#!/usr/bin/python from __future__ import print_function import keras from keras.models import Sequential from keras.models import Model from keras.layers import Input from keras.layers import Dense from keras.layers import LSTM from keras.layers import GRU from keras.layers import SimpleRNN from keras.layers import Dropout from keras.layers import concatenate from keras import losses from keras import regularizers from keras.constraints import min_max_norm import h5py from keras.constraints import Constraint from keras import backend as K import numpy as np #import tensorflow as tf #from keras.backend.tensorflow_backend import set_session #config = tf.ConfigProto() #config.gpu_options.per_process_gpu_memory_fraction = 0.42 #set_session(tf.Session(config=config)) def my_crossentropy(y_true, y_pred): return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_pred, y_true), axis=-1) def mymask(y_true): return K.minimum(y_true+1., 1.) def msse(y_true, y_pred): return K.mean(mymask(y_true) * K.square(K.sqrt(y_pred) - K.sqrt(y_true)), axis=-1) def mycost(y_true, y_pred): return K.mean(mymask(y_true) * (10*K.square(K.square(K.sqrt(y_pred) - K.sqrt(y_true))) + K.square(K.sqrt(y_pred) - K.sqrt(y_true)) + 0.01*K.binary_crossentropy(y_pred, y_true)), axis=-1) def my_accuracy(y_true, y_pred): return K.mean(2*K.abs(y_true-0.5) * K.equal(y_true, K.round(y_pred)), axis=-1) class WeightClip(Constraint): '''Clips the weights incident to each hidden unit to be inside a range ''' def __init__(self, c=2): self.c = c def __call__(self, p): return K.clip(p, -self.c, self.c) def get_config(self): return {'name': self.__class__.__name__, 'c': self.c} reg = 0.000001 constraint = WeightClip(0.499) print('Build model...') main_input = Input(shape=(None, 42), name='main_input') tmp = Dense(24, activation='tanh', name='input_dense', kernel_constraint=constraint, bias_constraint=constraint)(main_input) vad_gru = GRU(24, activation='tanh', recurrent_activation='sigmoid', return_sequences=True, name='vad_gru', kernel_regularizer=regularizers.l2(reg), recurrent_regularizer=regularizers.l2(reg), kernel_constraint=constraint, recurrent_constraint=constraint, bias_constraint=constraint)(tmp) vad_output = Dense(1, activation='sigmoid', name='vad_output', kernel_constraint=constraint, bias_constraint=constraint)(vad_gru) noise_input = keras.layers.concatenate([tmp, vad_gru, main_input]) noise_gru = GRU(48, activation='relu', recurrent_activation='sigmoid', return_sequences=True, name='noise_gru', kernel_regularizer=regularizers.l2(reg), recurrent_regularizer=regularizers.l2(reg), kernel_constraint=constraint, recurrent_constraint=constraint, bias_constraint=constraint)(noise_input) denoise_input = keras.layers.concatenate([vad_gru, noise_gru, main_input]) denoise_gru = GRU(96, activation='tanh', recurrent_activation='sigmoid', return_sequences=True, name='denoise_gru', kernel_regularizer=regularizers.l2(reg), recurrent_regularizer=regularizers.l2(reg), kernel_constraint=constraint, recurrent_constraint=constraint, bias_constraint=constraint)(denoise_input) denoise_output = Dense(22, activation='sigmoid', name='denoise_output', kernel_constraint=constraint, bias_constraint=constraint)(denoise_gru) model = Model(inputs=main_input, outputs=[denoise_output, vad_output]) model.compile(loss=[mycost, my_crossentropy], metrics=[msse], optimizer='adam', loss_weights=[10, 0.5]) batch_size = 32 print('Loading data...') with h5py.File('training.h5', 'r') as hf: all_data = hf['data'][:] print('done.') window_size = 2000 nb_sequences = len(all_data)//window_size print(nb_sequences, ' sequences') x_train = all_data[:nb_sequences*window_size, :42] x_train = np.reshape(x_train, (nb_sequences, window_size, 42)) y_train = np.copy(all_data[:nb_sequences*window_size, 42:64]) y_train = np.reshape(y_train, (nb_sequences, window_size, 22)) noise_train = np.copy(all_data[:nb_sequences*window_size, 64:86]) noise_train = np.reshape(noise_train, (nb_sequences, window_size, 22)) vad_train = np.copy(all_data[:nb_sequences*window_size, 86:87]) vad_train = np.reshape(vad_train, (nb_sequences, window_size, 1)) all_data = 0; #x_train = x_train.astype('float32') #y_train = y_train.astype('float32') print(len(x_train), 'train sequences. x shape =', x_train.shape, 'y shape = ', y_train.shape) print('Train...') model.fit(x_train, [y_train, vad_train], batch_size=batch_size, epochs=120, validation_split=0.1) model.save("weights.hdf5")