// Copyright 2020 The Pigweed Authors // // Licensed under the Apache License, Version 2.0 (the "License"); you may not // use this file except in compliance with the License. You may obtain a copy of // the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the // License for the specific language governing permissions and limitations under // the License. #include #include "gtest/gtest.h" #include "pw_chrono/system_clock.h" #include "pw_preprocessor/util.h" using namespace std::chrono_literals; namespace pw::chrono { namespace { extern "C" { // Functions defined in system_clock_facade_test_c.c which call the API from C. pw_chrono_SystemClock_TimePoint pw_chrono_SystemClock_CallNow(); pw_chrono_SystemClock_Duration pw_chrono_SystemClock_CallTimeElapsed( pw_chrono_SystemClock_TimePoint last_time, pw_chrono_SystemClock_TimePoint current_time); pw_chrono_SystemClock_Nanoseconds pw_chrono_SystemClock_CallDurationToNsFloor( pw_chrono_SystemClock_Duration ticks); } // extern "C" // While testing that the clock ticks (i.e. moves forward) we want to ensure a // failure can be reported instead of deadlocking the test until it passes. // Given that there isn't really a good heuristic for this we instead make some // wild assumptions to bound the maximum busy loop iterations. // - Assume our clock is < 6Ghz // - Assume we can check the clock in a single cycle // - Wait for up to 1/10th of a second @ 6Ghz, this may be a long period on a // slower (i.e. real) machine. constexpr uint64_t kMaxIterations = 6'000'000'000 / 10; TEST(SystemClock, Now) { const SystemClock::time_point start_time = SystemClock::now(); // Verify the clock moves forward. bool clock_moved_forward = false; for (uint64_t i = 0; i < kMaxIterations; ++i) { if (SystemClock::now() > start_time) { clock_moved_forward = true; break; } } EXPECT_TRUE(clock_moved_forward); } TEST(VirtualSystemClock, Now) { auto& clock = VirtualSystemClock::RealClock(); const SystemClock::time_point start_time = clock.now(); // Verify the clock moves forward. bool clock_moved_forward = false; for (uint64_t i = 0; i < kMaxIterations; ++i) { if (clock.now() > start_time) { clock_moved_forward = true; break; } } EXPECT_TRUE(clock_moved_forward); } TEST(SystemClock, NowInC) { const pw_chrono_SystemClock_TimePoint start_time = pw_chrono_SystemClock_CallNow(); // Verify the clock moves forward. bool clock_moved_forward = false; for (uint64_t i = 0; i < kMaxIterations; ++i) { if (pw_chrono_SystemClock_CallNow().duration_since_epoch.ticks > start_time.duration_since_epoch.ticks) { clock_moved_forward = true; break; } } EXPECT_TRUE(clock_moved_forward); } TEST(SystemClock, TimeElapsedInC) { const pw_chrono_SystemClock_TimePoint first = pw_chrono_SystemClock_CallNow(); const pw_chrono_SystemClock_TimePoint last = pw_chrono_SystemClock_CallNow(); static_assert(SystemClock::is_monotonic); EXPECT_GE(0, pw_chrono_SystemClock_CallTimeElapsed(last, first).ticks); } TEST(SystemClock, DurationCastInC) { // We can't control the SystemClock's period configuration, so just in case // 42 hours cannot be accurately expressed in integer ticks, round the // duration w/ floor. static constexpr auto kRoundedArbitraryDuration = std::chrono::floor(42h); static constexpr pw_chrono_SystemClock_Duration kRoundedArbitraryDurationInC = PW_SYSTEM_CLOCK_H_FLOOR(42); EXPECT_EQ( std::chrono::floor(kRoundedArbitraryDuration) .count(), pw_chrono_SystemClock_CallDurationToNsFloor( kRoundedArbitraryDurationInC)); } } // namespace } // namespace pw::chrono