//===-- DynamicLoaderDarwinKernel.cpp -------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "Plugins/Platform/MacOSX/PlatformDarwinKernel.h" #include "lldb/Breakpoint/StoppointCallbackContext.h" #include "lldb/Core/Debugger.h" #include "lldb/Core/Module.h" #include "lldb/Core/ModuleSpec.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/Section.h" #include "lldb/Core/StreamFile.h" #include "lldb/Interpreter/OptionValueProperties.h" #include "lldb/Symbol/LocateSymbolFile.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Target/OperatingSystem.h" #include "lldb/Target/RegisterContext.h" #include "lldb/Target/StackFrame.h" #include "lldb/Target/Target.h" #include "lldb/Target/Thread.h" #include "lldb/Target/ThreadPlanRunToAddress.h" #include "lldb/Utility/DataBuffer.h" #include "lldb/Utility/DataBufferHeap.h" #include "lldb/Utility/Log.h" #include "lldb/Utility/State.h" #include "DynamicLoaderDarwinKernel.h" #include #include //#define ENABLE_DEBUG_PRINTF // COMMENT THIS LINE OUT PRIOR TO CHECKIN #ifdef ENABLE_DEBUG_PRINTF #include #define DEBUG_PRINTF(fmt, ...) printf(fmt, ##__VA_ARGS__) #else #define DEBUG_PRINTF(fmt, ...) #endif using namespace lldb; using namespace lldb_private; LLDB_PLUGIN_DEFINE(DynamicLoaderDarwinKernel) // Progressively greater amounts of scanning we will allow For some targets // very early in startup, we can't do any random reads of memory or we can // crash the device so a setting is needed that can completely disable the // KASLR scans. enum KASLRScanType { eKASLRScanNone = 0, // No reading into the inferior at all eKASLRScanLowgloAddresses, // Check one word of memory for a possible kernel // addr, then see if a kernel is there eKASLRScanNearPC, // Scan backwards from the current $pc looking for kernel; // checking at 96 locations total eKASLRScanExhaustiveScan // Scan through the entire possible kernel address // range looking for a kernel }; static constexpr OptionEnumValueElement g_kaslr_kernel_scan_enum_values[] = { { eKASLRScanNone, "none", "Do not read memory looking for a Darwin kernel when attaching.", }, { eKASLRScanLowgloAddresses, "basic", "Check for the Darwin kernel's load addr in the lowglo page " "(boot-args=debug) only.", }, { eKASLRScanNearPC, "fast-scan", "Scan near the pc value on attach to find the Darwin kernel's load " "address.", }, { eKASLRScanExhaustiveScan, "exhaustive-scan", "Scan through the entire potential address range of Darwin kernel " "(only on 32-bit targets).", }, }; #define LLDB_PROPERTIES_dynamicloaderdarwinkernel #include "DynamicLoaderDarwinKernelProperties.inc" enum { #define LLDB_PROPERTIES_dynamicloaderdarwinkernel #include "DynamicLoaderDarwinKernelPropertiesEnum.inc" }; class DynamicLoaderDarwinKernelProperties : public Properties { public: static ConstString &GetSettingName() { static ConstString g_setting_name("darwin-kernel"); return g_setting_name; } DynamicLoaderDarwinKernelProperties() : Properties() { m_collection_sp = std::make_shared(GetSettingName()); m_collection_sp->Initialize(g_dynamicloaderdarwinkernel_properties); } ~DynamicLoaderDarwinKernelProperties() override {} bool GetLoadKexts() const { const uint32_t idx = ePropertyLoadKexts; return m_collection_sp->GetPropertyAtIndexAsBoolean( nullptr, idx, g_dynamicloaderdarwinkernel_properties[idx].default_uint_value != 0); } KASLRScanType GetScanType() const { const uint32_t idx = ePropertyScanType; return (KASLRScanType)m_collection_sp->GetPropertyAtIndexAsEnumeration( nullptr, idx, g_dynamicloaderdarwinkernel_properties[idx].default_uint_value); } }; typedef std::shared_ptr DynamicLoaderDarwinKernelPropertiesSP; static const DynamicLoaderDarwinKernelPropertiesSP &GetGlobalProperties() { static DynamicLoaderDarwinKernelPropertiesSP g_settings_sp; if (!g_settings_sp) g_settings_sp = std::make_shared(); return g_settings_sp; } // Create an instance of this class. This function is filled into the plugin // info class that gets handed out by the plugin factory and allows the lldb to // instantiate an instance of this class. DynamicLoader *DynamicLoaderDarwinKernel::CreateInstance(Process *process, bool force) { if (!force) { // If the user provided an executable binary and it is not a kernel, this // plugin should not create an instance. Module *exe_module = process->GetTarget().GetExecutableModulePointer(); if (exe_module) { ObjectFile *object_file = exe_module->GetObjectFile(); if (object_file) { if (object_file->GetStrata() != ObjectFile::eStrataKernel) { return nullptr; } } } // If the target's architecture does not look like an Apple environment, // this plugin should not create an instance. const llvm::Triple &triple_ref = process->GetTarget().GetArchitecture().GetTriple(); switch (triple_ref.getOS()) { case llvm::Triple::Darwin: case llvm::Triple::MacOSX: case llvm::Triple::IOS: case llvm::Triple::TvOS: case llvm::Triple::WatchOS: // NEED_BRIDGEOS_TRIPLE case llvm::Triple::BridgeOS: if (triple_ref.getVendor() != llvm::Triple::Apple) { return nullptr; } break; // If we have triple like armv7-unknown-unknown, we should try looking for // a Darwin kernel. case llvm::Triple::UnknownOS: break; default: return nullptr; break; } } // At this point if there is an ExecutableModule, it is a kernel and the // Target is some variant of an Apple system. If the Process hasn't provided // the kernel load address, we need to look around in memory to find it. const addr_t kernel_load_address = SearchForDarwinKernel(process); if (CheckForKernelImageAtAddress(kernel_load_address, process).IsValid()) { process->SetCanRunCode(false); return new DynamicLoaderDarwinKernel(process, kernel_load_address); } return nullptr; } lldb::addr_t DynamicLoaderDarwinKernel::SearchForDarwinKernel(Process *process) { addr_t kernel_load_address = process->GetImageInfoAddress(); if (kernel_load_address == LLDB_INVALID_ADDRESS) { kernel_load_address = SearchForKernelAtSameLoadAddr(process); if (kernel_load_address == LLDB_INVALID_ADDRESS) { kernel_load_address = SearchForKernelWithDebugHints(process); if (kernel_load_address == LLDB_INVALID_ADDRESS) { kernel_load_address = SearchForKernelNearPC(process); if (kernel_load_address == LLDB_INVALID_ADDRESS) { kernel_load_address = SearchForKernelViaExhaustiveSearch(process); } } } } return kernel_load_address; } // Check if the kernel binary is loaded in memory without a slide. First verify // that the ExecutableModule is a kernel before we proceed. Returns the address // of the kernel if one was found, else LLDB_INVALID_ADDRESS. lldb::addr_t DynamicLoaderDarwinKernel::SearchForKernelAtSameLoadAddr(Process *process) { Module *exe_module = process->GetTarget().GetExecutableModulePointer(); if (exe_module == nullptr) return LLDB_INVALID_ADDRESS; ObjectFile *exe_objfile = exe_module->GetObjectFile(); if (exe_objfile == nullptr) return LLDB_INVALID_ADDRESS; if (exe_objfile->GetType() != ObjectFile::eTypeExecutable || exe_objfile->GetStrata() != ObjectFile::eStrataKernel) return LLDB_INVALID_ADDRESS; if (!exe_objfile->GetBaseAddress().IsValid()) return LLDB_INVALID_ADDRESS; if (CheckForKernelImageAtAddress( exe_objfile->GetBaseAddress().GetFileAddress(), process) == exe_module->GetUUID()) return exe_objfile->GetBaseAddress().GetFileAddress(); return LLDB_INVALID_ADDRESS; } // If the debug flag is included in the boot-args nvram setting, the kernel's // load address will be noted in the lowglo page at a fixed address Returns the // address of the kernel if one was found, else LLDB_INVALID_ADDRESS. lldb::addr_t DynamicLoaderDarwinKernel::SearchForKernelWithDebugHints(Process *process) { if (GetGlobalProperties()->GetScanType() == eKASLRScanNone) return LLDB_INVALID_ADDRESS; Status read_err; addr_t kernel_addresses_64[] = { 0xfffffff000002010ULL, 0xfffffff000004010ULL, // newest arm64 devices 0xffffff8000004010ULL, // 2014-2015-ish arm64 devices 0xffffff8000002010ULL, // oldest arm64 devices LLDB_INVALID_ADDRESS}; addr_t kernel_addresses_32[] = {0xffff0110, // 2016 and earlier armv7 devices 0xffff1010, LLDB_INVALID_ADDRESS}; uint8_t uval[8]; if (process->GetAddressByteSize() == 8) { for (size_t i = 0; kernel_addresses_64[i] != LLDB_INVALID_ADDRESS; i++) { if (process->ReadMemoryFromInferior (kernel_addresses_64[i], uval, 8, read_err) == 8) { DataExtractor data (&uval, 8, process->GetByteOrder(), process->GetAddressByteSize()); offset_t offset = 0; uint64_t addr = data.GetU64 (&offset); if (CheckForKernelImageAtAddress(addr, process).IsValid()) { return addr; } } } } if (process->GetAddressByteSize() == 4) { for (size_t i = 0; kernel_addresses_32[i] != LLDB_INVALID_ADDRESS; i++) { if (process->ReadMemoryFromInferior (kernel_addresses_32[i], uval, 4, read_err) == 4) { DataExtractor data (&uval, 4, process->GetByteOrder(), process->GetAddressByteSize()); offset_t offset = 0; uint32_t addr = data.GetU32 (&offset); if (CheckForKernelImageAtAddress(addr, process).IsValid()) { return addr; } } } } return LLDB_INVALID_ADDRESS; } // If the kernel is currently executing when lldb attaches, and we don't have a // better way of finding the kernel's load address, try searching backwards // from the current pc value looking for the kernel's Mach header in memory. // Returns the address of the kernel if one was found, else // LLDB_INVALID_ADDRESS. lldb::addr_t DynamicLoaderDarwinKernel::SearchForKernelNearPC(Process *process) { if (GetGlobalProperties()->GetScanType() == eKASLRScanNone || GetGlobalProperties()->GetScanType() == eKASLRScanLowgloAddresses) { return LLDB_INVALID_ADDRESS; } ThreadSP thread = process->GetThreadList().GetSelectedThread(); if (thread.get() == nullptr) return LLDB_INVALID_ADDRESS; addr_t pc = thread->GetRegisterContext()->GetPC(LLDB_INVALID_ADDRESS); int ptrsize = process->GetTarget().GetArchitecture().GetAddressByteSize(); // The kernel is always loaded in high memory, if the top bit is zero, // this isn't a kernel. if (ptrsize == 8) { if ((pc & (1ULL << 63)) == 0) { return LLDB_INVALID_ADDRESS; } } else { if ((pc & (1ULL << 31)) == 0) { return LLDB_INVALID_ADDRESS; } } if (pc == LLDB_INVALID_ADDRESS) return LLDB_INVALID_ADDRESS; int pagesize = 0x4000; // 16k pages on 64-bit targets if (ptrsize == 4) pagesize = 0x1000; // 4k pages on 32-bit targets // The kernel will be loaded on a page boundary. // Round the current pc down to the nearest page boundary. addr_t addr = pc & ~(pagesize - 1ULL); // Search backwards for 32 megabytes, or first memory read error. while (pc - addr < 32 * 0x100000) { bool read_error; if (CheckForKernelImageAtAddress(addr, process, &read_error).IsValid()) return addr; // Stop scanning on the first read error we encounter; we've walked // past this executable block of memory. if (read_error == true) break; addr -= pagesize; } return LLDB_INVALID_ADDRESS; } // Scan through the valid address range for a kernel binary. This is uselessly // slow in 64-bit environments so we don't even try it. This scan is not // enabled by default even for 32-bit targets. Returns the address of the // kernel if one was found, else LLDB_INVALID_ADDRESS. lldb::addr_t DynamicLoaderDarwinKernel::SearchForKernelViaExhaustiveSearch( Process *process) { if (GetGlobalProperties()->GetScanType() != eKASLRScanExhaustiveScan) { return LLDB_INVALID_ADDRESS; } addr_t kernel_range_low, kernel_range_high; if (process->GetTarget().GetArchitecture().GetAddressByteSize() == 8) { kernel_range_low = 1ULL << 63; kernel_range_high = UINT64_MAX; } else { kernel_range_low = 1ULL << 31; kernel_range_high = UINT32_MAX; } // Stepping through memory at one-megabyte resolution looking for a kernel // rarely works (fast enough) with a 64-bit address space -- for now, let's // not even bother. We may be attaching to something which *isn't* a kernel // and we don't want to spin for minutes on-end looking for a kernel. if (process->GetTarget().GetArchitecture().GetAddressByteSize() == 8) return LLDB_INVALID_ADDRESS; addr_t addr = kernel_range_low; while (addr >= kernel_range_low && addr < kernel_range_high) { // x86_64 kernels are at offset 0 if (CheckForKernelImageAtAddress(addr, process).IsValid()) return addr; // 32-bit arm kernels are at offset 0x1000 (one 4k page) if (CheckForKernelImageAtAddress(addr + 0x1000, process).IsValid()) return addr + 0x1000; // 64-bit arm kernels are at offset 0x4000 (one 16k page) if (CheckForKernelImageAtAddress(addr + 0x4000, process).IsValid()) return addr + 0x4000; addr += 0x100000; } return LLDB_INVALID_ADDRESS; } // Read the mach_header struct out of memory and return it. // Returns true if the mach_header was successfully read, // Returns false if there was a problem reading the header, or it was not // a Mach-O header. bool DynamicLoaderDarwinKernel::ReadMachHeader(addr_t addr, Process *process, llvm::MachO::mach_header &header, bool *read_error) { Status error; if (read_error) *read_error = false; // Read the mach header and see whether it looks like a kernel if (process->DoReadMemory (addr, &header, sizeof(header), error) != sizeof(header)) { if (read_error) *read_error = true; return false; } const uint32_t magicks[] = { llvm::MachO::MH_MAGIC_64, llvm::MachO::MH_MAGIC, llvm::MachO::MH_CIGAM, llvm::MachO::MH_CIGAM_64}; bool found_matching_pattern = false; for (size_t i = 0; i < llvm::array_lengthof (magicks); i++) if (::memcmp (&header.magic, &magicks[i], sizeof (uint32_t)) == 0) found_matching_pattern = true; if (!found_matching_pattern) return false; if (header.magic == llvm::MachO::MH_CIGAM || header.magic == llvm::MachO::MH_CIGAM_64) { header.magic = llvm::ByteSwap_32(header.magic); header.cputype = llvm::ByteSwap_32(header.cputype); header.cpusubtype = llvm::ByteSwap_32(header.cpusubtype); header.filetype = llvm::ByteSwap_32(header.filetype); header.ncmds = llvm::ByteSwap_32(header.ncmds); header.sizeofcmds = llvm::ByteSwap_32(header.sizeofcmds); header.flags = llvm::ByteSwap_32(header.flags); } return true; } // Given an address in memory, look to see if there is a kernel image at that // address. // Returns a UUID; if a kernel was not found at that address, UUID.IsValid() // will be false. lldb_private::UUID DynamicLoaderDarwinKernel::CheckForKernelImageAtAddress(lldb::addr_t addr, Process *process, bool *read_error) { Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_DYNAMIC_LOADER)); if (addr == LLDB_INVALID_ADDRESS) { if (read_error) *read_error = true; return UUID(); } LLDB_LOGF(log, "DynamicLoaderDarwinKernel::CheckForKernelImageAtAddress: " "looking for kernel binary at 0x%" PRIx64, addr); llvm::MachO::mach_header header; if (!ReadMachHeader(addr, process, header, read_error)) return UUID(); // First try a quick test -- read the first 4 bytes and see if there is a // valid Mach-O magic field there // (the first field of the mach_header/mach_header_64 struct). // A kernel is an executable which does not have the dynamic link object flag // set. if (header.filetype == llvm::MachO::MH_EXECUTE && (header.flags & llvm::MachO::MH_DYLDLINK) == 0) { // Create a full module to get the UUID ModuleSP memory_module_sp = process->ReadModuleFromMemory(FileSpec("temp_mach_kernel"), addr); if (!memory_module_sp.get()) return UUID(); ObjectFile *exe_objfile = memory_module_sp->GetObjectFile(); if (exe_objfile == nullptr) { LLDB_LOGF(log, "DynamicLoaderDarwinKernel::CheckForKernelImageAtAddress " "found a binary at 0x%" PRIx64 " but could not create an object file from memory", addr); return UUID(); } if (exe_objfile->GetType() == ObjectFile::eTypeExecutable && exe_objfile->GetStrata() == ObjectFile::eStrataKernel) { ArchSpec kernel_arch(eArchTypeMachO, header.cputype, header.cpusubtype); if (!process->GetTarget().GetArchitecture().IsCompatibleMatch( kernel_arch)) { process->GetTarget().SetArchitecture(kernel_arch); } if (log) { std::string uuid_str; if (memory_module_sp->GetUUID().IsValid()) { uuid_str = "with UUID "; uuid_str += memory_module_sp->GetUUID().GetAsString(); } else { uuid_str = "and no LC_UUID found in load commands "; } LLDB_LOGF( log, "DynamicLoaderDarwinKernel::CheckForKernelImageAtAddress: " "kernel binary image found at 0x%" PRIx64 " with arch '%s' %s", addr, kernel_arch.GetTriple().str().c_str(), uuid_str.c_str()); } return memory_module_sp->GetUUID(); } } return UUID(); } // Constructor DynamicLoaderDarwinKernel::DynamicLoaderDarwinKernel(Process *process, lldb::addr_t kernel_addr) : DynamicLoader(process), m_kernel_load_address(kernel_addr), m_kernel(), m_kext_summary_header_ptr_addr(), m_kext_summary_header_addr(), m_kext_summary_header(), m_known_kexts(), m_mutex(), m_break_id(LLDB_INVALID_BREAK_ID) { Status error; PlatformSP platform_sp( Platform::Create(PlatformDarwinKernel::GetPluginNameStatic(), error)); if (platform_sp.get()) process->GetTarget().SetPlatform(platform_sp); } // Destructor DynamicLoaderDarwinKernel::~DynamicLoaderDarwinKernel() { Clear(true); } void DynamicLoaderDarwinKernel::UpdateIfNeeded() { LoadKernelModuleIfNeeded(); SetNotificationBreakpointIfNeeded(); } /// Called after attaching a process. /// /// Allow DynamicLoader plug-ins to execute some code after /// attaching to a process. void DynamicLoaderDarwinKernel::DidAttach() { PrivateInitialize(m_process); UpdateIfNeeded(); } /// Called after attaching a process. /// /// Allow DynamicLoader plug-ins to execute some code after /// attaching to a process. void DynamicLoaderDarwinKernel::DidLaunch() { PrivateInitialize(m_process); UpdateIfNeeded(); } // Clear out the state of this class. void DynamicLoaderDarwinKernel::Clear(bool clear_process) { std::lock_guard guard(m_mutex); if (m_process->IsAlive() && LLDB_BREAK_ID_IS_VALID(m_break_id)) m_process->ClearBreakpointSiteByID(m_break_id); if (clear_process) m_process = nullptr; m_kernel.Clear(); m_known_kexts.clear(); m_kext_summary_header_ptr_addr.Clear(); m_kext_summary_header_addr.Clear(); m_break_id = LLDB_INVALID_BREAK_ID; } bool DynamicLoaderDarwinKernel::KextImageInfo::LoadImageAtFileAddress( Process *process) { if (IsLoaded()) return true; if (m_module_sp) { bool changed = false; if (m_module_sp->SetLoadAddress(process->GetTarget(), 0, true, changed)) m_load_process_stop_id = process->GetStopID(); } return false; } void DynamicLoaderDarwinKernel::KextImageInfo::SetModule(ModuleSP module_sp) { m_module_sp = module_sp; if (module_sp.get() && module_sp->GetObjectFile()) { if (module_sp->GetObjectFile()->GetType() == ObjectFile::eTypeExecutable && module_sp->GetObjectFile()->GetStrata() == ObjectFile::eStrataKernel) { m_kernel_image = true; } else { m_kernel_image = false; } } } ModuleSP DynamicLoaderDarwinKernel::KextImageInfo::GetModule() { return m_module_sp; } void DynamicLoaderDarwinKernel::KextImageInfo::SetLoadAddress( addr_t load_addr) { m_load_address = load_addr; } addr_t DynamicLoaderDarwinKernel::KextImageInfo::GetLoadAddress() const { return m_load_address; } uint64_t DynamicLoaderDarwinKernel::KextImageInfo::GetSize() const { return m_size; } void DynamicLoaderDarwinKernel::KextImageInfo::SetSize(uint64_t size) { m_size = size; } uint32_t DynamicLoaderDarwinKernel::KextImageInfo::GetProcessStopId() const { return m_load_process_stop_id; } void DynamicLoaderDarwinKernel::KextImageInfo::SetProcessStopId( uint32_t stop_id) { m_load_process_stop_id = stop_id; } bool DynamicLoaderDarwinKernel::KextImageInfo:: operator==(const KextImageInfo &rhs) { if (m_uuid.IsValid() || rhs.GetUUID().IsValid()) { return m_uuid == rhs.GetUUID(); } return m_name == rhs.GetName() && m_load_address == rhs.GetLoadAddress(); } void DynamicLoaderDarwinKernel::KextImageInfo::SetName(const char *name) { m_name = name; } std::string DynamicLoaderDarwinKernel::KextImageInfo::GetName() const { return m_name; } void DynamicLoaderDarwinKernel::KextImageInfo::SetUUID(const UUID &uuid) { m_uuid = uuid; } UUID DynamicLoaderDarwinKernel::KextImageInfo::GetUUID() const { return m_uuid; } // Given the m_load_address from the kext summaries, and a UUID, try to create // an in-memory Module at that address. Require that the MemoryModule have a // matching UUID and detect if this MemoryModule is a kernel or a kext. // // Returns true if m_memory_module_sp is now set to a valid Module. bool DynamicLoaderDarwinKernel::KextImageInfo::ReadMemoryModule( Process *process) { Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); if (m_memory_module_sp.get() != nullptr) return true; if (m_load_address == LLDB_INVALID_ADDRESS) return false; FileSpec file_spec(m_name.c_str()); llvm::MachO::mach_header mh; size_t size_to_read = 512; if (ReadMachHeader(m_load_address, process, mh)) { if (mh.magic == llvm::MachO::MH_CIGAM || mh.magic == llvm::MachO::MH_MAGIC) size_to_read = sizeof(llvm::MachO::mach_header) + mh.sizeofcmds; if (mh.magic == llvm::MachO::MH_CIGAM_64 || mh.magic == llvm::MachO::MH_MAGIC_64) size_to_read = sizeof(llvm::MachO::mach_header_64) + mh.sizeofcmds; } ModuleSP memory_module_sp = process->ReadModuleFromMemory(file_spec, m_load_address, size_to_read); if (memory_module_sp.get() == nullptr) return false; bool is_kernel = false; if (memory_module_sp->GetObjectFile()) { if (memory_module_sp->GetObjectFile()->GetType() == ObjectFile::eTypeExecutable && memory_module_sp->GetObjectFile()->GetStrata() == ObjectFile::eStrataKernel) { is_kernel = true; } else if (memory_module_sp->GetObjectFile()->GetType() == ObjectFile::eTypeSharedLibrary) { is_kernel = false; } } // If this is a kext, and the kernel specified what UUID we should find at // this load address, require that the memory module have a matching UUID or // something has gone wrong and we should discard it. if (m_uuid.IsValid()) { if (m_uuid != memory_module_sp->GetUUID()) { if (log) { LLDB_LOGF(log, "KextImageInfo::ReadMemoryModule the kernel said to find " "uuid %s at 0x%" PRIx64 " but instead we found uuid %s, throwing it away", m_uuid.GetAsString().c_str(), m_load_address, memory_module_sp->GetUUID().GetAsString().c_str()); } return false; } } // If the in-memory Module has a UUID, let's use that. if (!m_uuid.IsValid() && memory_module_sp->GetUUID().IsValid()) { m_uuid = memory_module_sp->GetUUID(); } m_memory_module_sp = memory_module_sp; m_kernel_image = is_kernel; if (is_kernel) { if (log) { // This is unusual and probably not intended LLDB_LOGF(log, "KextImageInfo::ReadMemoryModule read the kernel binary out " "of memory"); } if (memory_module_sp->GetArchitecture().IsValid()) { process->GetTarget().SetArchitecture(memory_module_sp->GetArchitecture()); } if (m_uuid.IsValid()) { ModuleSP exe_module_sp = process->GetTarget().GetExecutableModule(); if (exe_module_sp.get() && exe_module_sp->GetUUID().IsValid()) { if (m_uuid != exe_module_sp->GetUUID()) { // The user specified a kernel binary that has a different UUID than // the kernel actually running in memory. This never ends well; // clear the user specified kernel binary from the Target. m_module_sp.reset(); ModuleList user_specified_kernel_list; user_specified_kernel_list.Append(exe_module_sp); process->GetTarget().GetImages().Remove(user_specified_kernel_list); } } } } return true; } bool DynamicLoaderDarwinKernel::KextImageInfo::IsKernel() const { return m_kernel_image; } void DynamicLoaderDarwinKernel::KextImageInfo::SetIsKernel(bool is_kernel) { m_kernel_image = is_kernel; } bool DynamicLoaderDarwinKernel::KextImageInfo::LoadImageUsingMemoryModule( Process *process) { if (IsLoaded()) return true; Target &target = process->GetTarget(); // kexts will have a uuid from the table. // for the kernel, we'll need to read the load commands out of memory to get it. if (m_uuid.IsValid() == false) { if (ReadMemoryModule(process) == false) { Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_DYNAMIC_LOADER)); LLDB_LOGF(log, "Unable to read '%s' from memory at address 0x%" PRIx64 " to get the segment load addresses.", m_name.c_str(), m_load_address); return false; } } if (IsKernel() && m_uuid.IsValid()) { Stream &s = target.GetDebugger().GetOutputStream(); s.Printf("Kernel UUID: %s\n", m_uuid.GetAsString().c_str()); s.Printf("Load Address: 0x%" PRIx64 "\n", m_load_address); } if (!m_module_sp) { // See if the kext has already been loaded into the target, probably by the // user doing target modules add. const ModuleList &target_images = target.GetImages(); m_module_sp = target_images.FindModule(m_uuid); // Search for the kext on the local filesystem via the UUID if (!m_module_sp && m_uuid.IsValid()) { ModuleSpec module_spec; module_spec.GetUUID() = m_uuid; module_spec.GetArchitecture() = target.GetArchitecture(); // For the kernel, we really do need an on-disk file copy of the binary // to do anything useful. This will force a call to dsymForUUID if it // exists, instead of depending on the DebugSymbols preferences being // set. if (IsKernel()) { if (Symbols::DownloadObjectAndSymbolFile(module_spec, true)) { if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) { m_module_sp = std::make_shared(module_spec.GetFileSpec(), target.GetArchitecture()); } } } // If the current platform is PlatformDarwinKernel, create a ModuleSpec // with the filename set to be the bundle ID for this kext, e.g. // "com.apple.filesystems.msdosfs", and ask the platform to find it. // PlatformDarwinKernel does a special scan for kexts on the local // system. PlatformSP platform_sp(target.GetPlatform()); if (!m_module_sp && platform_sp) { ConstString platform_name(platform_sp->GetPluginName()); static ConstString g_platform_name( PlatformDarwinKernel::GetPluginNameStatic()); if (platform_name == g_platform_name) { ModuleSpec kext_bundle_module_spec(module_spec); FileSpec kext_filespec(m_name.c_str()); FileSpecList search_paths = target.GetExecutableSearchPaths(); kext_bundle_module_spec.GetFileSpec() = kext_filespec; platform_sp->GetSharedModule(kext_bundle_module_spec, process, m_module_sp, &search_paths, nullptr, nullptr); } } // Ask the Target to find this file on the local system, if possible. // This will search in the list of currently-loaded files, look in the // standard search paths on the system, and on a Mac it will try calling // the DebugSymbols framework with the UUID to find the binary via its // search methods. if (!m_module_sp) { m_module_sp = target.GetOrCreateModule(module_spec, true /* notify */); } if (IsKernel() && !m_module_sp) { Stream &s = target.GetDebugger().GetOutputStream(); s.Printf("WARNING: Unable to locate kernel binary on the debugger " "system.\n"); } } // If we managed to find a module, append it to the target's list of // images. If we also have a memory module, require that they have matching // UUIDs if (m_module_sp) { if (m_uuid.IsValid() && m_module_sp->GetUUID() == m_uuid) { target.GetImages().AppendIfNeeded(m_module_sp, false); if (IsKernel() && target.GetExecutableModulePointer() != m_module_sp.get()) { target.SetExecutableModule(m_module_sp, eLoadDependentsNo); } } } } // If we've found a binary, read the load commands out of memory so we // can set the segment load addresses. if (m_module_sp) ReadMemoryModule (process); static ConstString g_section_name_LINKEDIT("__LINKEDIT"); if (m_memory_module_sp && m_module_sp) { if (m_module_sp->GetUUID() == m_memory_module_sp->GetUUID()) { ObjectFile *ondisk_object_file = m_module_sp->GetObjectFile(); ObjectFile *memory_object_file = m_memory_module_sp->GetObjectFile(); if (memory_object_file && ondisk_object_file) { // The memory_module for kexts may have an invalid __LINKEDIT seg; skip // it. const bool ignore_linkedit = !IsKernel(); SectionList *ondisk_section_list = ondisk_object_file->GetSectionList(); SectionList *memory_section_list = memory_object_file->GetSectionList(); if (memory_section_list && ondisk_section_list) { const uint32_t num_ondisk_sections = ondisk_section_list->GetSize(); // There may be CTF sections in the memory image so we can't always // just compare the number of sections (which are actually segments // in mach-o parlance) uint32_t sect_idx = 0; // Use the memory_module's addresses for each section to set the file // module's load address as appropriate. We don't want to use a // single slide value for the entire kext - different segments may be // slid different amounts by the kext loader. uint32_t num_sections_loaded = 0; for (sect_idx = 0; sect_idx < num_ondisk_sections; ++sect_idx) { SectionSP ondisk_section_sp( ondisk_section_list->GetSectionAtIndex(sect_idx)); if (ondisk_section_sp) { // Don't ever load __LINKEDIT as it may or may not be actually // mapped into memory and there is no current way to tell. // I filed rdar://problem/12851706 to track being able to tell // if the __LINKEDIT is actually mapped, but until then, we need // to not load the __LINKEDIT if (ignore_linkedit && ondisk_section_sp->GetName() == g_section_name_LINKEDIT) continue; const Section *memory_section = memory_section_list ->FindSectionByName(ondisk_section_sp->GetName()) .get(); if (memory_section) { target.SetSectionLoadAddress(ondisk_section_sp, memory_section->GetFileAddress()); ++num_sections_loaded; } } } if (num_sections_loaded > 0) m_load_process_stop_id = process->GetStopID(); else m_module_sp.reset(); // No sections were loaded } else m_module_sp.reset(); // One or both section lists } else m_module_sp.reset(); // One or both object files missing } else m_module_sp.reset(); // UUID mismatch } bool is_loaded = IsLoaded(); if (is_loaded && m_module_sp && IsKernel()) { Stream &s = target.GetDebugger().GetOutputStream(); ObjectFile *kernel_object_file = m_module_sp->GetObjectFile(); if (kernel_object_file) { addr_t file_address = kernel_object_file->GetBaseAddress().GetFileAddress(); if (m_load_address != LLDB_INVALID_ADDRESS && file_address != LLDB_INVALID_ADDRESS) { s.Printf("Kernel slid 0x%" PRIx64 " in memory.\n", m_load_address - file_address); } } { s.Printf("Loaded kernel file %s\n", m_module_sp->GetFileSpec().GetPath().c_str()); } s.Flush(); } // Notify the target about the module being added; // set breakpoints, load dSYM scripts, etc. as needed. if (is_loaded && m_module_sp) { ModuleList loaded_module_list; loaded_module_list.Append(m_module_sp); target.ModulesDidLoad(loaded_module_list); } return is_loaded; } uint32_t DynamicLoaderDarwinKernel::KextImageInfo::GetAddressByteSize() { if (m_memory_module_sp) return m_memory_module_sp->GetArchitecture().GetAddressByteSize(); if (m_module_sp) return m_module_sp->GetArchitecture().GetAddressByteSize(); return 0; } lldb::ByteOrder DynamicLoaderDarwinKernel::KextImageInfo::GetByteOrder() { if (m_memory_module_sp) return m_memory_module_sp->GetArchitecture().GetByteOrder(); if (m_module_sp) return m_module_sp->GetArchitecture().GetByteOrder(); return endian::InlHostByteOrder(); } lldb_private::ArchSpec DynamicLoaderDarwinKernel::KextImageInfo::GetArchitecture() const { if (m_memory_module_sp) return m_memory_module_sp->GetArchitecture(); if (m_module_sp) return m_module_sp->GetArchitecture(); return lldb_private::ArchSpec(); } // Load the kernel module and initialize the "m_kernel" member. Return true // _only_ if the kernel is loaded the first time through (subsequent calls to // this function should return false after the kernel has been already loaded). void DynamicLoaderDarwinKernel::LoadKernelModuleIfNeeded() { if (!m_kext_summary_header_ptr_addr.IsValid()) { m_kernel.Clear(); m_kernel.SetModule(m_process->GetTarget().GetExecutableModule()); m_kernel.SetIsKernel(true); ConstString kernel_name("mach_kernel"); if (m_kernel.GetModule().get() && m_kernel.GetModule()->GetObjectFile() && !m_kernel.GetModule() ->GetObjectFile() ->GetFileSpec() .GetFilename() .IsEmpty()) { kernel_name = m_kernel.GetModule()->GetObjectFile()->GetFileSpec().GetFilename(); } m_kernel.SetName(kernel_name.AsCString()); if (m_kernel.GetLoadAddress() == LLDB_INVALID_ADDRESS) { m_kernel.SetLoadAddress(m_kernel_load_address); if (m_kernel.GetLoadAddress() == LLDB_INVALID_ADDRESS && m_kernel.GetModule()) { // We didn't get a hint from the process, so we will try the kernel at // the address that it exists at in the file if we have one ObjectFile *kernel_object_file = m_kernel.GetModule()->GetObjectFile(); if (kernel_object_file) { addr_t load_address = kernel_object_file->GetBaseAddress().GetLoadAddress( &m_process->GetTarget()); addr_t file_address = kernel_object_file->GetBaseAddress().GetFileAddress(); if (load_address != LLDB_INVALID_ADDRESS && load_address != 0) { m_kernel.SetLoadAddress(load_address); if (load_address != file_address) { // Don't accidentally relocate the kernel to the File address -- // the Load address has already been set to its actual in-memory // address. Mark it as IsLoaded. m_kernel.SetProcessStopId(m_process->GetStopID()); } } else { m_kernel.SetLoadAddress(file_address); } } } } if (m_kernel.GetLoadAddress() != LLDB_INVALID_ADDRESS) { if (!m_kernel.LoadImageUsingMemoryModule(m_process)) { m_kernel.LoadImageAtFileAddress(m_process); } } // The operating system plugin gets loaded and initialized in // LoadImageUsingMemoryModule when we discover the kernel dSYM. For a core // file in particular, that's the wrong place to do this, since we haven't // fixed up the section addresses yet. So let's redo it here. LoadOperatingSystemPlugin(false); if (m_kernel.IsLoaded() && m_kernel.GetModule()) { static ConstString kext_summary_symbol("gLoadedKextSummaries"); const Symbol *symbol = m_kernel.GetModule()->FindFirstSymbolWithNameAndType( kext_summary_symbol, eSymbolTypeData); if (symbol) { m_kext_summary_header_ptr_addr = symbol->GetAddress(); // Update all image infos ReadAllKextSummaries(); } } else { m_kernel.Clear(); } } } // Static callback function that gets called when our DYLD notification // breakpoint gets hit. We update all of our image infos and then let our super // class DynamicLoader class decide if we should stop or not (based on global // preference). bool DynamicLoaderDarwinKernel::BreakpointHitCallback( void *baton, StoppointCallbackContext *context, user_id_t break_id, user_id_t break_loc_id) { return static_cast(baton)->BreakpointHit( context, break_id, break_loc_id); } bool DynamicLoaderDarwinKernel::BreakpointHit(StoppointCallbackContext *context, user_id_t break_id, user_id_t break_loc_id) { Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_DYNAMIC_LOADER)); LLDB_LOGF(log, "DynamicLoaderDarwinKernel::BreakpointHit (...)\n"); ReadAllKextSummaries(); if (log) PutToLog(log); return GetStopWhenImagesChange(); } bool DynamicLoaderDarwinKernel::ReadKextSummaryHeader() { std::lock_guard guard(m_mutex); // the all image infos is already valid for this process stop ID if (m_kext_summary_header_ptr_addr.IsValid()) { const uint32_t addr_size = m_kernel.GetAddressByteSize(); const ByteOrder byte_order = m_kernel.GetByteOrder(); Status error; // Read enough bytes for a "OSKextLoadedKextSummaryHeader" structure which // is currently 4 uint32_t and a pointer. uint8_t buf[24]; DataExtractor data(buf, sizeof(buf), byte_order, addr_size); const size_t count = 4 * sizeof(uint32_t) + addr_size; const bool prefer_file_cache = false; if (m_process->GetTarget().ReadPointerFromMemory( m_kext_summary_header_ptr_addr, prefer_file_cache, error, m_kext_summary_header_addr)) { // We got a valid address for our kext summary header and make sure it // isn't NULL if (m_kext_summary_header_addr.IsValid() && m_kext_summary_header_addr.GetFileAddress() != 0) { const size_t bytes_read = m_process->GetTarget().ReadMemory( m_kext_summary_header_addr, prefer_file_cache, buf, count, error); if (bytes_read == count) { lldb::offset_t offset = 0; m_kext_summary_header.version = data.GetU32(&offset); if (m_kext_summary_header.version > 128) { Stream &s = m_process->GetTarget().GetDebugger().GetOutputStream(); s.Printf("WARNING: Unable to read kext summary header, got " "improbable version number %u\n", m_kext_summary_header.version); // If we get an improbably large version number, we're probably // getting bad memory. m_kext_summary_header_addr.Clear(); return false; } if (m_kext_summary_header.version >= 2) { m_kext_summary_header.entry_size = data.GetU32(&offset); if (m_kext_summary_header.entry_size > 4096) { // If we get an improbably large entry_size, we're probably // getting bad memory. Stream &s = m_process->GetTarget().GetDebugger().GetOutputStream(); s.Printf("WARNING: Unable to read kext summary header, got " "improbable entry_size %u\n", m_kext_summary_header.entry_size); m_kext_summary_header_addr.Clear(); return false; } } else { // Versions less than 2 didn't have an entry size, it was hard // coded m_kext_summary_header.entry_size = KERNEL_MODULE_ENTRY_SIZE_VERSION_1; } m_kext_summary_header.entry_count = data.GetU32(&offset); if (m_kext_summary_header.entry_count > 10000) { // If we get an improbably large number of kexts, we're probably // getting bad memory. Stream &s = m_process->GetTarget().GetDebugger().GetOutputStream(); s.Printf("WARNING: Unable to read kext summary header, got " "improbable number of kexts %u\n", m_kext_summary_header.entry_count); m_kext_summary_header_addr.Clear(); return false; } return true; } } } } m_kext_summary_header_addr.Clear(); return false; } // We've either (a) just attached to a new kernel, or (b) the kexts-changed // breakpoint was hit and we need to figure out what kexts have been added or // removed. Read the kext summaries from the inferior kernel memory, compare // them against the m_known_kexts vector and update the m_known_kexts vector as // needed to keep in sync with the inferior. bool DynamicLoaderDarwinKernel::ParseKextSummaries( const Address &kext_summary_addr, uint32_t count) { KextImageInfo::collection kext_summaries; Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_DYNAMIC_LOADER)); LLDB_LOGF(log, "Kexts-changed breakpoint hit, there are %d kexts currently.\n", count); std::lock_guard guard(m_mutex); if (!ReadKextSummaries(kext_summary_addr, count, kext_summaries)) return false; // read the plugin.dynamic-loader.darwin-kernel.load-kexts setting -- if the // user requested no kext loading, don't print any messages about kexts & // don't try to read them. const bool load_kexts = GetGlobalProperties()->GetLoadKexts(); // By default, all kexts we've loaded in the past are marked as "remove" and // all of the kexts we just found out about from ReadKextSummaries are marked // as "add". std::vector to_be_removed(m_known_kexts.size(), true); std::vector to_be_added(count, true); int number_of_new_kexts_being_added = 0; int number_of_old_kexts_being_removed = m_known_kexts.size(); const uint32_t new_kexts_size = kext_summaries.size(); const uint32_t old_kexts_size = m_known_kexts.size(); // The m_known_kexts vector may have entries that have been Cleared, or are a // kernel. for (uint32_t old_kext = 0; old_kext < old_kexts_size; old_kext++) { bool ignore = false; KextImageInfo &image_info = m_known_kexts[old_kext]; if (image_info.IsKernel()) { ignore = true; } else if (image_info.GetLoadAddress() == LLDB_INVALID_ADDRESS && !image_info.GetModule()) { ignore = true; } if (ignore) { number_of_old_kexts_being_removed--; to_be_removed[old_kext] = false; } } // Scan over the list of kexts we just read from the kernel, note those that // need to be added and those already loaded. for (uint32_t new_kext = 0; new_kext < new_kexts_size; new_kext++) { bool add_this_one = true; for (uint32_t old_kext = 0; old_kext < old_kexts_size; old_kext++) { if (m_known_kexts[old_kext] == kext_summaries[new_kext]) { // We already have this kext, don't re-load it. to_be_added[new_kext] = false; // This kext is still present, do not remove it. to_be_removed[old_kext] = false; number_of_old_kexts_being_removed--; add_this_one = false; break; } } // If this "kext" entry is actually an alias for the kernel -- the kext was // compiled into the kernel or something -- then we don't want to load the // kernel's text section at a different address. Ignore this kext entry. if (kext_summaries[new_kext].GetUUID().IsValid() && m_kernel.GetUUID().IsValid() && kext_summaries[new_kext].GetUUID() == m_kernel.GetUUID()) { to_be_added[new_kext] = false; break; } if (add_this_one) { number_of_new_kexts_being_added++; } } if (number_of_new_kexts_being_added == 0 && number_of_old_kexts_being_removed == 0) return true; Stream &s = m_process->GetTarget().GetDebugger().GetOutputStream(); if (load_kexts) { if (number_of_new_kexts_being_added > 0 && number_of_old_kexts_being_removed > 0) { s.Printf("Loading %d kext modules and unloading %d kext modules ", number_of_new_kexts_being_added, number_of_old_kexts_being_removed); } else if (number_of_new_kexts_being_added > 0) { s.Printf("Loading %d kext modules ", number_of_new_kexts_being_added); } else if (number_of_old_kexts_being_removed > 0) { s.Printf("Unloading %d kext modules ", number_of_old_kexts_being_removed); } } if (log) { if (load_kexts) { LLDB_LOGF(log, "DynamicLoaderDarwinKernel::ParseKextSummaries: %d kexts " "added, %d kexts removed", number_of_new_kexts_being_added, number_of_old_kexts_being_removed); } else { LLDB_LOGF(log, "DynamicLoaderDarwinKernel::ParseKextSummaries kext loading is " "disabled, else would have %d kexts added, %d kexts removed", number_of_new_kexts_being_added, number_of_old_kexts_being_removed); } } // Build up a list of for any kexts that fail to load std::vector> kexts_failed_to_load; if (number_of_new_kexts_being_added > 0) { ModuleList loaded_module_list; const uint32_t num_of_new_kexts = kext_summaries.size(); for (uint32_t new_kext = 0; new_kext < num_of_new_kexts; new_kext++) { if (to_be_added[new_kext]) { KextImageInfo &image_info = kext_summaries[new_kext]; bool kext_successfully_added = true; if (load_kexts) { if (!image_info.LoadImageUsingMemoryModule(m_process)) { kexts_failed_to_load.push_back(std::pair( kext_summaries[new_kext].GetName(), kext_summaries[new_kext].GetUUID())); image_info.LoadImageAtFileAddress(m_process); kext_successfully_added = false; } } m_known_kexts.push_back(image_info); if (image_info.GetModule() && m_process->GetStopID() == image_info.GetProcessStopId()) loaded_module_list.AppendIfNeeded(image_info.GetModule()); if (load_kexts) { if (kext_successfully_added) s.Printf("."); else s.Printf("-"); } if (log) kext_summaries[new_kext].PutToLog(log); } } m_process->GetTarget().ModulesDidLoad(loaded_module_list); } if (number_of_old_kexts_being_removed > 0) { ModuleList loaded_module_list; const uint32_t num_of_old_kexts = m_known_kexts.size(); for (uint32_t old_kext = 0; old_kext < num_of_old_kexts; old_kext++) { ModuleList unloaded_module_list; if (to_be_removed[old_kext]) { KextImageInfo &image_info = m_known_kexts[old_kext]; // You can't unload the kernel. if (!image_info.IsKernel()) { if (image_info.GetModule()) { unloaded_module_list.AppendIfNeeded(image_info.GetModule()); } s.Printf("."); image_info.Clear(); // should pull it out of the KextImageInfos vector but that would // mutate the list and invalidate the to_be_removed bool vector; // leaving it in place once Cleared() is relatively harmless. } } m_process->GetTarget().ModulesDidUnload(unloaded_module_list, false); } } if (load_kexts) { s.Printf(" done.\n"); if (kexts_failed_to_load.size() > 0 && number_of_new_kexts_being_added > 0) { s.Printf("Failed to load %d of %d kexts:\n", (int)kexts_failed_to_load.size(), number_of_new_kexts_being_added); // print a sorted list of kexts which failed to load unsigned longest_name = 0; std::sort(kexts_failed_to_load.begin(), kexts_failed_to_load.end()); for (const auto &ku : kexts_failed_to_load) { if (ku.first.size() > longest_name) longest_name = ku.first.size(); } for (const auto &ku : kexts_failed_to_load) { std::string uuid; if (ku.second.IsValid()) uuid = ku.second.GetAsString(); s.Printf(" %-*s %s\n", longest_name, ku.first.c_str(), uuid.c_str()); } } s.Flush(); } return true; } uint32_t DynamicLoaderDarwinKernel::ReadKextSummaries( const Address &kext_summary_addr, uint32_t image_infos_count, KextImageInfo::collection &image_infos) { const ByteOrder endian = m_kernel.GetByteOrder(); const uint32_t addr_size = m_kernel.GetAddressByteSize(); image_infos.resize(image_infos_count); const size_t count = image_infos.size() * m_kext_summary_header.entry_size; DataBufferHeap data(count, 0); Status error; const bool prefer_file_cache = false; const size_t bytes_read = m_process->GetTarget().ReadMemory( kext_summary_addr, prefer_file_cache, data.GetBytes(), data.GetByteSize(), error); if (bytes_read == count) { DataExtractor extractor(data.GetBytes(), data.GetByteSize(), endian, addr_size); uint32_t i = 0; for (uint32_t kext_summary_offset = 0; i < image_infos.size() && extractor.ValidOffsetForDataOfSize(kext_summary_offset, m_kext_summary_header.entry_size); ++i, kext_summary_offset += m_kext_summary_header.entry_size) { lldb::offset_t offset = kext_summary_offset; const void *name_data = extractor.GetData(&offset, KERNEL_MODULE_MAX_NAME); if (name_data == nullptr) break; image_infos[i].SetName((const char *)name_data); UUID uuid = UUID::fromOptionalData(extractor.GetData(&offset, 16), 16); image_infos[i].SetUUID(uuid); image_infos[i].SetLoadAddress(extractor.GetU64(&offset)); image_infos[i].SetSize(extractor.GetU64(&offset)); } if (i < image_infos.size()) image_infos.resize(i); } else { image_infos.clear(); } return image_infos.size(); } bool DynamicLoaderDarwinKernel::ReadAllKextSummaries() { std::lock_guard guard(m_mutex); if (ReadKextSummaryHeader()) { if (m_kext_summary_header.entry_count > 0 && m_kext_summary_header_addr.IsValid()) { Address summary_addr(m_kext_summary_header_addr); summary_addr.Slide(m_kext_summary_header.GetSize()); if (!ParseKextSummaries(summary_addr, m_kext_summary_header.entry_count)) { m_known_kexts.clear(); } return true; } } return false; } // Dump an image info structure to the file handle provided. void DynamicLoaderDarwinKernel::KextImageInfo::PutToLog(Log *log) const { if (m_load_address == LLDB_INVALID_ADDRESS) { LLDB_LOG(log, "uuid={0} name=\"{1}\" (UNLOADED)", m_uuid.GetAsString(), m_name); } else { LLDB_LOG(log, "addr={0:x+16} size={1:x+16} uuid={2} name=\"{3}\"", m_load_address, m_size, m_uuid.GetAsString(), m_name); } } // Dump the _dyld_all_image_infos members and all current image infos that we // have parsed to the file handle provided. void DynamicLoaderDarwinKernel::PutToLog(Log *log) const { if (log == nullptr) return; std::lock_guard guard(m_mutex); LLDB_LOGF(log, "gLoadedKextSummaries = 0x%16.16" PRIx64 " { version=%u, entry_size=%u, entry_count=%u }", m_kext_summary_header_addr.GetFileAddress(), m_kext_summary_header.version, m_kext_summary_header.entry_size, m_kext_summary_header.entry_count); size_t i; const size_t count = m_known_kexts.size(); if (count > 0) { log->PutCString("Loaded:"); for (i = 0; i < count; i++) m_known_kexts[i].PutToLog(log); } } void DynamicLoaderDarwinKernel::PrivateInitialize(Process *process) { DEBUG_PRINTF("DynamicLoaderDarwinKernel::%s() process state = %s\n", __FUNCTION__, StateAsCString(m_process->GetState())); Clear(true); m_process = process; } void DynamicLoaderDarwinKernel::SetNotificationBreakpointIfNeeded() { if (m_break_id == LLDB_INVALID_BREAK_ID && m_kernel.GetModule()) { DEBUG_PRINTF("DynamicLoaderDarwinKernel::%s() process state = %s\n", __FUNCTION__, StateAsCString(m_process->GetState())); const bool internal_bp = true; const bool hardware = false; const LazyBool skip_prologue = eLazyBoolNo; FileSpecList module_spec_list; module_spec_list.Append(m_kernel.GetModule()->GetFileSpec()); Breakpoint *bp = m_process->GetTarget() .CreateBreakpoint(&module_spec_list, nullptr, "OSKextLoadedKextSummariesUpdated", eFunctionNameTypeFull, eLanguageTypeUnknown, 0, skip_prologue, internal_bp, hardware) .get(); bp->SetCallback(DynamicLoaderDarwinKernel::BreakpointHitCallback, this, true); m_break_id = bp->GetID(); } } // Member function that gets called when the process state changes. void DynamicLoaderDarwinKernel::PrivateProcessStateChanged(Process *process, StateType state) { DEBUG_PRINTF("DynamicLoaderDarwinKernel::%s(%s)\n", __FUNCTION__, StateAsCString(state)); switch (state) { case eStateConnected: case eStateAttaching: case eStateLaunching: case eStateInvalid: case eStateUnloaded: case eStateExited: case eStateDetached: Clear(false); break; case eStateStopped: UpdateIfNeeded(); break; case eStateRunning: case eStateStepping: case eStateCrashed: case eStateSuspended: break; } } ThreadPlanSP DynamicLoaderDarwinKernel::GetStepThroughTrampolinePlan(Thread &thread, bool stop_others) { ThreadPlanSP thread_plan_sp; Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_STEP)); LLDB_LOGF(log, "Could not find symbol for step through."); return thread_plan_sp; } Status DynamicLoaderDarwinKernel::CanLoadImage() { Status error; error.SetErrorString( "always unsafe to load or unload shared libraries in the darwin kernel"); return error; } void DynamicLoaderDarwinKernel::Initialize() { PluginManager::RegisterPlugin(GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance, DebuggerInitialize); } void DynamicLoaderDarwinKernel::Terminate() { PluginManager::UnregisterPlugin(CreateInstance); } void DynamicLoaderDarwinKernel::DebuggerInitialize( lldb_private::Debugger &debugger) { if (!PluginManager::GetSettingForDynamicLoaderPlugin( debugger, DynamicLoaderDarwinKernelProperties::GetSettingName())) { const bool is_global_setting = true; PluginManager::CreateSettingForDynamicLoaderPlugin( debugger, GetGlobalProperties()->GetValueProperties(), ConstString("Properties for the DynamicLoaderDarwinKernel plug-in."), is_global_setting); } } lldb_private::ConstString DynamicLoaderDarwinKernel::GetPluginNameStatic() { static ConstString g_name("darwin-kernel"); return g_name; } const char *DynamicLoaderDarwinKernel::GetPluginDescriptionStatic() { return "Dynamic loader plug-in that watches for shared library loads/unloads " "in the MacOSX kernel."; } // PluginInterface protocol lldb_private::ConstString DynamicLoaderDarwinKernel::GetPluginName() { return GetPluginNameStatic(); } uint32_t DynamicLoaderDarwinKernel::GetPluginVersion() { return 1; } lldb::ByteOrder DynamicLoaderDarwinKernel::GetByteOrderFromMagic(uint32_t magic) { switch (magic) { case llvm::MachO::MH_MAGIC: case llvm::MachO::MH_MAGIC_64: return endian::InlHostByteOrder(); case llvm::MachO::MH_CIGAM: case llvm::MachO::MH_CIGAM_64: if (endian::InlHostByteOrder() == lldb::eByteOrderBig) return lldb::eByteOrderLittle; else return lldb::eByteOrderBig; default: break; } return lldb::eByteOrderInvalid; }