (StoredEnviron) { uptr NameLen = internal_strlen(name); for (char **Env = StoredEnviron; *Env != 0; Env++) { if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=') return (*Env) + NameLen + 1; } } return nullptr; } uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) { const char *argv0 = ""; if (StoredArgv && StoredArgv[0]) { argv0 = StoredArgv[0]; } internal_strncpy(buf, argv0, buf_len); return internal_strlen(buf); } uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) { return ReadBinaryName(buf, buf_len); } uptr MainThreadStackBase, MainThreadStackSize; bool GetRandom(void *buffer, uptr length, bool blocking) { CHECK_LE(length, ZX_CPRNG_DRAW_MAX_LEN); _zx_cprng_draw(buffer, length); return true; } u32 GetNumberOfCPUs() { return zx_system_get_num_cpus(); } uptr GetRSS() { UNIMPLEMENTED(); } void InitializePlatformCommonFlags(CommonFlags *cf) {} } // namespace __sanitizer using namespace __sanitizer; extern "C" { void __sanitizer_startup_hook(int argc, char **argv, char **envp, void *stack_base, size_t stack_size) { __sanitizer::StoredArgv = argv; __sanitizer::StoredEnviron = envp; __sanitizer::MainThreadStackBase = reinterpret_cast(stack_base); __sanitizer::MainThreadStackSize = stack_size; } void __sanitizer_set_report_path(const char *path) { // Handle the initialization code in each sanitizer, but no other calls. // This setting is never consulted on Fuchsia. DCHECK_EQ(path, common_flags()->log_path); } void __sanitizer_set_report_fd(void *fd) { UNREACHABLE("not available on Fuchsia"); } const char *__sanitizer_get_report_path() { UNREACHABLE("not available on Fuchsia"); } } // extern "C" #endif // SANITIZER_FUCHSIA