//===-- BreakpointResolver.cpp --------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "lldb/Breakpoint/BreakpointResolver.h" #include "lldb/Breakpoint/Breakpoint.h" #include "lldb/Breakpoint/BreakpointLocation.h" // Have to include the other breakpoint resolver types here so the static // create from StructuredData can call them. #include "lldb/Breakpoint/BreakpointResolverAddress.h" #include "lldb/Breakpoint/BreakpointResolverFileLine.h" #include "lldb/Breakpoint/BreakpointResolverFileRegex.h" #include "lldb/Breakpoint/BreakpointResolverName.h" #include "lldb/Breakpoint/BreakpointResolverScripted.h" #include "lldb/Core/Address.h" #include "lldb/Core/ModuleList.h" #include "lldb/Core/SearchFilter.h" #include "lldb/Symbol/CompileUnit.h" #include "lldb/Symbol/Function.h" #include "lldb/Symbol/SymbolContext.h" #include "lldb/Target/Target.h" #include "lldb/Utility/Log.h" #include "lldb/Utility/Stream.h" #include "lldb/Utility/StreamString.h" using namespace lldb_private; using namespace lldb; // BreakpointResolver: const char *BreakpointResolver::g_ty_to_name[] = {"FileAndLine", "Address", "SymbolName", "SourceRegex", "Python", "Exception", "Unknown"}; const char *BreakpointResolver::g_option_names[static_cast( BreakpointResolver::OptionNames::LastOptionName)] = { "AddressOffset", "Exact", "FileName", "Inlines", "Language", "LineNumber", "Column", "ModuleName", "NameMask", "Offset", "PythonClass", "Regex", "ScriptArgs", "SectionName", "SearchDepth", "SkipPrologue", "SymbolNames"}; const char *BreakpointResolver::ResolverTyToName(enum ResolverTy type) { if (type > LastKnownResolverType) return g_ty_to_name[UnknownResolver]; return g_ty_to_name[type]; } BreakpointResolver::ResolverTy BreakpointResolver::NameToResolverTy(llvm::StringRef name) { for (size_t i = 0; i < LastKnownResolverType; i++) { if (name == g_ty_to_name[i]) return (ResolverTy)i; } return UnknownResolver; } BreakpointResolver::BreakpointResolver(const BreakpointSP &bkpt, const unsigned char resolverTy, lldb::addr_t offset) : m_breakpoint(bkpt), m_offset(offset), SubclassID(resolverTy) {} BreakpointResolver::~BreakpointResolver() {} BreakpointResolverSP BreakpointResolver::CreateFromStructuredData( const StructuredData::Dictionary &resolver_dict, Status &error) { BreakpointResolverSP result_sp; if (!resolver_dict.IsValid()) { error.SetErrorString("Can't deserialize from an invalid data object."); return result_sp; } llvm::StringRef subclass_name; bool success = resolver_dict.GetValueForKeyAsString( GetSerializationSubclassKey(), subclass_name); if (!success) { error.SetErrorString("Resolver data missing subclass resolver key"); return result_sp; } ResolverTy resolver_type = NameToResolverTy(subclass_name); if (resolver_type == UnknownResolver) { error.SetErrorStringWithFormatv("Unknown resolver type: {0}.", subclass_name); return result_sp; } StructuredData::Dictionary *subclass_options = nullptr; success = resolver_dict.GetValueForKeyAsDictionary( GetSerializationSubclassOptionsKey(), subclass_options); if (!success || !subclass_options || !subclass_options->IsValid()) { error.SetErrorString("Resolver data missing subclass options key."); return result_sp; } lldb::addr_t offset; success = subclass_options->GetValueForKeyAsInteger( GetKey(OptionNames::Offset), offset); if (!success) { error.SetErrorString("Resolver data missing offset options key."); return result_sp; } BreakpointResolver *resolver; switch (resolver_type) { case FileLineResolver: resolver = BreakpointResolverFileLine::CreateFromStructuredData( nullptr, *subclass_options, error); break; case AddressResolver: resolver = BreakpointResolverAddress::CreateFromStructuredData( nullptr, *subclass_options, error); break; case NameResolver: resolver = BreakpointResolverName::CreateFromStructuredData( nullptr, *subclass_options, error); break; case FileRegexResolver: resolver = BreakpointResolverFileRegex::CreateFromStructuredData( nullptr, *subclass_options, error); break; case PythonResolver: resolver = BreakpointResolverScripted::CreateFromStructuredData( nullptr, *subclass_options, error); break; case ExceptionResolver: error.SetErrorString("Exception resolvers are hard."); break; default: llvm_unreachable("Should never get an unresolvable resolver type."); } if (!error.Success()) { return result_sp; } else { // Add on the global offset option: resolver->SetOffset(offset); return BreakpointResolverSP(resolver); } } StructuredData::DictionarySP BreakpointResolver::WrapOptionsDict( StructuredData::DictionarySP options_dict_sp) { if (!options_dict_sp || !options_dict_sp->IsValid()) return StructuredData::DictionarySP(); StructuredData::DictionarySP type_dict_sp(new StructuredData::Dictionary()); type_dict_sp->AddStringItem(GetSerializationSubclassKey(), GetResolverName()); type_dict_sp->AddItem(GetSerializationSubclassOptionsKey(), options_dict_sp); // Add the m_offset to the dictionary: options_dict_sp->AddIntegerItem(GetKey(OptionNames::Offset), m_offset); return type_dict_sp; } void BreakpointResolver::SetBreakpoint(const BreakpointSP &bkpt) { assert(bkpt); m_breakpoint = bkpt; NotifyBreakpointSet(); } void BreakpointResolver::ResolveBreakpointInModules(SearchFilter &filter, ModuleList &modules) { filter.SearchInModuleList(*this, modules); } void BreakpointResolver::ResolveBreakpoint(SearchFilter &filter) { filter.Search(*this); } namespace { struct SourceLoc { uint32_t line = UINT32_MAX; uint32_t column; SourceLoc(uint32_t l, uint32_t c) : line(l), column(c ? c : UINT32_MAX) {} SourceLoc(const SymbolContext &sc) : line(sc.line_entry.line), column(sc.line_entry.column ? sc.line_entry.column : UINT32_MAX) {} }; bool operator<(const SourceLoc a, const SourceLoc b) { if (a.line < b.line) return true; if (a.line > b.line) return false; uint32_t a_col = a.column ? a.column : UINT32_MAX; uint32_t b_col = b.column ? b.column : UINT32_MAX; return a_col < b_col; } } // namespace void BreakpointResolver::SetSCMatchesByLine(SearchFilter &filter, SymbolContextList &sc_list, bool skip_prologue, llvm::StringRef log_ident, uint32_t line, uint32_t column) { llvm::SmallVector all_scs; for (uint32_t i = 0; i < sc_list.GetSize(); ++i) all_scs.push_back(sc_list[i]); while (all_scs.size()) { uint32_t closest_line = UINT32_MAX; // Move all the elements with a matching file spec to the end. auto &match = all_scs[0]; auto worklist_begin = std::partition( all_scs.begin(), all_scs.end(), [&](const SymbolContext &sc) { if (sc.line_entry.file == match.line_entry.file || sc.line_entry.original_file == match.line_entry.original_file) { // When a match is found, keep track of the smallest line number. closest_line = std::min(closest_line, sc.line_entry.line); return false; } return true; }); // (worklist_begin, worklist_end) now contains all entries for one filespec. auto worklist_end = all_scs.end(); if (column) { // If a column was requested, do a more precise match and only // return the first location that comes after or at the // requested location. SourceLoc requested(line, column); // First, filter out all entries left of the requested column. worklist_end = std::remove_if( worklist_begin, worklist_end, [&](const SymbolContext &sc) { return SourceLoc(sc) < requested; }); // Sort the remaining entries by (line, column). llvm::sort(worklist_begin, worklist_end, [](const SymbolContext &a, const SymbolContext &b) { return SourceLoc(a) < SourceLoc(b); }); // Filter out all locations with a source location after the closest match. if (worklist_begin != worklist_end) worklist_end = std::remove_if( worklist_begin, worklist_end, [&](const SymbolContext &sc) { return SourceLoc(*worklist_begin) < SourceLoc(sc); }); } else { // Remove all entries with a larger line number. // ResolveSymbolContext will always return a number that is >= // the line number you pass in. So the smaller line number is // always better. worklist_end = std::remove_if(worklist_begin, worklist_end, [&](const SymbolContext &sc) { return closest_line != sc.line_entry.line; }); } // Sort by file address. llvm::sort(worklist_begin, worklist_end, [](const SymbolContext &a, const SymbolContext &b) { return a.line_entry.range.GetBaseAddress().GetFileAddress() < b.line_entry.range.GetBaseAddress().GetFileAddress(); }); // Go through and see if there are line table entries that are // contiguous, and if so keep only the first of the contiguous range. // We do this by picking the first location in each lexical block. llvm::SmallDenseSet blocks_with_breakpoints; for (auto first = worklist_begin; first != worklist_end; ++first) { assert(!blocks_with_breakpoints.count(first->block)); blocks_with_breakpoints.insert(first->block); worklist_end = std::remove_if(std::next(first), worklist_end, [&](const SymbolContext &sc) { return blocks_with_breakpoints.count(sc.block); }); } // Make breakpoints out of the closest line number match. for (auto &sc : llvm::make_range(worklist_begin, worklist_end)) AddLocation(filter, sc, skip_prologue, log_ident); // Remove all contexts processed by this iteration. all_scs.erase(worklist_begin, all_scs.end()); } } void BreakpointResolver::AddLocation(SearchFilter &filter, const SymbolContext &sc, bool skip_prologue, llvm::StringRef log_ident) { Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); Address line_start = sc.line_entry.range.GetBaseAddress(); if (!line_start.IsValid()) { LLDB_LOGF(log, "error: Unable to set breakpoint %s at file address " "0x%" PRIx64 "\n", log_ident.str().c_str(), line_start.GetFileAddress()); return; } if (!filter.AddressPasses(line_start)) { LLDB_LOGF(log, "Breakpoint %s at file address 0x%" PRIx64 " didn't pass the filter.\n", log_ident.str().c_str(), line_start.GetFileAddress()); } // If the line number is before the prologue end, move it there... bool skipped_prologue = false; if (skip_prologue && sc.function) { Address prologue_addr(sc.function->GetAddressRange().GetBaseAddress()); if (prologue_addr.IsValid() && (line_start == prologue_addr)) { const uint32_t prologue_byte_size = sc.function->GetPrologueByteSize(); if (prologue_byte_size) { prologue_addr.Slide(prologue_byte_size); if (filter.AddressPasses(prologue_addr)) { skipped_prologue = true; line_start = prologue_addr; } } } } BreakpointLocationSP bp_loc_sp(AddLocation(line_start)); if (log && bp_loc_sp && !GetBreakpoint()->IsInternal()) { StreamString s; bp_loc_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); LLDB_LOGF(log, "Added location (skipped prologue: %s): %s \n", skipped_prologue ? "yes" : "no", s.GetData()); } } BreakpointLocationSP BreakpointResolver::AddLocation(Address loc_addr, bool *new_location) { loc_addr.Slide(m_offset); return GetBreakpoint()->AddLocation(loc_addr, new_location); } void BreakpointResolver::SetOffset(lldb::addr_t offset) { // There may already be an offset, so we are actually adjusting location // addresses by the difference. // lldb::addr_t slide = offset - m_offset; // FIXME: We should go fix up all the already set locations for the new // slide. m_offset = offset; }