/* * Copyright (c) 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "ep_log.h" #include "math.h" #include "../clcmacro.h" _CLC_OVERLOAD _CLC_DEF float acosh(float x) { uint ux = as_uint(x); // Arguments greater than 1/sqrt(epsilon) in magnitude are // approximated by acosh(x) = ln(2) + ln(x) // For 2.0 <= x <= 1/sqrt(epsilon) the approximation is // acosh(x) = ln(x + sqrt(x*x-1)) */ int high = ux > 0x46000000U; int med = ux > 0x40000000U; float w = x - 1.0f; float s = w*w + 2.0f*w; float t = x*x - 1.0f; float r = sqrt(med ? t : s) + (med ? x : w); float v = (high ? x : r) - (med ? 1.0f : 0.0f); float z = log1p(v) + (high ? 0x1.62e430p-1f : 0.0f); z = ux >= PINFBITPATT_SP32 ? x : z; z = x < 1.0f ? as_float(QNANBITPATT_SP32) : z; return z; } _CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, acosh, float) #ifdef cl_khr_fp64 #pragma OPENCL EXTENSION cl_khr_fp64 : enable _CLC_OVERLOAD _CLC_DEF double acosh(double x) { const double recrteps = 0x1.6a09e667f3bcdp+26; // 1/sqrt(eps) = 9.49062656242515593767e+07 //log2_lead and log2_tail sum to an extra-precise version of log(2) const double log2_lead = 0x1.62e42ep-1; const double log2_tail = 0x1.efa39ef35793cp-25; // Handle x >= 128 here int xlarge = x > recrteps; double r = x + sqrt(fma(x, x, -1.0)); r = xlarge ? x : r; int xexp; double r1, r2; __clc_ep_log(r, &xexp, &r1, &r2); double dxexp = xexp + xlarge; r1 = fma(dxexp, log2_lead, r1); r2 = fma(dxexp, log2_tail, r2); double ret1 = r1 + r2; // Handle 1 < x < 128 here // We compute the value // t = x - 1.0 + sqrt(2.0*(x - 1.0) + (x - 1.0)*(x - 1.0)) // using simulated quad precision. double t = x - 1.0; double u1 = t * 2.0; // (t,0) * (t,0) -> (v1, v2) double v1 = t * t; double v2 = fma(t, t, -v1); // (u1,0) + (v1,v2) -> (w1,w2) r = u1 + v1; double s = (((u1 - r) + v1) + v2); double w1 = r + s; double w2 = (r - w1) + s; // sqrt(w1,w2) -> (u1,u2) double p1 = sqrt(w1); double a1 = p1*p1; double a2 = fma(p1, p1, -a1); double temp = (((w1 - a1) - a2) + w2); double p2 = MATH_DIVIDE(temp * 0.5, p1); u1 = p1 + p2; double u2 = (p1 - u1) + p2; // (u1,u2) + (t,0) -> (r1,r2) r = u1 + t; s = ((u1 - r) + t) + u2; // r1 = r + s; // r2 = (r - r1) + s; // t = r1 + r2; t = r + s; // For arguments 1.13 <= x <= 1.5 the log1p function is good enough double ret2 = log1p(t); ulong ux = as_ulong(x); double ret = x >= 128.0 ? ret1 : ret2; ret = ux >= 0x7FF0000000000000 ? x : ret; ret = x == 1.0 ? 0.0 : ret; ret = (ux & SIGNBIT_DP64) != 0UL | x < 1.0 ? as_double(QNANBITPATT_DP64) : ret; return ret; } _CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, acosh, double) #endif