//===-- OperatingSystemPython.cpp -----------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "lldb/Host/Config.h" #if LLDB_ENABLE_PYTHON #include "OperatingSystemPython.h" #include "Plugins/Process/Utility/DynamicRegisterInfo.h" #include "Plugins/Process/Utility/RegisterContextDummy.h" #include "Plugins/Process/Utility/RegisterContextMemory.h" #include "Plugins/Process/Utility/ThreadMemory.h" #include "lldb/Core/Debugger.h" #include "lldb/Core/Module.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/ValueObjectVariable.h" #include "lldb/Interpreter/CommandInterpreter.h" #include "lldb/Interpreter/ScriptInterpreter.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Symbol/VariableList.h" #include "lldb/Target/Process.h" #include "lldb/Target/StopInfo.h" #include "lldb/Target/Target.h" #include "lldb/Target/Thread.h" #include "lldb/Target/ThreadList.h" #include "lldb/Utility/DataBufferHeap.h" #include "lldb/Utility/RegisterValue.h" #include "lldb/Utility/StreamString.h" #include "lldb/Utility/StructuredData.h" #include using namespace lldb; using namespace lldb_private; LLDB_PLUGIN_DEFINE(OperatingSystemPython) void OperatingSystemPython::Initialize() { PluginManager::RegisterPlugin(GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance, nullptr); } void OperatingSystemPython::Terminate() { PluginManager::UnregisterPlugin(CreateInstance); } OperatingSystem *OperatingSystemPython::CreateInstance(Process *process, bool force) { // Python OperatingSystem plug-ins must be requested by name, so force must // be true FileSpec python_os_plugin_spec(process->GetPythonOSPluginPath()); if (python_os_plugin_spec && FileSystem::Instance().Exists(python_os_plugin_spec)) { std::unique_ptr os_up( new OperatingSystemPython(process, python_os_plugin_spec)); if (os_up.get() && os_up->IsValid()) return os_up.release(); } return nullptr; } ConstString OperatingSystemPython::GetPluginNameStatic() { static ConstString g_name("python"); return g_name; } const char *OperatingSystemPython::GetPluginDescriptionStatic() { return "Operating system plug-in that gathers OS information from a python " "class that implements the necessary OperatingSystem functionality."; } OperatingSystemPython::OperatingSystemPython(lldb_private::Process *process, const FileSpec &python_module_path) : OperatingSystem(process), m_thread_list_valobj_sp(), m_register_info_up(), m_interpreter(nullptr), m_python_object_sp() { if (!process) return; TargetSP target_sp = process->CalculateTarget(); if (!target_sp) return; m_interpreter = target_sp->GetDebugger().GetScriptInterpreter(); if (m_interpreter) { std::string os_plugin_class_name( python_module_path.GetFilename().AsCString("")); if (!os_plugin_class_name.empty()) { const bool init_session = false; char python_module_path_cstr[PATH_MAX]; python_module_path.GetPath(python_module_path_cstr, sizeof(python_module_path_cstr)); Status error; if (m_interpreter->LoadScriptingModule(python_module_path_cstr, init_session, error)) { // Strip the ".py" extension if there is one size_t py_extension_pos = os_plugin_class_name.rfind(".py"); if (py_extension_pos != std::string::npos) os_plugin_class_name.erase(py_extension_pos); // Add ".OperatingSystemPlugIn" to the module name to get a string like // "modulename.OperatingSystemPlugIn" os_plugin_class_name += ".OperatingSystemPlugIn"; StructuredData::ObjectSP object_sp = m_interpreter->OSPlugin_CreatePluginObject( os_plugin_class_name.c_str(), process->CalculateProcess()); if (object_sp && object_sp->IsValid()) m_python_object_sp = object_sp; } } } } OperatingSystemPython::~OperatingSystemPython() {} DynamicRegisterInfo *OperatingSystemPython::GetDynamicRegisterInfo() { if (m_register_info_up == nullptr) { if (!m_interpreter || !m_python_object_sp) return nullptr; Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OS)); LLDB_LOGF(log, "OperatingSystemPython::GetDynamicRegisterInfo() fetching " "thread register definitions from python for pid %" PRIu64, m_process->GetID()); StructuredData::DictionarySP dictionary = m_interpreter->OSPlugin_RegisterInfo(m_python_object_sp); if (!dictionary) return nullptr; m_register_info_up = std::make_unique( *dictionary, m_process->GetTarget().GetArchitecture()); assert(m_register_info_up->GetNumRegisters() > 0); assert(m_register_info_up->GetNumRegisterSets() > 0); } return m_register_info_up.get(); } // PluginInterface protocol ConstString OperatingSystemPython::GetPluginName() { return GetPluginNameStatic(); } uint32_t OperatingSystemPython::GetPluginVersion() { return 1; } bool OperatingSystemPython::UpdateThreadList(ThreadList &old_thread_list, ThreadList &core_thread_list, ThreadList &new_thread_list) { if (!m_interpreter || !m_python_object_sp) return false; Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OS)); // First thing we have to do is to try to get the API lock, and the // interpreter lock. We're going to change the thread content of the process, // and we're going to use python, which requires the API lock to do it. We // need the interpreter lock to make sure thread_info_dict stays alive. // // If someone already has the API lock, that is ok, we just want to avoid // external code from making new API calls while this call is happening. // // This is a recursive lock so we can grant it to any Python code called on // the stack below us. Target &target = m_process->GetTarget(); std::unique_lock api_lock(target.GetAPIMutex(), std::defer_lock); (void)api_lock.try_lock(); // See above. auto interpreter_lock = m_interpreter->AcquireInterpreterLock(); LLDB_LOGF(log, "OperatingSystemPython::UpdateThreadList() fetching thread " "data from python for pid %" PRIu64, m_process->GetID()); // The threads that are in "core_thread_list" upon entry are the threads from // the lldb_private::Process subclass, no memory threads will be in this // list. StructuredData::ArraySP threads_list = m_interpreter->OSPlugin_ThreadsInfo(m_python_object_sp); const uint32_t num_cores = core_thread_list.GetSize(false); // Make a map so we can keep track of which cores were used from the // core_thread list. Any real threads/cores that weren't used should later be // put back into the "new_thread_list". std::vector core_used_map(num_cores, false); if (threads_list) { if (log) { StreamString strm; threads_list->Dump(strm); LLDB_LOGF(log, "threads_list = %s", strm.GetData()); } const uint32_t num_threads = threads_list->GetSize(); for (uint32_t i = 0; i < num_threads; ++i) { StructuredData::ObjectSP thread_dict_obj = threads_list->GetItemAtIndex(i); if (auto thread_dict = thread_dict_obj->GetAsDictionary()) { ThreadSP thread_sp(CreateThreadFromThreadInfo( *thread_dict, core_thread_list, old_thread_list, core_used_map, nullptr)); if (thread_sp) new_thread_list.AddThread(thread_sp); } } } // Any real core threads that didn't end up backing a memory thread should // still be in the main thread list, and they should be inserted at the // beginning of the list uint32_t insert_idx = 0; for (uint32_t core_idx = 0; core_idx < num_cores; ++core_idx) { if (!core_used_map[core_idx]) { new_thread_list.InsertThread( core_thread_list.GetThreadAtIndex(core_idx, false), insert_idx); ++insert_idx; } } return new_thread_list.GetSize(false) > 0; } ThreadSP OperatingSystemPython::CreateThreadFromThreadInfo( StructuredData::Dictionary &thread_dict, ThreadList &core_thread_list, ThreadList &old_thread_list, std::vector &core_used_map, bool *did_create_ptr) { ThreadSP thread_sp; tid_t tid = LLDB_INVALID_THREAD_ID; if (!thread_dict.GetValueForKeyAsInteger("tid", tid)) return ThreadSP(); uint32_t core_number; addr_t reg_data_addr; llvm::StringRef name; llvm::StringRef queue; thread_dict.GetValueForKeyAsInteger("core", core_number, UINT32_MAX); thread_dict.GetValueForKeyAsInteger("register_data_addr", reg_data_addr, LLDB_INVALID_ADDRESS); thread_dict.GetValueForKeyAsString("name", name); thread_dict.GetValueForKeyAsString("queue", queue); // See if a thread already exists for "tid" thread_sp = old_thread_list.FindThreadByID(tid, false); if (thread_sp) { // A thread already does exist for "tid", make sure it was an operating // system // plug-in generated thread. if (!IsOperatingSystemPluginThread(thread_sp)) { // We have thread ID overlap between the protocol threads and the // operating system threads, clear the thread so we create an operating // system thread for this. thread_sp.reset(); } } if (!thread_sp) { if (did_create_ptr) *did_create_ptr = true; thread_sp = std::make_shared(*m_process, tid, name, queue, reg_data_addr); } if (core_number < core_thread_list.GetSize(false)) { ThreadSP core_thread_sp( core_thread_list.GetThreadAtIndex(core_number, false)); if (core_thread_sp) { // Keep track of which cores were set as the backing thread for memory // threads... if (core_number < core_used_map.size()) core_used_map[core_number] = true; ThreadSP backing_core_thread_sp(core_thread_sp->GetBackingThread()); if (backing_core_thread_sp) { thread_sp->SetBackingThread(backing_core_thread_sp); } else { thread_sp->SetBackingThread(core_thread_sp); } } } return thread_sp; } void OperatingSystemPython::ThreadWasSelected(Thread *thread) {} RegisterContextSP OperatingSystemPython::CreateRegisterContextForThread(Thread *thread, addr_t reg_data_addr) { RegisterContextSP reg_ctx_sp; if (!m_interpreter || !m_python_object_sp || !thread) return reg_ctx_sp; if (!IsOperatingSystemPluginThread(thread->shared_from_this())) return reg_ctx_sp; // First thing we have to do is to try to get the API lock, and the // interpreter lock. We're going to change the thread content of the process, // and we're going to use python, which requires the API lock to do it. We // need the interpreter lock to make sure thread_info_dict stays alive. // // If someone already has the API lock, that is ok, we just want to avoid // external code from making new API calls while this call is happening. // // This is a recursive lock so we can grant it to any Python code called on // the stack below us. Target &target = m_process->GetTarget(); std::unique_lock api_lock(target.GetAPIMutex(), std::defer_lock); (void)api_lock.try_lock(); // See above. auto interpreter_lock = m_interpreter->AcquireInterpreterLock(); Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_THREAD)); if (reg_data_addr != LLDB_INVALID_ADDRESS) { // The registers data is in contiguous memory, just create the register // context using the address provided LLDB_LOGF(log, "OperatingSystemPython::CreateRegisterContextForThread (tid " "= 0x%" PRIx64 ", 0x%" PRIx64 ", reg_data_addr = 0x%" PRIx64 ") creating memory register context", thread->GetID(), thread->GetProtocolID(), reg_data_addr); reg_ctx_sp = std::make_shared( *thread, 0, *GetDynamicRegisterInfo(), reg_data_addr); } else { // No register data address is provided, query the python plug-in to let it // make up the data as it sees fit LLDB_LOGF(log, "OperatingSystemPython::CreateRegisterContextForThread (tid " "= 0x%" PRIx64 ", 0x%" PRIx64 ") fetching register data from python", thread->GetID(), thread->GetProtocolID()); StructuredData::StringSP reg_context_data = m_interpreter->OSPlugin_RegisterContextData(m_python_object_sp, thread->GetID()); if (reg_context_data) { std::string value = std::string(reg_context_data->GetValue()); DataBufferSP data_sp(new DataBufferHeap(value.c_str(), value.length())); if (data_sp->GetByteSize()) { RegisterContextMemory *reg_ctx_memory = new RegisterContextMemory( *thread, 0, *GetDynamicRegisterInfo(), LLDB_INVALID_ADDRESS); if (reg_ctx_memory) { reg_ctx_sp.reset(reg_ctx_memory); reg_ctx_memory->SetAllRegisterData(data_sp); } } } } // if we still have no register data, fallback on a dummy context to avoid // crashing if (!reg_ctx_sp) { LLDB_LOGF(log, "OperatingSystemPython::CreateRegisterContextForThread (tid " "= 0x%" PRIx64 ") forcing a dummy register context", thread->GetID()); reg_ctx_sp = std::make_shared( *thread, 0, target.GetArchitecture().GetAddressByteSize()); } return reg_ctx_sp; } StopInfoSP OperatingSystemPython::CreateThreadStopReason(lldb_private::Thread *thread) { // We should have gotten the thread stop info from the dictionary of data for // the thread in the initial call to get_thread_info(), this should have been // cached so we can return it here StopInfoSP stop_info_sp; //(StopInfo::CreateStopReasonWithSignal (*thread, SIGSTOP)); return stop_info_sp; } lldb::ThreadSP OperatingSystemPython::CreateThread(lldb::tid_t tid, addr_t context) { Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_THREAD)); LLDB_LOGF(log, "OperatingSystemPython::CreateThread (tid = 0x%" PRIx64 ", context = 0x%" PRIx64 ") fetching register data from python", tid, context); if (m_interpreter && m_python_object_sp) { // First thing we have to do is to try to get the API lock, and the // interpreter lock. We're going to change the thread content of the // process, and we're going to use python, which requires the API lock to // do it. We need the interpreter lock to make sure thread_info_dict stays // alive. // // If someone already has the API lock, that is ok, we just want to avoid // external code from making new API calls while this call is happening. // // This is a recursive lock so we can grant it to any Python code called on // the stack below us. Target &target = m_process->GetTarget(); std::unique_lock api_lock(target.GetAPIMutex(), std::defer_lock); (void)api_lock.try_lock(); // See above. auto interpreter_lock = m_interpreter->AcquireInterpreterLock(); StructuredData::DictionarySP thread_info_dict = m_interpreter->OSPlugin_CreateThread(m_python_object_sp, tid, context); std::vector core_used_map; if (thread_info_dict) { ThreadList core_threads(m_process); ThreadList &thread_list = m_process->GetThreadList(); bool did_create = false; ThreadSP thread_sp( CreateThreadFromThreadInfo(*thread_info_dict, core_threads, thread_list, core_used_map, &did_create)); if (did_create) thread_list.AddThread(thread_sp); return thread_sp; } } return ThreadSP(); } #endif // #if LLDB_ENABLE_PYTHON