// Copyright 2016 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "Coroutine.hpp" #include "Print.hpp" #include "Reactor.hpp" #include "gtest/gtest.h" #include <array> #include <cmath> #include <filesystem> #include <fstream> #include <thread> #include <tuple> using namespace rr; static std::string testName() { auto info = ::testing::UnitTest::GetInstance()->current_test_info(); return std::string{ info->test_suite_name() } + "_" + info->name(); } int reference(int *p, int y) { int x = p[-1]; int z = 4; for(int i = 0; i < 10; i++) { z += (2 << i) - (i / 3); } int sum = x + y + z; return sum; } TEST(ReactorUnitTests, Sample) { FunctionT<int(int *, int)> function; { Pointer<Int> p = function.Arg<0>(); Int x = p[-1]; Int y = function.Arg<1>(); Int z = 4; For(Int i = 0, i < 10, i++) { z += (2 << i) - (i / 3); } Float4 v; v.z = As<Float>(z); z = As<Int>(Float(Float4(v.xzxx).y)); Int sum = x + y + z; Return(sum); } auto routine = function(testName().c_str()); int one[2] = { 1, 0 }; int result = routine(&one[1], 2); EXPECT_EQ(result, reference(&one[1], 2)); } // This test demonstrates the use of a 'trampoline', where a routine calls // a static function which then generates another routine during the execution // of the first routine. Also note the code generated for the second routine // depends on a parameter passed to the first routine. TEST(ReactorUnitTests, Trampoline) { using SecondaryFunc = int(int, int); static auto generateSecondary = [](int upDown) { FunctionT<SecondaryFunc> secondary; { Int x = secondary.Arg<0>(); Int y = secondary.Arg<1>(); Int r; if(upDown > 0) { r = x + y; } else if(upDown < 0) { r = x - y; } else { r = 0; } Return(r); } static auto routine = secondary((testName() + "_secondary").c_str()); return routine.getEntry(); }; using SecondaryGeneratorFunc = SecondaryFunc *(*)(int); SecondaryGeneratorFunc secondaryGenerator = (SecondaryGeneratorFunc)generateSecondary; using PrimaryFunc = int(int, int, int); FunctionT<PrimaryFunc> primary; { Int x = primary.Arg<0>(); Int y = primary.Arg<1>(); Int z = primary.Arg<2>(); Pointer<Byte> secondary = Call(secondaryGenerator, z); Int r = Call<SecondaryFunc>(secondary, x, y); Return(r); } auto routine = primary((testName() + "_primary").c_str()); int result = routine(100, 20, -3); EXPECT_EQ(result, 80); } TEST(ReactorUnitTests, Uninitialized) { FunctionT<int()> function; { Int a; Int z = 4; Int q; Int c; Int p; Bool b; q += q; If(b) { c = p; } Return(a + z + q + c); } auto routine = function(testName().c_str()); if(!__has_feature(memory_sanitizer) || !REACTOR_ENABLE_MEMORY_SANITIZER_INSTRUMENTATION) { int result = routine(); EXPECT_EQ(result, result); // Anything is fine, just don't crash } else { // Optimizations may turn the conditional If() in the Reactor code // into a conditional move or arithmetic operations, which would not // trigger a MemorySanitizer error. However, in that case the equals // operator below should trigger it before the abort is reached. EXPECT_DEATH( { int result = routine(); if(result == 0) abort(); }, "MemorySanitizer: use-of-uninitialized-value"); } } TEST(ReactorUnitTests, Unreachable) { FunctionT<int(int)> function; { Int a = function.Arg<0>(); Int z = 4; Return(a + z); // Code beyond this point is unreachable but should not cause any // compilation issues. z += a; } auto routine = function(testName().c_str()); int result = routine(16); EXPECT_EQ(result, 20); } // Stopping in the middle of a `Function<>` is supported and should not affect // subsequent complete ones. TEST(ReactorUnitTests, UnfinishedFunction) { do { FunctionT<int(int)> function; { Int a = function.Arg<0>(); Int z = 4; if((true)) break; // Terminate do-while early. Return(a + z); } } while(true); FunctionT<int(int)> function; { Int a = function.Arg<0>(); Int z = 4; Return(a - z); } auto routine = function(testName().c_str()); int result = routine(16); EXPECT_EQ(result, 12); } // Deriving from `Function<>` and using Reactor variables as members can be a // convenient way to 'name' function arguments and compose complex functions // with helper methods. This test checks the interactions between the lifetime // of the `Function<>` and the variables belonging to the derived class. struct FunctionMembers : FunctionT<int(int)> { FunctionMembers() : level(Arg<0>()) { For(Int i = 0, i < 3, i++) { pourSomeMore(); } Return(level); } void pourSomeMore() { level += 2; } Int level; }; TEST(ReactorUnitTests, FunctionMembers) { FunctionMembers function; auto routine = function(testName().c_str()); int result = routine(3); EXPECT_EQ(result, 9); } // This test excercises modifying the value of a local variable through a // pointer to it. TEST(ReactorUnitTests, VariableAddress) { FunctionT<int(int)> function; { Int a = function.Arg<0>(); Int z = 0; Pointer<Int> p = &z; *p = 4; Return(a + z); } auto routine = function(testName().c_str()); int result = routine(16); EXPECT_EQ(result, 20); } // This test exercises taking the address of a local varible at the end of a // loop and modifying its value through the pointer in the second iteration. TEST(ReactorUnitTests, LateVariableAddress) { FunctionT<int(void)> function; { Pointer<Int> p = nullptr; Int a = 0; While(a == 0) { If(p != Pointer<Int>(nullptr)) { *p = 1; } p = &a; } Return(a); } auto routine = function(testName().c_str()); int result = routine(); EXPECT_EQ(result, 1); } // This test checks that the value of a local variable which has been modified // though a pointer is correct at the point before its address is (statically) // obtained. TEST(ReactorUnitTests, LoadAfterIndirectStore) { FunctionT<int(void)> function; { Pointer<Int> p = nullptr; Int a = 0; Int b = 0; While(a == 0) { If(p != Pointer<Int>(nullptr)) { *p = 1; } // `a` must be loaded from memory here, despite not statically knowing // yet that its address will be taken below. b = a + 5; p = &a; } Return(b); } auto routine = function(testName().c_str()); int result = routine(); EXPECT_EQ(result, 6); } // This test checks that variables statically accessed after a Return statement // are still loaded, modified, and stored correctly. TEST(ReactorUnitTests, LoopAfterReturn) { FunctionT<int(void)> function; { Int min = 100; Int max = 200; If(min > max) { Return(5); } While(min < max) { min++; } Return(7); } auto routine = function(testName().c_str()); int result = routine(); EXPECT_EQ(result, 7); } TEST(ReactorUnitTests, ConstantPointer) { int c = 44; FunctionT<int()> function; { Int x = *Pointer<Int>(ConstantPointer(&c)); Return(x); } auto routine = function(testName().c_str()); int result = routine(); EXPECT_EQ(result, 44); } // This test excercises the Optimizer::eliminateLoadsFollowingSingleStore() optimization pass. // The three load operations for `y` should get eliminated. TEST(ReactorUnitTests, EliminateLoadsFollowingSingleStore) { FunctionT<int(int)> function; { Int x = function.Arg<0>(); Int y; Int z; // This branch materializes the variables. If(x != 0) // TODO(b/179922668): Support If(x) { y = x; z = y + y + y; } Return(z); } Nucleus::setOptimizerCallback([](const Nucleus::OptimizerReport *report) { EXPECT_EQ(report->allocas, 2); EXPECT_EQ(report->loads, 2); EXPECT_EQ(report->stores, 2); }); auto routine = function(testName().c_str()); int result = routine(11); EXPECT_EQ(result, 33); } // This test excercises the Optimizer::propagateAlloca() optimization pass. // The pointer variable should not get stored to / loaded from memory. TEST(ReactorUnitTests, PropagateAlloca) { FunctionT<int(int)> function; { Int b = function.Arg<0>(); Int a = 22; Pointer<Int> p; // This branch materializes both `a` and `p`, and ensures single basic block // optimizations don't also eliminate the pointer store and load. If(b != 0) // TODO(b/179922668): Support If(b) { p = &a; } Return(Int(*p)); // TODO(b/179694472): Support Return(*p) } Nucleus::setOptimizerCallback([](const Nucleus::OptimizerReport *report) { EXPECT_EQ(report->allocas, 1); EXPECT_EQ(report->loads, 1); EXPECT_EQ(report->stores, 1); }); auto routine = function(testName().c_str()); int result = routine(true); EXPECT_EQ(result, 22); } // Corner case for Optimizer::propagateAlloca(). It should not replace loading of `p` // with the addres of `a`, since it also got the address of `b` assigned. TEST(ReactorUnitTests, PointerToPointer) { FunctionT<int()> function; { Int a = 444; Int b = 555; Pointer<Int> p = &a; Pointer<Pointer<Int>> pp = &p; p = &b; Return(Int(*Pointer<Int>(*pp))); // TODO(b/179694472): Support **pp } auto routine = function(testName().c_str()); int result = routine(); EXPECT_EQ(result, 555); } // Corner case for Optimizer::propagateAlloca(). It should not replace loading of `p[i]` // with any of the addresses of the `a`, `b`, or `c`. TEST(ReactorUnitTests, ArrayOfPointersToLocals) { FunctionT<int(int)> function; { Int i = function.Arg<0>(); Int a = 111; Int b = 222; Int c = 333; Array<Pointer<Int>, 3> p; p[0] = &a; p[1] = &b; p[2] = &c; Return(Int(*Pointer<Int>(p[i]))); // TODO(b/179694472): Support *p[i] } auto routine = function(testName().c_str()); int result = routine(1); EXPECT_EQ(result, 222); } TEST(ReactorUnitTests, ModifyLocalThroughPointer) { FunctionT<int(void)> function; { Int a = 1; Pointer<Int> p = &a; Pointer<Pointer<Int>> pp = &p; Pointer<Int> q = *pp; *q = 3; Return(a); } auto routine = function(testName().c_str()); int result = routine(); EXPECT_EQ(result, 3); } TEST(ReactorUnitTests, ScalarReplacementOfArray) { FunctionT<int(void)> function; { Array<Int, 2> a; a[0] = 1; a[1] = 2; Return(a[0] + a[1]); } auto routine = function(testName().c_str()); int result = routine(); EXPECT_EQ(result, 3); } TEST(ReactorUnitTests, CArray) { FunctionT<int(void)> function; { Int a[2]; a[0] = 1; a[1] = 2; auto x = a[0]; a[0] = a[1]; a[1] = x; Return(a[0] + a[1]); } auto routine = function(testName().c_str()); int result = routine(); EXPECT_EQ(result, 3); } // SRoA should replace the array elements with scalars, which in turn enables // eliminating all loads and stores. TEST(ReactorUnitTests, ReactorArray) { FunctionT<int(void)> function; { Array<Int, 2> a; a[0] = 1; a[1] = 2; Int x = a[0]; a[0] = a[1]; a[1] = x; Return(a[0] + a[1]); } Nucleus::setOptimizerCallback([](const Nucleus::OptimizerReport *report) { EXPECT_EQ(report->allocas, 0); EXPECT_EQ(report->loads, 0); EXPECT_EQ(report->stores, 0); }); auto routine = function(testName().c_str()); int result = routine(); EXPECT_EQ(result, 3); } // Excercises the optimizeSingleBasicBlockLoadsStores optimization pass. TEST(ReactorUnitTests, StoresInMultipleBlocks) { FunctionT<int(int)> function; { Int b = function.Arg<0>(); Int a = 13; If(b != 0) // TODO(b/179922668): Support If(b) { a = 4; a = a + 3; } Else { a = 6; a = a + 5; } Return(a); } Nucleus::setOptimizerCallback([](const Nucleus::OptimizerReport *report) { EXPECT_EQ(report->allocas, 1); EXPECT_EQ(report->loads, 1); EXPECT_EQ(report->stores, 3); }); auto routine = function(testName().c_str()); int result = routine(true); EXPECT_EQ(result, 7); } // This is similar to the LoadAfterIndirectStore test except that the indirect // store is preceded by a direct store. The subsequent load should not be replaced // by the value written by the direct store. TEST(ReactorUnitTests, StoreBeforeIndirectStore) { FunctionT<int(int)> function; { //Int b = function.Arg<0>(); Int b; Pointer<Int> p = &b; Int a = 13; For(Int i = 0, i < 2, i++) { a = 10; *p = 4; // This load of `a` should not be replaced by the 10 written above, since // in the second iteration `p` points to `a` and writes 4. b = a; p = &a; } Return(b); } auto routine = function(testName().c_str()); int result = routine(true); EXPECT_EQ(result, 4); } TEST(ReactorUnitTests, SubVectorLoadStore) { FunctionT<int(void *, void *)> function; { Pointer<Byte> in = function.Arg<0>(); Pointer<Byte> out = function.Arg<1>(); *Pointer<Int4>(out + 16 * 0) = *Pointer<Int4>(in + 16 * 0); *Pointer<Short4>(out + 16 * 1) = *Pointer<Short4>(in + 16 * 1); *Pointer<Byte8>(out + 16 * 2) = *Pointer<Byte8>(in + 16 * 2); *Pointer<Byte4>(out + 16 * 3) = *Pointer<Byte4>(in + 16 * 3); *Pointer<Short2>(out + 16 * 4) = *Pointer<Short2>(in + 16 * 4); Return(0); } auto routine = function(testName().c_str()); int8_t in[16 * 5] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 0, 0, 0, 0, 0, 0, 0, 0, 25, 26, 27, 28, 29, 30, 31, 32, 0, 0, 0, 0, 0, 0, 0, 0, 33, 34, 35, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 37, 38, 39, 40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; int8_t out[16 * 5] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; routine(in, out); for(int row = 0; row < 5; row++) { for(int col = 0; col < 16; col++) { int i = row * 16 + col; if(in[i] == 0) { EXPECT_EQ(out[i], -1) << "Row " << row << " column " << col << " not left untouched."; } else { EXPECT_EQ(out[i], in[i]) << "Row " << row << " column " << col << " not equal to input."; } } } } TEST(ReactorUnitTests, VectorConstant) { FunctionT<int(void *)> function; { Pointer<Byte> out = function.Arg<0>(); *Pointer<Int4>(out + 16 * 0) = Int4(0x04030201, 0x08070605, 0x0C0B0A09, 0x100F0E0D); *Pointer<Short4>(out + 16 * 1) = Short4(0x1211, 0x1413, 0x1615, 0x1817); *Pointer<Byte8>(out + 16 * 2) = Byte8(0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20); *Pointer<Int2>(out + 16 * 3) = Int2(0x24232221, 0x28272625); Return(0); } auto routine = function(testName().c_str()); int8_t out[16 * 4] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; int8_t exp[16 * 4] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, -1, -1, -1, -1, -1, -1, -1, -1, 25, 26, 27, 28, 29, 30, 31, 32, -1, -1, -1, -1, -1, -1, -1, -1, 33, 34, 35, 36, 37, 38, 39, 40, -1, -1, -1, -1, -1, -1, -1, -1 }; routine(out); for(int row = 0; row < 4; row++) { for(int col = 0; col < 16; col++) { int i = row * 16 + col; EXPECT_EQ(out[i], exp[i]); } } } TEST(ReactorUnitTests, Concatenate) { FunctionT<int(void *)> function; { Pointer<Byte> out = function.Arg<0>(); *Pointer<Int4>(out + 16 * 0) = Int4(Int2(0x04030201, 0x08070605), Int2(0x0C0B0A09, 0x100F0E0D)); *Pointer<Short8>(out + 16 * 1) = Short8(Short4(0x0201, 0x0403, 0x0605, 0x0807), Short4(0x0A09, 0x0C0B, 0x0E0D, 0x100F)); Return(0); } auto routine = function(testName().c_str()); int8_t ref[16 * 5] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 }; int8_t out[16 * 5] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; routine(out); for(int row = 0; row < 2; row++) { for(int col = 0; col < 16; col++) { int i = row * 16 + col; EXPECT_EQ(out[i], ref[i]) << "Row " << row << " column " << col << " not equal to reference."; } } } TEST(ReactorUnitTests, Cast) { FunctionT<void(void *)> function; { Pointer<Byte> out = function.Arg<0>(); Int4 c = Int4(0x01020304, 0x05060708, 0x09101112, 0x13141516); *Pointer<Short4>(out + 16 * 0) = Short4(c); *Pointer<Byte4>(out + 16 * 1 + 0) = Byte4(c); *Pointer<Byte4>(out + 16 * 1 + 4) = Byte4(As<Byte8>(c)); *Pointer<Byte4>(out + 16 * 1 + 8) = Byte4(As<Short4>(c)); } auto routine = function(testName().c_str()); int out[2][4]; memset(&out, 0, sizeof(out)); routine(&out); EXPECT_EQ(out[0][0], 0x07080304); EXPECT_EQ(out[0][1], 0x15161112); EXPECT_EQ(out[1][0], 0x16120804); EXPECT_EQ(out[1][1], 0x01020304); EXPECT_EQ(out[1][2], 0x06080204); } static uint16_t swizzleCode4(int i) { auto x = (i >> 0) & 0x03; auto y = (i >> 2) & 0x03; auto z = (i >> 4) & 0x03; auto w = (i >> 6) & 0x03; return static_cast<uint16_t>((x << 12) | (y << 8) | (z << 4) | (w << 0)); } TEST(ReactorUnitTests, Swizzle4) { FunctionT<void(void *)> function; { Pointer<Byte> out = function.Arg<0>(); for(int i = 0; i < 256; i++) { *Pointer<Float4>(out + 16 * i) = Swizzle(Float4(1.0f, 2.0f, 3.0f, 4.0f), swizzleCode4(i)); } for(int i = 0; i < 256; i++) { *Pointer<Float4>(out + 16 * (256 + i)) = ShuffleLowHigh(Float4(1.0f, 2.0f, 3.0f, 4.0f), Float4(5.0f, 6.0f, 7.0f, 8.0f), swizzleCode4(i)); } *Pointer<Float4>(out + 16 * (512 + 0)) = UnpackLow(Float4(1.0f, 2.0f, 3.0f, 4.0f), Float4(5.0f, 6.0f, 7.0f, 8.0f)); *Pointer<Float4>(out + 16 * (512 + 1)) = UnpackHigh(Float4(1.0f, 2.0f, 3.0f, 4.0f), Float4(5.0f, 6.0f, 7.0f, 8.0f)); *Pointer<Int2>(out + 16 * (512 + 2)) = UnpackLow(Short4(1, 2, 3, 4), Short4(5, 6, 7, 8)); *Pointer<Int2>(out + 16 * (512 + 3)) = UnpackHigh(Short4(1, 2, 3, 4), Short4(5, 6, 7, 8)); *Pointer<Short4>(out + 16 * (512 + 4)) = UnpackLow(Byte8(1, 2, 3, 4, 5, 6, 7, 8), Byte8(9, 10, 11, 12, 13, 14, 15, 16)); *Pointer<Short4>(out + 16 * (512 + 5)) = UnpackHigh(Byte8(1, 2, 3, 4, 5, 6, 7, 8), Byte8(9, 10, 11, 12, 13, 14, 15, 16)); for(int i = 0; i < 256; i++) { *Pointer<Short4>(out + 16 * (512 + 6) + (8 * i)) = Swizzle(Short4(1, 2, 3, 4), swizzleCode4(i)); } for(int i = 0; i < 256; i++) { *Pointer<Int4>(out + 16 * (512 + 6 + i) + (8 * 256)) = Swizzle(Int4(1, 2, 3, 4), swizzleCode4(i)); } } auto routine = function(testName().c_str()); struct { float f[256 + 256 + 2][4]; int i[388][4]; } out; memset(&out, 0, sizeof(out)); routine(&out); for(int i = 0; i < 256; i++) { EXPECT_EQ(out.f[i][0], float((i >> 0) & 0x03) + 1.0f); EXPECT_EQ(out.f[i][1], float((i >> 2) & 0x03) + 1.0f); EXPECT_EQ(out.f[i][2], float((i >> 4) & 0x03) + 1.0f); EXPECT_EQ(out.f[i][3], float((i >> 6) & 0x03) + 1.0f); } for(int i = 0; i < 256; i++) { EXPECT_EQ(out.f[256 + i][0], float((i >> 0) & 0x03) + 1.0f); EXPECT_EQ(out.f[256 + i][1], float((i >> 2) & 0x03) + 1.0f); EXPECT_EQ(out.f[256 + i][2], float((i >> 4) & 0x03) + 5.0f); EXPECT_EQ(out.f[256 + i][3], float((i >> 6) & 0x03) + 5.0f); } EXPECT_EQ(out.f[512 + 0][0], 1.0f); EXPECT_EQ(out.f[512 + 0][1], 5.0f); EXPECT_EQ(out.f[512 + 0][2], 2.0f); EXPECT_EQ(out.f[512 + 0][3], 6.0f); EXPECT_EQ(out.f[512 + 1][0], 3.0f); EXPECT_EQ(out.f[512 + 1][1], 7.0f); EXPECT_EQ(out.f[512 + 1][2], 4.0f); EXPECT_EQ(out.f[512 + 1][3], 8.0f); EXPECT_EQ(out.i[0][0], 0x00050001); EXPECT_EQ(out.i[0][1], 0x00060002); EXPECT_EQ(out.i[0][2], 0x00000000); EXPECT_EQ(out.i[0][3], 0x00000000); EXPECT_EQ(out.i[1][0], 0x00070003); EXPECT_EQ(out.i[1][1], 0x00080004); EXPECT_EQ(out.i[1][2], 0x00000000); EXPECT_EQ(out.i[1][3], 0x00000000); EXPECT_EQ(out.i[2][0], 0x0A020901); EXPECT_EQ(out.i[2][1], 0x0C040B03); EXPECT_EQ(out.i[2][2], 0x00000000); EXPECT_EQ(out.i[2][3], 0x00000000); EXPECT_EQ(out.i[3][0], 0x0E060D05); EXPECT_EQ(out.i[3][1], 0x10080F07); EXPECT_EQ(out.i[3][2], 0x00000000); EXPECT_EQ(out.i[3][3], 0x00000000); for(int i = 0; i < 256; i++) { EXPECT_EQ(out.i[4 + i / 2][0 + (i % 2) * 2] & 0xFFFF, ((i >> 0) & 0x03) + 1); EXPECT_EQ(out.i[4 + i / 2][0 + (i % 2) * 2] >> 16, ((i >> 2) & 0x03) + 1); EXPECT_EQ(out.i[4 + i / 2][1 + (i % 2) * 2] & 0xFFFF, ((i >> 4) & 0x03) + 1); EXPECT_EQ(out.i[4 + i / 2][1 + (i % 2) * 2] >> 16, ((i >> 6) & 0x03) + 1); } for(int i = 0; i < 256; i++) { EXPECT_EQ(out.i[132 + i][0], ((i >> 0) & 0x03) + 1); EXPECT_EQ(out.i[132 + i][1], ((i >> 2) & 0x03) + 1); EXPECT_EQ(out.i[132 + i][2], ((i >> 4) & 0x03) + 1); EXPECT_EQ(out.i[132 + i][3], ((i >> 6) & 0x03) + 1); } } TEST(ReactorUnitTests, Swizzle) { FunctionT<void(void *)> function; { Pointer<Byte> out = function.Arg<0>(); Int4 c = Int4(0x01020304, 0x05060708, 0x09101112, 0x13141516); *Pointer<Byte16>(out + 16 * 0) = Swizzle(As<Byte16>(c), 0xFEDCBA9876543210ull); *Pointer<Byte8>(out + 16 * 1) = Swizzle(As<Byte8>(c), 0x76543210u); *Pointer<UShort8>(out + 16 * 2) = Swizzle(As<UShort8>(c), 0x76543210u); } auto routine = function(testName().c_str()); int out[3][4]; memset(&out, 0, sizeof(out)); routine(&out); EXPECT_EQ(out[0][0], 0x16151413); EXPECT_EQ(out[0][1], 0x12111009); EXPECT_EQ(out[0][2], 0x08070605); EXPECT_EQ(out[0][3], 0x04030201); EXPECT_EQ(out[1][0], 0x08070605); EXPECT_EQ(out[1][1], 0x04030201); EXPECT_EQ(out[2][0], 0x15161314); EXPECT_EQ(out[2][1], 0x11120910); EXPECT_EQ(out[2][2], 0x07080506); EXPECT_EQ(out[2][3], 0x03040102); } TEST(ReactorUnitTests, Shuffle) { // |select| is [0aaa:0bbb:0ccc:0ddd] where |aaa|, |bbb|, |ccc| // and |ddd| are 7-bit selection indices. For a total (1 << 12) // possibilities. const int kSelectRange = 1 << 12; // Unfortunately, testing the whole kSelectRange results in a test // that is far too slow to run, because LLVM spends exponentially more // time optimizing the function below as the number of test cases // increases. // // To work-around the problem, only test a subset of the range by // skipping every kRangeIncrement value. // // Set this value to 1 if you want to test the whole implementation, // which will take a little less than 2 minutes on a fast workstation. // // The default value here takes about 1390ms, which is a little more than // what the Swizzle test takes (993 ms) on my machine. A non-power-of-2 // value ensures a better spread over possible values. const int kRangeIncrement = 11; auto rangeIndexToSelect = [](int i) { return static_cast<unsigned short>( (((i >> 9) & 7) << 0) | (((i >> 6) & 7) << 4) | (((i >> 3) & 7) << 8) | (((i >> 0) & 7) << 12)); }; FunctionT<int(void *)> function; { Pointer<Byte> out = function.Arg<0>(); for(int i = 0; i < kSelectRange; i += kRangeIncrement) { unsigned short select = rangeIndexToSelect(i); *Pointer<Float4>(out + 16 * i) = Shuffle(Float4(1.0f, 2.0f, 3.0f, 4.0f), Float4(5.0f, 6.0f, 7.0f, 8.0f), select); *Pointer<Int4>(out + (kSelectRange + i) * 16) = Shuffle(Int4(10, 11, 12, 13), Int4(14, 15, 16, 17), select); *Pointer<UInt4>(out + (2 * kSelectRange + i) * 16) = Shuffle(UInt4(100, 101, 102, 103), UInt4(104, 105, 106, 107), select); } Return(0); } auto routine = function(testName().c_str()); struct { float f[kSelectRange][4]; int i[kSelectRange][4]; unsigned u[kSelectRange][4]; } out; memset(&out, 0, sizeof(out)); routine(&out); for(int i = 0; i < kSelectRange; i += kRangeIncrement) { EXPECT_EQ(out.f[i][0], float(1.0f + (i & 7))); EXPECT_EQ(out.f[i][1], float(1.0f + ((i >> 3) & 7))); EXPECT_EQ(out.f[i][2], float(1.0f + ((i >> 6) & 7))); EXPECT_EQ(out.f[i][3], float(1.0f + ((i >> 9) & 7))); } for(int i = 0; i < kSelectRange; i += kRangeIncrement) { EXPECT_EQ(out.i[i][0], int(10 + (i & 7))); EXPECT_EQ(out.i[i][1], int(10 + ((i >> 3) & 7))); EXPECT_EQ(out.i[i][2], int(10 + ((i >> 6) & 7))); EXPECT_EQ(out.i[i][3], int(10 + ((i >> 9) & 7))); } for(int i = 0; i < kSelectRange; i += kRangeIncrement) { EXPECT_EQ(out.u[i][0], unsigned(100 + (i & 7))); EXPECT_EQ(out.u[i][1], unsigned(100 + ((i >> 3) & 7))); EXPECT_EQ(out.u[i][2], unsigned(100 + ((i >> 6) & 7))); EXPECT_EQ(out.u[i][3], unsigned(100 + ((i >> 9) & 7))); } } TEST(ReactorUnitTests, Branching) { FunctionT<int()> function; { Int x = 0; For(Int i = 0, i < 8, i++) { If(i < 2) { x += 1; } Else If(i < 4) { x += 10; } Else If(i < 6) { x += 100; } Else { x += 1000; } For(Int i = 0, i < 5, i++) x += 10000; } For(Int i = 0, i < 10, i++) for(int i = 0; i < 10; i++) For(Int i = 0, i < 10, i++) { x += 1000000; } For(Int i = 0, i < 2, i++) If(x == 1000402222) { If(x != 1000402222) x += 1000000000; } Else x = -5; Return(x); } auto routine = function(testName().c_str()); int result = routine(); EXPECT_EQ(result, 1000402222); } TEST(ReactorUnitTests, MinMax) { FunctionT<int(void *)> function; { Pointer<Byte> out = function.Arg<0>(); *Pointer<Float4>(out + 16 * 0) = Min(Float4(1.0f, 0.0f, -0.0f, +0.0f), Float4(0.0f, 1.0f, +0.0f, -0.0f)); *Pointer<Float4>(out + 16 * 1) = Max(Float4(1.0f, 0.0f, -0.0f, +0.0f), Float4(0.0f, 1.0f, +0.0f, -0.0f)); *Pointer<Int4>(out + 16 * 2) = Min(Int4(1, 0, -1, -0), Int4(0, 1, 0, +0)); *Pointer<Int4>(out + 16 * 3) = Max(Int4(1, 0, -1, -0), Int4(0, 1, 0, +0)); *Pointer<UInt4>(out + 16 * 4) = Min(UInt4(1, 0, -1, -0), UInt4(0, 1, 0, +0)); *Pointer<UInt4>(out + 16 * 5) = Max(UInt4(1, 0, -1, -0), UInt4(0, 1, 0, +0)); *Pointer<Short4>(out + 16 * 6) = Min(Short4(1, 0, -1, -0), Short4(0, 1, 0, +0)); *Pointer<Short4>(out + 16 * 7) = Max(Short4(1, 0, -1, -0), Short4(0, 1, 0, +0)); *Pointer<UShort4>(out + 16 * 8) = Min(UShort4(1, 0, -1, -0), UShort4(0, 1, 0, +0)); *Pointer<UShort4>(out + 16 * 9) = Max(UShort4(1, 0, -1, -0), UShort4(0, 1, 0, +0)); Return(0); } auto routine = function(testName().c_str()); unsigned int out[10][4]; memset(&out, 0, sizeof(out)); routine(&out); EXPECT_EQ(out[0][0], 0x00000000u); EXPECT_EQ(out[0][1], 0x00000000u); EXPECT_EQ(out[0][2], 0x00000000u); EXPECT_EQ(out[0][3], 0x80000000u); EXPECT_EQ(out[1][0], 0x3F800000u); EXPECT_EQ(out[1][1], 0x3F800000u); EXPECT_EQ(out[1][2], 0x00000000u); EXPECT_EQ(out[1][3], 0x80000000u); EXPECT_EQ(out[2][0], 0x00000000u); EXPECT_EQ(out[2][1], 0x00000000u); EXPECT_EQ(out[2][2], 0xFFFFFFFFu); EXPECT_EQ(out[2][3], 0x00000000u); EXPECT_EQ(out[3][0], 0x00000001u); EXPECT_EQ(out[3][1], 0x00000001u); EXPECT_EQ(out[3][2], 0x00000000u); EXPECT_EQ(out[3][3], 0x00000000u); EXPECT_EQ(out[4][0], 0x00000000u); EXPECT_EQ(out[4][1], 0x00000000u); EXPECT_EQ(out[4][2], 0x00000000u); EXPECT_EQ(out[4][3], 0x00000000u); EXPECT_EQ(out[5][0], 0x00000001u); EXPECT_EQ(out[5][1], 0x00000001u); EXPECT_EQ(out[5][2], 0xFFFFFFFFu); EXPECT_EQ(out[5][3], 0x00000000u); EXPECT_EQ(out[6][0], 0x00000000u); EXPECT_EQ(out[6][1], 0x0000FFFFu); EXPECT_EQ(out[6][2], 0x00000000u); EXPECT_EQ(out[6][3], 0x00000000u); EXPECT_EQ(out[7][0], 0x00010001u); EXPECT_EQ(out[7][1], 0x00000000u); EXPECT_EQ(out[7][2], 0x00000000u); EXPECT_EQ(out[7][3], 0x00000000u); EXPECT_EQ(out[8][0], 0x00000000u); EXPECT_EQ(out[8][1], 0x00000000u); EXPECT_EQ(out[8][2], 0x00000000u); EXPECT_EQ(out[8][3], 0x00000000u); EXPECT_EQ(out[9][0], 0x00010001u); EXPECT_EQ(out[9][1], 0x0000FFFFu); EXPECT_EQ(out[9][2], 0x00000000u); EXPECT_EQ(out[9][3], 0x00000000u); } TEST(ReactorUnitTests, NotNeg) { FunctionT<int(void *)> function; { Pointer<Byte> out = function.Arg<0>(); *Pointer<Int>(out + 16 * 0) = ~Int(0x55555555); *Pointer<Short>(out + 16 * 1) = ~Short(0x5555); *Pointer<Int4>(out + 16 * 2) = ~Int4(0x55555555, 0xAAAAAAAA, 0x00000000, 0xFFFFFFFF); *Pointer<Short4>(out + 16 * 3) = ~Short4(0x5555, 0xAAAA, 0x0000, 0xFFFF); *Pointer<Int>(out + 16 * 4) = -Int(0x55555555); *Pointer<Short>(out + 16 * 5) = -Short(0x5555); *Pointer<Int4>(out + 16 * 6) = -Int4(0x55555555, 0xAAAAAAAA, 0x00000000, 0xFFFFFFFF); *Pointer<Short4>(out + 16 * 7) = -Short4(0x5555, 0xAAAA, 0x0000, 0xFFFF); *Pointer<Float4>(out + 16 * 8) = -Float4(1.0f, -1.0f, 0.0f, -0.0f); Return(0); } auto routine = function(testName().c_str()); unsigned int out[10][4]; memset(&out, 0, sizeof(out)); routine(&out); EXPECT_EQ(out[0][0], 0xAAAAAAAAu); EXPECT_EQ(out[0][1], 0x00000000u); EXPECT_EQ(out[0][2], 0x00000000u); EXPECT_EQ(out[0][3], 0x00000000u); EXPECT_EQ(out[1][0], 0x0000AAAAu); EXPECT_EQ(out[1][1], 0x00000000u); EXPECT_EQ(out[1][2], 0x00000000u); EXPECT_EQ(out[1][3], 0x00000000u); EXPECT_EQ(out[2][0], 0xAAAAAAAAu); EXPECT_EQ(out[2][1], 0x55555555u); EXPECT_EQ(out[2][2], 0xFFFFFFFFu); EXPECT_EQ(out[2][3], 0x00000000u); EXPECT_EQ(out[3][0], 0x5555AAAAu); EXPECT_EQ(out[3][1], 0x0000FFFFu); EXPECT_EQ(out[3][2], 0x00000000u); EXPECT_EQ(out[3][3], 0x00000000u); EXPECT_EQ(out[4][0], 0xAAAAAAABu); EXPECT_EQ(out[4][1], 0x00000000u); EXPECT_EQ(out[4][2], 0x00000000u); EXPECT_EQ(out[4][3], 0x00000000u); EXPECT_EQ(out[5][0], 0x0000AAABu); EXPECT_EQ(out[5][1], 0x00000000u); EXPECT_EQ(out[5][2], 0x00000000u); EXPECT_EQ(out[5][3], 0x00000000u); EXPECT_EQ(out[6][0], 0xAAAAAAABu); EXPECT_EQ(out[6][1], 0x55555556u); EXPECT_EQ(out[6][2], 0x00000000u); EXPECT_EQ(out[6][3], 0x00000001u); EXPECT_EQ(out[7][0], 0x5556AAABu); EXPECT_EQ(out[7][1], 0x00010000u); EXPECT_EQ(out[7][2], 0x00000000u); EXPECT_EQ(out[7][3], 0x00000000u); EXPECT_EQ(out[8][0], 0xBF800000u); EXPECT_EQ(out[8][1], 0x3F800000u); EXPECT_EQ(out[8][2], 0x80000000u); EXPECT_EQ(out[8][3], 0x00000000u); } TEST(ReactorUnitTests, RoundInt) { FunctionT<int(void *)> function; { Pointer<Byte> out = function.Arg<0>(); *Pointer<Int4>(out + 0) = RoundInt(Float4(3.1f, 3.6f, -3.1f, -3.6f)); *Pointer<Int4>(out + 16) = RoundIntClamped(Float4(2147483648.0f, -2147483648.0f, 2147483520, -2147483520)); Return(0); } auto routine = function(testName().c_str()); int out[2][4]; memset(&out, 0, sizeof(out)); routine(&out); EXPECT_EQ(out[0][0], 3); EXPECT_EQ(out[0][1], 4); EXPECT_EQ(out[0][2], -3); EXPECT_EQ(out[0][3], -4); // x86 returns 0x80000000 for values which cannot be represented in a 32-bit // integer, but RoundIntClamped() clamps to ensure a positive value for // positive input. ARM saturates to the largest representable integers. EXPECT_GE(out[1][0], 2147483520); EXPECT_LT(out[1][1], -2147483647); EXPECT_EQ(out[1][2], 2147483520); EXPECT_EQ(out[1][3], -2147483520); } TEST(ReactorUnitTests, FPtoUI) { FunctionT<int(void *)> function; { Pointer<Byte> out = function.Arg<0>(); *Pointer<UInt>(out + 0) = UInt(Float(0xF0000000u)); *Pointer<UInt>(out + 4) = UInt(Float(0xC0000000u)); *Pointer<UInt>(out + 8) = UInt(Float(0x00000001u)); *Pointer<UInt>(out + 12) = UInt(Float(0xF000F000u)); *Pointer<UInt4>(out + 16) = UInt4(Float4(0xF0000000u, 0x80000000u, 0x00000000u, 0xCCCC0000u)); Return(0); } auto routine = function(testName().c_str()); unsigned int out[2][4]; memset(&out, 0, sizeof(out)); routine(&out); EXPECT_EQ(out[0][0], 0xF0000000u); EXPECT_EQ(out[0][1], 0xC0000000u); EXPECT_EQ(out[0][2], 0x00000001u); EXPECT_EQ(out[0][3], 0xF000F000u); EXPECT_EQ(out[1][0], 0xF0000000u); EXPECT_EQ(out[1][1], 0x80000000u); EXPECT_EQ(out[1][2], 0x00000000u); EXPECT_EQ(out[1][3], 0xCCCC0000u); } TEST(ReactorUnitTests, VectorCompare) { FunctionT<int(void *)> function; { Pointer<Byte> out = function.Arg<0>(); *Pointer<Int4>(out + 16 * 0) = CmpEQ(Float4(1.0f, 1.0f, -0.0f, +0.0f), Float4(0.0f, 1.0f, +0.0f, -0.0f)); *Pointer<Int4>(out + 16 * 1) = CmpEQ(Int4(1, 0, -1, -0), Int4(0, 1, 0, +0)); *Pointer<Byte8>(out + 16 * 2) = CmpEQ(SByte8(1, 2, 3, 4, 5, 6, 7, 8), SByte8(7, 6, 5, 4, 3, 2, 1, 0)); *Pointer<Int4>(out + 16 * 3) = CmpNLT(Float4(1.0f, 1.0f, -0.0f, +0.0f), Float4(0.0f, 1.0f, +0.0f, -0.0f)); *Pointer<Int4>(out + 16 * 4) = CmpNLT(Int4(1, 0, -1, -0), Int4(0, 1, 0, +0)); *Pointer<Byte8>(out + 16 * 5) = CmpGT(SByte8(1, 2, 3, 4, 5, 6, 7, 8), SByte8(7, 6, 5, 4, 3, 2, 1, 0)); Return(0); } auto routine = function(testName().c_str()); unsigned int out[6][4]; memset(&out, 0, sizeof(out)); routine(&out); EXPECT_EQ(out[0][0], 0x00000000u); EXPECT_EQ(out[0][1], 0xFFFFFFFFu); EXPECT_EQ(out[0][2], 0xFFFFFFFFu); EXPECT_EQ(out[0][3], 0xFFFFFFFFu); EXPECT_EQ(out[1][0], 0x00000000u); EXPECT_EQ(out[1][1], 0x00000000u); EXPECT_EQ(out[1][2], 0x00000000u); EXPECT_EQ(out[1][3], 0xFFFFFFFFu); EXPECT_EQ(out[2][0], 0xFF000000u); EXPECT_EQ(out[2][1], 0x00000000u); EXPECT_EQ(out[3][0], 0xFFFFFFFFu); EXPECT_EQ(out[3][1], 0xFFFFFFFFu); EXPECT_EQ(out[3][2], 0xFFFFFFFFu); EXPECT_EQ(out[3][3], 0xFFFFFFFFu); EXPECT_EQ(out[4][0], 0xFFFFFFFFu); EXPECT_EQ(out[4][1], 0x00000000u); EXPECT_EQ(out[4][2], 0x00000000u); EXPECT_EQ(out[4][3], 0xFFFFFFFFu); EXPECT_EQ(out[5][0], 0x00000000u); EXPECT_EQ(out[5][1], 0xFFFFFFFFu); } TEST(ReactorUnitTests, SaturatedAddAndSubtract) { FunctionT<int(void *)> function; { Pointer<Byte> out = function.Arg<0>(); *Pointer<Byte8>(out + 8 * 0) = AddSat(Byte8(1, 2, 3, 4, 5, 6, 7, 8), Byte8(7, 6, 5, 4, 3, 2, 1, 0)); *Pointer<Byte8>(out + 8 * 1) = AddSat(Byte8(0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE), Byte8(7, 6, 5, 4, 3, 2, 1, 0)); *Pointer<Byte8>(out + 8 * 2) = SubSat(Byte8(1, 2, 3, 4, 5, 6, 7, 8), Byte8(7, 6, 5, 4, 3, 2, 1, 0)); *Pointer<SByte8>(out + 8 * 3) = AddSat(SByte8(1, 2, 3, 4, 5, 6, 7, 8), SByte8(7, 6, 5, 4, 3, 2, 1, 0)); *Pointer<SByte8>(out + 8 * 4) = AddSat(SByte8(0x7E, 0x7E, 0x7E, 0x7E, 0x7E, 0x7E, 0x7E, 0x7E), SByte8(7, 6, 5, 4, 3, 2, 1, 0)); *Pointer<SByte8>(out + 8 * 5) = AddSat(SByte8(0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88), SByte8(-7, -6, -5, -4, -3, -2, -1, -0)); *Pointer<SByte8>(out + 8 * 6) = SubSat(SByte8(0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88), SByte8(7, 6, 5, 4, 3, 2, 1, 0)); *Pointer<Short4>(out + 8 * 7) = AddSat(Short4(1, 2, 3, 4), Short4(3, 2, 1, 0)); *Pointer<Short4>(out + 8 * 8) = AddSat(Short4(0x7FFE, 0x7FFE, 0x7FFE, 0x7FFE), Short4(3, 2, 1, 0)); *Pointer<Short4>(out + 8 * 9) = AddSat(Short4(0x8001, 0x8002, 0x8003, 0x8004), Short4(-3, -2, -1, -0)); *Pointer<Short4>(out + 8 * 10) = SubSat(Short4(0x8001, 0x8002, 0x8003, 0x8004), Short4(3, 2, 1, 0)); *Pointer<UShort4>(out + 8 * 11) = AddSat(UShort4(1, 2, 3, 4), UShort4(3, 2, 1, 0)); *Pointer<UShort4>(out + 8 * 12) = AddSat(UShort4(0xFFFE, 0xFFFE, 0xFFFE, 0xFFFE), UShort4(3, 2, 1, 0)); *Pointer<UShort4>(out + 8 * 13) = SubSat(UShort4(1, 2, 3, 4), UShort4(3, 2, 1, 0)); Return(0); } auto routine = function(testName().c_str()); unsigned int out[14][2]; memset(&out, 0, sizeof(out)); routine(&out); EXPECT_EQ(out[0][0], 0x08080808u); EXPECT_EQ(out[0][1], 0x08080808u); EXPECT_EQ(out[1][0], 0xFFFFFFFFu); EXPECT_EQ(out[1][1], 0xFEFFFFFFu); EXPECT_EQ(out[2][0], 0x00000000u); EXPECT_EQ(out[2][1], 0x08060402u); EXPECT_EQ(out[3][0], 0x08080808u); EXPECT_EQ(out[3][1], 0x08080808u); EXPECT_EQ(out[4][0], 0x7F7F7F7Fu); EXPECT_EQ(out[4][1], 0x7E7F7F7Fu); EXPECT_EQ(out[5][0], 0x80808080u); EXPECT_EQ(out[5][1], 0x88868482u); EXPECT_EQ(out[6][0], 0x80808080u); EXPECT_EQ(out[6][1], 0x88868482u); EXPECT_EQ(out[7][0], 0x00040004u); EXPECT_EQ(out[7][1], 0x00040004u); EXPECT_EQ(out[8][0], 0x7FFF7FFFu); EXPECT_EQ(out[8][1], 0x7FFE7FFFu); EXPECT_EQ(out[9][0], 0x80008000u); EXPECT_EQ(out[9][1], 0x80048002u); EXPECT_EQ(out[10][0], 0x80008000u); EXPECT_EQ(out[10][1], 0x80048002u); EXPECT_EQ(out[11][0], 0x00040004u); EXPECT_EQ(out[11][1], 0x00040004u); EXPECT_EQ(out[12][0], 0xFFFFFFFFu); EXPECT_EQ(out[12][1], 0xFFFEFFFFu); EXPECT_EQ(out[13][0], 0x00000000u); EXPECT_EQ(out[13][1], 0x00040002u); } TEST(ReactorUnitTests, Unpack) { FunctionT<int(void *, void *)> function; { Pointer<Byte> in = function.Arg<0>(); Pointer<Byte> out = function.Arg<1>(); Byte4 test_byte_a = *Pointer<Byte4>(in + 4 * 0); Byte4 test_byte_b = *Pointer<Byte4>(in + 4 * 1); *Pointer<Short4>(out + 8 * 0) = Unpack(test_byte_a, test_byte_b); *Pointer<Short4>(out + 8 * 1) = Unpack(test_byte_a); Return(0); } auto routine = function(testName().c_str()); unsigned int in[1][2]; unsigned int out[2][2]; memset(&out, 0, sizeof(out)); in[0][0] = 0xABCDEF12u; in[0][1] = 0x34567890u; routine(&in, &out); EXPECT_EQ(out[0][0], 0x78EF9012u); EXPECT_EQ(out[0][1], 0x34AB56CDu); EXPECT_EQ(out[1][0], 0xEFEF1212u); EXPECT_EQ(out[1][1], 0xABABCDCDu); } TEST(ReactorUnitTests, Pack) { FunctionT<int(void *)> function; { Pointer<Byte> out = function.Arg<0>(); *Pointer<SByte8>(out + 8 * 0) = PackSigned(Short4(-1, -2, 1, 2), Short4(3, 4, -3, -4)); *Pointer<Byte8>(out + 8 * 1) = PackUnsigned(Short4(-1, -2, 1, 2), Short4(3, 4, -3, -4)); *Pointer<Short8>(out + 8 * 2) = PackSigned(Int4(-1, -2, 1, 2), Int4(3, 4, -3, -4)); *Pointer<UShort8>(out + 8 * 4) = PackUnsigned(Int4(-1, -2, 1, 2), Int4(3, 4, -3, -4)); Return(0); } auto routine = function(testName().c_str()); unsigned int out[6][2]; memset(&out, 0, sizeof(out)); routine(&out); EXPECT_EQ(out[0][0], 0x0201FEFFu); EXPECT_EQ(out[0][1], 0xFCFD0403u); EXPECT_EQ(out[1][0], 0x02010000u); EXPECT_EQ(out[1][1], 0x00000403u); EXPECT_EQ(out[2][0], 0xFFFEFFFFu); EXPECT_EQ(out[2][1], 0x00020001u); EXPECT_EQ(out[3][0], 0x00040003u); EXPECT_EQ(out[3][1], 0xFFFCFFFDu); EXPECT_EQ(out[4][0], 0x00000000u); EXPECT_EQ(out[4][1], 0x00020001u); EXPECT_EQ(out[5][0], 0x00040003u); EXPECT_EQ(out[5][1], 0x00000000u); } TEST(ReactorUnitTests, MulHigh) { FunctionT<int(void *)> function; { Pointer<Byte> out = function.Arg<0>(); *Pointer<Short4>(out + 16 * 0) = MulHigh(Short4(0x01AA, 0x02DD, 0x03EE, 0xF422), Short4(0x01BB, 0x02CC, 0x03FF, 0xF411)); *Pointer<UShort4>(out + 16 * 1) = MulHigh(UShort4(0x01AA, 0x02DD, 0x03EE, 0xF422), UShort4(0x01BB, 0x02CC, 0x03FF, 0xF411)); *Pointer<Int4>(out + 16 * 2) = MulHigh(Int4(0x000001AA, 0x000002DD, 0xC8000000, 0xF8000000), Int4(0x000001BB, 0x84000000, 0x000003EE, 0xD7000000)); *Pointer<UInt4>(out + 16 * 3) = MulHigh(UInt4(0x000001AAu, 0x000002DDu, 0xC8000000u, 0xD8000000u), UInt4(0x000001BBu, 0x84000000u, 0x000003EEu, 0xD7000000u)); *Pointer<Int4>(out + 16 * 4) = MulHigh(Int4(0x7FFFFFFF, 0x7FFFFFFF, 0x80008000, 0xFFFFFFFF), Int4(0x7FFFFFFF, 0x80000000, 0x80008000, 0xFFFFFFFF)); *Pointer<UInt4>(out + 16 * 5) = MulHigh(UInt4(0x7FFFFFFFu, 0x7FFFFFFFu, 0x80008000u, 0xFFFFFFFFu), UInt4(0x7FFFFFFFu, 0x80000000u, 0x80008000u, 0xFFFFFFFFu)); // (U)Short8 variants currently unimplemented. Return(0); } auto routine = function(testName().c_str()); unsigned int out[6][4]; memset(&out, 0, sizeof(out)); routine(&out); EXPECT_EQ(out[0][0], 0x00080002u); EXPECT_EQ(out[0][1], 0x008D000Fu); EXPECT_EQ(out[1][0], 0x00080002u); EXPECT_EQ(out[1][1], 0xE8C0000Fu); EXPECT_EQ(out[2][0], 0x00000000u); EXPECT_EQ(out[2][1], 0xFFFFFE9Cu); EXPECT_EQ(out[2][2], 0xFFFFFF23u); EXPECT_EQ(out[2][3], 0x01480000u); EXPECT_EQ(out[3][0], 0x00000000u); EXPECT_EQ(out[3][1], 0x00000179u); EXPECT_EQ(out[3][2], 0x00000311u); EXPECT_EQ(out[3][3], 0xB5680000u); EXPECT_EQ(out[4][0], 0x3FFFFFFFu); EXPECT_EQ(out[4][1], 0xC0000000u); EXPECT_EQ(out[4][2], 0x3FFF8000u); EXPECT_EQ(out[4][3], 0x00000000u); EXPECT_EQ(out[5][0], 0x3FFFFFFFu); EXPECT_EQ(out[5][1], 0x3FFFFFFFu); EXPECT_EQ(out[5][2], 0x40008000u); EXPECT_EQ(out[5][3], 0xFFFFFFFEu); } TEST(ReactorUnitTests, MulAdd) { FunctionT<int(void *)> function; { Pointer<Byte> out = function.Arg<0>(); *Pointer<Int2>(out + 8 * 0) = MulAdd(Short4(0x1aa, 0x2dd, 0x3ee, 0xF422), Short4(0x1bb, 0x2cc, 0x3ff, 0xF411)); // (U)Short8 variant is mentioned but unimplemented Return(0); } auto routine = function(testName().c_str()); unsigned int out[1][2]; memset(&out, 0, sizeof(out)); routine(&out); EXPECT_EQ(out[0][0], 0x000AE34Au); EXPECT_EQ(out[0][1], 0x009D5254u); } TEST(ReactorUnitTests, PointersEqual) { FunctionT<int(void *, void *)> function; { Pointer<Byte> ptrA = function.Arg<0>(); Pointer<Byte> ptrB = function.Arg<1>(); If(ptrA == ptrB) { Return(1); } Else { Return(0); } } auto routine = function(testName().c_str()); int *a = reinterpret_cast<int *>(uintptr_t(0x0000000000000000)); int *b = reinterpret_cast<int *>(uintptr_t(0x00000000F0000000)); int *c = reinterpret_cast<int *>(uintptr_t(0xF000000000000000)); EXPECT_EQ(routine(&a, &a), 1); EXPECT_EQ(routine(&b, &b), 1); EXPECT_EQ(routine(&c, &c), 1); EXPECT_EQ(routine(&a, &b), 0); EXPECT_EQ(routine(&b, &a), 0); EXPECT_EQ(routine(&b, &c), 0); EXPECT_EQ(routine(&c, &b), 0); EXPECT_EQ(routine(&c, &a), 0); EXPECT_EQ(routine(&a, &c), 0); } TEST(ReactorUnitTests, Args_2Mixed) { // 2 mixed type args FunctionT<float(int, float)> function; { Int a = function.Arg<0>(); Float b = function.Arg<1>(); Return(Float(a) + b); } if(auto routine = function(testName().c_str())) { float result = routine(1, 2.f); EXPECT_EQ(result, 3.f); } } TEST(ReactorUnitTests, Args_4Mixed) { // 4 mixed type args (max register allocation on Windows) FunctionT<float(int, float, int, float)> function; { Int a = function.Arg<0>(); Float b = function.Arg<1>(); Int c = function.Arg<2>(); Float d = function.Arg<3>(); Return(Float(a) + b + Float(c) + d); } if(auto routine = function(testName().c_str())) { float result = routine(1, 2.f, 3, 4.f); EXPECT_EQ(result, 10.f); } } TEST(ReactorUnitTests, Args_5Mixed) { // 5 mixed type args (5th spills over to stack on Windows) FunctionT<float(int, float, int, float, int)> function; { Int a = function.Arg<0>(); Float b = function.Arg<1>(); Int c = function.Arg<2>(); Float d = function.Arg<3>(); Int e = function.Arg<4>(); Return(Float(a) + b + Float(c) + d + Float(e)); } if(auto routine = function(testName().c_str())) { float result = routine(1, 2.f, 3, 4.f, 5); EXPECT_EQ(result, 15.f); } } TEST(ReactorUnitTests, Args_GreaterThan5Mixed) { // >5 mixed type args FunctionT<float(int, float, int, float, int, float, int, float, int, float)> function; { Int a = function.Arg<0>(); Float b = function.Arg<1>(); Int c = function.Arg<2>(); Float d = function.Arg<3>(); Int e = function.Arg<4>(); Float f = function.Arg<5>(); Int g = function.Arg<6>(); Float h = function.Arg<7>(); Int i = function.Arg<8>(); Float j = function.Arg<9>(); Return(Float(a) + b + Float(c) + d + Float(e) + f + Float(g) + h + Float(i) + j); } if(auto routine = function(testName().c_str())) { float result = routine(1, 2.f, 3, 4.f, 5, 6.f, 7, 8.f, 9, 10.f); EXPECT_EQ(result, 55.f); } } // This test was written because on Windows with Subzero, we would get a crash when executing a function // with a large number of local variables. The problem was that on Windows, 4K pages are allocated as // needed for the stack whenever an access is made in a "guard page", at which point the page is committed, // and the next 4K page becomes the guard page. If a stack access is made that's beyond the guard page, // a regular page fault occurs. To fix this, Subzero (and any compiler) now emits a call to __chkstk with // the stack size in EAX, so that it can probe the stack in 4K increments up to that size, committing the // required pages. See https://docs.microsoft.com/en-us/windows/win32/devnotes/-win32-chkstk. TEST(ReactorUnitTests, LargeStack) { // An empirically large enough value to access outside the guard pages constexpr int ArrayByteSize = 24 * 1024; constexpr int ArraySize = ArrayByteSize / sizeof(int32_t); FunctionT<void(int32_t * v)> function; { // Allocate a stack array large enough that writing to the first element will reach beyond // the guard page. Array<Int, ArraySize> largeStackArray; for(int i = 0; i < ArraySize; ++i) { largeStackArray[i] = i; } Pointer<Int> in = function.Arg<0>(); for(int i = 0; i < ArraySize; ++i) { in[i] = largeStackArray[i]; } } // LLVM takes very long to generate this routine when InstructionCombining // and O2 optimizations are enabled. Disable for now. // TODO(b/174031014): Remove this once we fix LLVM taking so long auto cfg = Config::Edit{} .remove(Optimization::Pass::InstructionCombining) .set(Optimization::Level::None); auto routine = function(cfg, testName().c_str()); std::array<int32_t, ArraySize> v; // Run this in a thread, so that we get the default reserved stack size (8K on Win64). std::thread t([&] { routine(v.data()); }); t.join(); for(int i = 0; i < ArraySize; ++i) { EXPECT_EQ(v[i], i); } } TEST(ReactorUnitTests, Call) { struct Class { static int Callback(Class *p, int i, float f) { p->i = i; p->f = f; return i + int(f); } int i = 0; float f = 0.0f; }; FunctionT<int(void *)> function; { Pointer<Byte> c = function.Arg<0>(); auto res = Call(Class::Callback, c, 10, 20.0f); Return(res); } auto routine = function(testName().c_str()); Class c; int res = routine(&c); EXPECT_EQ(res, 30); EXPECT_EQ(c.i, 10); EXPECT_EQ(c.f, 20.0f); } TEST(ReactorUnitTests, CallMemberFunction) { struct Class { int Callback(int argI, float argF) { i = argI; f = argF; return i + int(f); } int i = 0; float f = 0.0f; }; Class c; FunctionT<int()> function; { auto res = Call(&Class::Callback, &c, 10, 20.0f); Return(res); } auto routine = function(testName().c_str()); int res = routine(); EXPECT_EQ(res, 30); EXPECT_EQ(c.i, 10); EXPECT_EQ(c.f, 20.0f); } TEST(ReactorUnitTests, CallMemberFunctionIndirect) { struct Class { int Callback(int argI, float argF) { i = argI; f = argF; return i + int(f); } int i = 0; float f = 0.0f; }; FunctionT<int(void *)> function; { Pointer<Byte> c = function.Arg<0>(); auto res = Call(&Class::Callback, c, 10, 20.0f); Return(res); } auto routine = function(testName().c_str()); Class c; int res = routine(&c); EXPECT_EQ(res, 30); EXPECT_EQ(c.i, 10); EXPECT_EQ(c.f, 20.0f); } TEST(ReactorUnitTests, CallImplicitCast) { struct Class { static void Callback(Class *c, const char *s) { c->str = s; } std::string str; }; FunctionT<void(Class * c, const char *s)> function; { Pointer<Byte> c = function.Arg<0>(); Pointer<Byte> s = function.Arg<1>(); Call(Class::Callback, c, s); } auto routine = function(testName().c_str()); Class c; routine(&c, "hello world"); EXPECT_EQ(c.str, "hello world"); } TEST(ReactorUnitTests, CallBoolReturnFunction) { struct Class { static bool IsEven(int a) { return a % 2 == 0; } }; FunctionT<int(int)> function; { Int a = function.Arg<0>(); Bool res = Call(Class::IsEven, a); If(res) { Return(1); } Return(0); } auto routine = function(testName().c_str()); for(int i = 0; i < 10; ++i) { EXPECT_EQ(routine(i), i % 2 == 0); } } TEST(ReactorUnitTests, Call_Args4) { struct Class { static int Func(int a, int b, int c, int d) { return a + b + c + d; } }; { FunctionT<int()> function; { auto res = Call(Class::Func, 1, 2, 3, 4); Return(res); } auto routine = function(testName().c_str()); int res = routine(); EXPECT_EQ(res, 1 + 2 + 3 + 4); } } TEST(ReactorUnitTests, Call_Args5) { struct Class { static int Func(int a, int b, int c, int d, int e) { return a + b + c + d + e; } }; { FunctionT<int()> function; { auto res = Call(Class::Func, 1, 2, 3, 4, 5); Return(res); } auto routine = function(testName().c_str()); int res = routine(); EXPECT_EQ(res, 1 + 2 + 3 + 4 + 5); } } TEST(ReactorUnitTests, Call_ArgsMany) { struct Class { static int Func(int a, int b, int c, int d, int e, int f, int g, int h) { return a + b + c + d + e + f + g + h; } }; { FunctionT<int()> function; { auto res = Call(Class::Func, 1, 2, 3, 4, 5, 6, 7, 8); Return(res); } auto routine = function(testName().c_str()); int res = routine(); EXPECT_EQ(res, 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8); } } TEST(ReactorUnitTests, Call_ArgsMixed) { struct Class { static int Func(int a, float b, int *c, float *d, int e, float f, int *g, float *h) { return a + b + *c + *d + e + f + *g + *h; } }; { FunctionT<int()> function; { Int c(3); Float d(4); Int g(7); Float h(8); auto res = Call(Class::Func, 1, 2.f, &c, &d, 5, 6.f, &g, &h); Return(res); } auto routine = function(testName().c_str()); int res = routine(); EXPECT_EQ(res, 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8); } } TEST(ReactorUnitTests, Call_ArgsPointer) { struct Class { static int Func(int *a) { return *a; } }; { FunctionT<int()> function; { Int a(12345); auto res = Call(Class::Func, &a); Return(res); } auto routine = function(testName().c_str()); int res = routine(); EXPECT_EQ(res, 12345); } } TEST(ReactorUnitTests, CallExternalCallRoutine) { // routine1 calls Class::Func, passing it a pointer to routine2, and Class::Func calls routine2 auto routine2 = [] { FunctionT<float(float, int)> function; { Float a = function.Arg<0>(); Int b = function.Arg<1>(); Return(a + Float(b)); } return function("%s2", testName().c_str()); }(); struct Class { static float Func(void *p, float a, int b) { auto funcToCall = reinterpret_cast<float (*)(float, int)>(p); return funcToCall(a, b); } }; auto routine1 = [] { FunctionT<float(void *, float, int)> function; { Pointer<Byte> funcToCall = function.Arg<0>(); Float a = function.Arg<1>(); Int b = function.Arg<2>(); Float result = Call(Class::Func, funcToCall, a, b); Return(result); } return function(testName().c_str()); }(); float result = routine1((void *)routine2.getEntry(), 12.f, 13); EXPECT_EQ(result, 25.f); } // Check that a complex generated function which utilizes all 8 or 16 XMM // registers computes the correct result. // (Note that due to MSC's lack of support for inline assembly in x64, // this test does not actually check that the register contents are // preserved, just that the generated function computes the correct value. // It's necessary to inspect the registers in a debugger to actually verify.) TEST(ReactorUnitTests, PreserveXMMRegisters) { FunctionT<void(void *, void *)> function; { Pointer<Byte> in = function.Arg<0>(); Pointer<Byte> out = function.Arg<1>(); Float4 a = *Pointer<Float4>(in + 16 * 0); Float4 b = *Pointer<Float4>(in + 16 * 1); Float4 c = *Pointer<Float4>(in + 16 * 2); Float4 d = *Pointer<Float4>(in + 16 * 3); Float4 e = *Pointer<Float4>(in + 16 * 4); Float4 f = *Pointer<Float4>(in + 16 * 5); Float4 g = *Pointer<Float4>(in + 16 * 6); Float4 h = *Pointer<Float4>(in + 16 * 7); Float4 i = *Pointer<Float4>(in + 16 * 8); Float4 j = *Pointer<Float4>(in + 16 * 9); Float4 k = *Pointer<Float4>(in + 16 * 10); Float4 l = *Pointer<Float4>(in + 16 * 11); Float4 m = *Pointer<Float4>(in + 16 * 12); Float4 n = *Pointer<Float4>(in + 16 * 13); Float4 o = *Pointer<Float4>(in + 16 * 14); Float4 p = *Pointer<Float4>(in + 16 * 15); Float4 ab = a + b; Float4 cd = c + d; Float4 ef = e + f; Float4 gh = g + h; Float4 ij = i + j; Float4 kl = k + l; Float4 mn = m + n; Float4 op = o + p; Float4 abcd = ab + cd; Float4 efgh = ef + gh; Float4 ijkl = ij + kl; Float4 mnop = mn + op; Float4 abcdefgh = abcd + efgh; Float4 ijklmnop = ijkl + mnop; Float4 sum = abcdefgh + ijklmnop; *Pointer<Float4>(out) = sum; Return(); } auto routine = function(testName().c_str()); assert(routine); float input[64] = { 1.0f, 0.0f, 0.0f, 0.0f, -1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 2.0f, -2.0f, 0.0f, -1.0f, 3.0f, -3.0f, 0.0f, 1.0f, 4.0f, -4.0f, 0.0f, -1.0f, 5.0f, -5.0f, 0.0f, 1.0f, 6.0f, -6.0f, 0.0f, -1.0f, 7.0f, -7.0f, 0.0f, 1.0f, 8.0f, -8.0f, 0.0f, -1.0f, 9.0f, -9.0f, 0.0f, 1.0f, 10.0f, -10.0f, 0.0f, -1.0f, 11.0f, -11.0f, 0.0f, 1.0f, 12.0f, -12.0f, 0.0f, -1.0f, 13.0f, -13.0f, 0.0f, 1.0f, 14.0f, -14.0f, 0.0f, -1.0f, 15.0f, -15.0f, 0.0f }; float result[4]; routine(input, result); EXPECT_EQ(result[0], 0.0f); EXPECT_EQ(result[1], 120.0f); EXPECT_EQ(result[2], -120.0f); EXPECT_EQ(result[3], 0.0f); } template<typename T> class CToReactorTCastTest : public ::testing::Test { public: using CType = typename std::tuple_element<0, T>::type; using ReactorType = typename std::tuple_element<1, T>::type; }; using CToReactorTCastTestTypes = ::testing::Types< // Subset of types that can be used as arguments. // std::pair<bool, Bool>, FIXME(capn): Not supported as argument type by Subzero. // std::pair<uint8_t, Byte>, FIXME(capn): Not supported as argument type by Subzero. // std::pair<int8_t, SByte>, FIXME(capn): Not supported as argument type by Subzero. // std::pair<int16_t, Short>, FIXME(capn): Not supported as argument type by Subzero. // std::pair<uint16_t, UShort>, FIXME(capn): Not supported as argument type by Subzero. std::pair<int, Int>, std::pair<unsigned int, UInt>, std::pair<float, Float>>; TYPED_TEST_SUITE(CToReactorTCastTest, CToReactorTCastTestTypes); TYPED_TEST(CToReactorTCastTest, Casts) { using CType = typename TestFixture::CType; using ReactorType = typename TestFixture::ReactorType; std::shared_ptr<Routine> routine; { Function<Int(ReactorType)> function; { ReactorType a = function.template Arg<0>(); ReactorType b = CType{}; RValue<ReactorType> c = RValue<ReactorType>(CType{}); Bool same = (a == b) && (a == c); Return(IfThenElse(same, Int(1), Int(0))); // TODO: Ability to use Bools as return values. } routine = function(testName().c_str()); auto callable = (int (*)(CType))routine->getEntry(); CType in = {}; EXPECT_EQ(callable(in), 1); } } template<typename T> class GEPTest : public ::testing::Test { public: using CType = typename std::tuple_element<0, T>::type; using ReactorType = typename std::tuple_element<1, T>::type; }; using GEPTestTypes = ::testing::Types< std::pair<bool, Bool>, std::pair<int8_t, Byte>, std::pair<int8_t, SByte>, std::pair<int8_t[4], Byte4>, std::pair<int8_t[4], SByte4>, std::pair<int8_t[8], Byte8>, std::pair<int8_t[8], SByte8>, std::pair<int8_t[16], Byte16>, std::pair<int8_t[16], SByte16>, std::pair<int16_t, Short>, std::pair<int16_t, UShort>, std::pair<int16_t[2], Short2>, std::pair<int16_t[2], UShort2>, std::pair<int16_t[4], Short4>, std::pair<int16_t[4], UShort4>, std::pair<int16_t[8], Short8>, std::pair<int16_t[8], UShort8>, std::pair<int, Int>, std::pair<int, UInt>, std::pair<int[2], Int2>, std::pair<int[2], UInt2>, std::pair<int[4], Int4>, std::pair<int[4], UInt4>, std::pair<int64_t, Long>, std::pair<int16_t, Half>, std::pair<float, Float>, std::pair<float[2], Float2>, std::pair<float[4], Float4>>; TYPED_TEST_SUITE(GEPTest, GEPTestTypes); TYPED_TEST(GEPTest, PtrOffsets) { using CType = typename TestFixture::CType; using ReactorType = typename TestFixture::ReactorType; std::shared_ptr<Routine> routine; { Function<Pointer<ReactorType>(Pointer<ReactorType>, Int)> function; { Pointer<ReactorType> pointer = function.template Arg<0>(); Int index = function.template Arg<1>(); Return(&pointer[index]); } routine = function(testName().c_str()); auto callable = (CType * (*)(CType *, unsigned int)) routine->getEntry(); union PtrInt { CType *p; size_t i; }; PtrInt base; base.i = 0x10000; for(int i = 0; i < 5; i++) { PtrInt reference; reference.p = &base.p[i]; PtrInt result; result.p = callable(base.p, i); auto expect = reference.i - base.i; auto got = result.i - base.i; EXPECT_EQ(got, expect) << "i:" << i; } } } static const std::vector<int> fibonacci = { 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, }; TEST(ReactorUnitTests, Fibonacci) { FunctionT<int(int)> function; { Int n = function.Arg<0>(); Int current = 0; Int next = 1; For(Int i = 0, i < n, i++) { auto tmp = current + next; current = next; next = tmp; } Return(current); } auto routine = function(testName().c_str()); for(size_t i = 0; i < fibonacci.size(); i++) { EXPECT_EQ(routine(i), fibonacci[i]); } } TEST(ReactorUnitTests, Coroutines_Fibonacci) { if(!rr::Caps.CoroutinesSupported) { SUCCEED() << "Coroutines not supported"; return; } Coroutine<int()> function; { Yield(Int(0)); Yield(Int(1)); Int current = 1; Int next = 1; While(true) { Yield(next); auto tmp = current + next; current = next; next = tmp; } } function.finalize(testName().c_str()); auto coroutine = function(); for(size_t i = 0; i < fibonacci.size(); i++) { int out = 0; EXPECT_EQ(coroutine->await(out), true); EXPECT_EQ(out, fibonacci[i]); } } TEST(ReactorUnitTests, Coroutines_Parameters) { if(!rr::Caps.CoroutinesSupported) { SUCCEED() << "Coroutines not supported"; return; } Coroutine<uint8_t(uint8_t * data, int count)> function; { Pointer<Byte> data = function.Arg<0>(); Int count = function.Arg<1>(); For(Int i = 0, i < count, i++) { Yield(data[i]); } } function.finalize(testName().c_str()); uint8_t data[] = { 10, 20, 30 }; auto coroutine = function(&data[0], 3); uint8_t out = 0; EXPECT_EQ(coroutine->await(out), true); EXPECT_EQ(out, 10); out = 0; EXPECT_EQ(coroutine->await(out), true); EXPECT_EQ(out, 20); out = 0; EXPECT_EQ(coroutine->await(out), true); EXPECT_EQ(out, 30); out = 99; EXPECT_EQ(coroutine->await(out), false); EXPECT_EQ(out, 99); EXPECT_EQ(coroutine->await(out), false); EXPECT_EQ(out, 99); } // This test was written because Subzero's handling of vector types // failed when more than one function is generated, as is the case // with coroutines. TEST(ReactorUnitTests, Coroutines_Vectors) { if(!rr::Caps.CoroutinesSupported) { SUCCEED() << "Coroutines not supported"; return; } Coroutine<int()> function; { Int4 a{ 1, 2, 3, 4 }; Yield(rr::Extract(a, 2)); Int4 b{ 5, 6, 7, 8 }; Yield(rr::Extract(b, 1)); Int4 c{ 9, 10, 11, 12 }; Yield(rr::Extract(c, 1)); } function.finalize(testName().c_str()); auto coroutine = function(); int out; coroutine->await(out); EXPECT_EQ(out, 3); coroutine->await(out); EXPECT_EQ(out, 6); coroutine->await(out); EXPECT_EQ(out, 10); } // This test was written to make sure a coroutine without a Yield() // works correctly, by executing like a regular function with no // return (the return type is ignored). // We also run it twice to ensure per instance and/or global state // is properly cleaned up in between. TEST(ReactorUnitTests, Coroutines_NoYield) { if(!rr::Caps.CoroutinesSupported) { SUCCEED() << "Coroutines not supported"; return; } for(int i = 0; i < 2; ++i) { Coroutine<int()> function; { Int a; a = 4; } function.finalize(testName().c_str()); auto coroutine = function(); int out; EXPECT_EQ(coroutine->await(out), false); } } // Test generating one coroutine, and executing it on multiple threads. This makes // sure the implementation manages per-call instance data correctly. TEST(ReactorUnitTests, Coroutines_Parallel) { if(!rr::Caps.CoroutinesSupported) { SUCCEED() << "Coroutines not supported"; return; } Coroutine<int()> function; { Yield(Int(0)); Yield(Int(1)); Int current = 1; Int next = 1; While(true) { Yield(next); auto tmp = current + next; current = next; next = tmp; } } // Must call on same thread that creates the coroutine function.finalize(testName().c_str()); std::vector<std::thread> threads; const size_t numThreads = 100; for(size_t t = 0; t < numThreads; ++t) { threads.emplace_back([&] { auto coroutine = function(); for(size_t i = 0; i < fibonacci.size(); i++) { int out = 0; EXPECT_EQ(coroutine->await(out), true); EXPECT_EQ(out, fibonacci[i]); } }); } for(auto &t : threads) { t.join(); } } template<typename TestFuncType, typename RefFuncType, typename TestValueType> struct IntrinsicTestParams { std::function<TestFuncType> testFunc; // Function we're testing (Reactor) std::function<RefFuncType> refFunc; // Reference function to test against (C) std::vector<TestValueType> testValues; // Values to input to functions }; using IntrinsicTestParams_Float = IntrinsicTestParams<RValue<Float>(RValue<Float>), float(float), float>; using IntrinsicTestParams_Float4 = IntrinsicTestParams<RValue<Float4>(RValue<Float4>), float(float), float>; using IntrinsicTestParams_Float4_Float4 = IntrinsicTestParams<RValue<Float4>(RValue<Float4>, RValue<Float4>), float(float, float), std::pair<float, float>>; // TODO(b/147818976): Each function has its own precision requirements for Vulkan, sometimes broken down // by input range. These are currently validated by deqp, but we can improve our own tests as well. // See https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/vkspec.html#spirvenv-precision-operation constexpr double INTRINSIC_PRECISION = 1e-4; struct IntrinsicTest_Float : public testing::TestWithParam<IntrinsicTestParams_Float> { void test() { FunctionT<float(float)> function; { Return(GetParam().testFunc((Float(function.Arg<0>())))); } auto routine = function(testName().c_str()); for(auto &&v : GetParam().testValues) { SCOPED_TRACE(v); EXPECT_NEAR(routine(v), GetParam().refFunc(v), INTRINSIC_PRECISION); } } }; using float4 = float[4]; using int4 = int[4]; // TODO: Move to Reactor.hpp template<> struct rr::CToReactor<int[4]> { using type = Int4; static Int4 cast(float[4]); }; // Value type wrapper around a <type>[4] (i.e. float4, int4) template<typename T> struct type4_value { using E = typename std::remove_pointer_t<std::decay_t<T>>; type4_value() = default; explicit type4_value(E rep) : v{ rep, rep, rep, rep } {} type4_value(E x, E y, E z, E w) : v{ x, y, z, w } {} bool operator==(const type4_value &rhs) const { return std::equal(std::begin(v), std::end(v), rhs.v); } // For gtest printing friend std::ostream &operator<<(std::ostream &os, const type4_value &value) { return os << "[" << value.v[0] << ", " << value.v[1] << ", " << value.v[2] << ", " << value.v[3] << "]"; } T v; }; using float4_value = type4_value<float4>; using int4_value = type4_value<int4>; // Invoke a void(type4_value<T>*) routine on &v.v, returning wrapped result in v template<typename RoutineType, typename T> type4_value<T> invokeRoutine(RoutineType &routine, type4_value<T> v) { routine(&v.v); return v; } // Invoke a void(type4_value<T>*, type4_value<T>*) routine on &v1.v, &v2.v returning wrapped result in v1 template<typename RoutineType, typename T> type4_value<T> invokeRoutine(RoutineType &routine, type4_value<T> v1, type4_value<T> v2) { routine(&v1.v, &v2.v); return v1; } struct IntrinsicTest_Float4 : public testing::TestWithParam<IntrinsicTestParams_Float4> { void test() { FunctionT<void(float4 *)> function; { Pointer<Float4> a = function.Arg<0>(); *a = GetParam().testFunc(*a); Return(); } auto routine = function(testName().c_str()); for(auto &&v : GetParam().testValues) { SCOPED_TRACE(v); float4_value result = invokeRoutine(routine, float4_value{ v }); float4_value expected = float4_value{ GetParam().refFunc(v) }; EXPECT_NEAR(result.v[0], expected.v[0], INTRINSIC_PRECISION); EXPECT_NEAR(result.v[1], expected.v[1], INTRINSIC_PRECISION); EXPECT_NEAR(result.v[2], expected.v[2], INTRINSIC_PRECISION); EXPECT_NEAR(result.v[3], expected.v[3], INTRINSIC_PRECISION); } } }; struct IntrinsicTest_Float4_Float4 : public testing::TestWithParam<IntrinsicTestParams_Float4_Float4> { void test() { FunctionT<void(float4 *, float4 *)> function; { Pointer<Float4> a = function.Arg<0>(); Pointer<Float4> b = function.Arg<1>(); *a = GetParam().testFunc(*a, *b); Return(); } auto routine = function(testName().c_str()); for(auto &&v : GetParam().testValues) { SCOPED_TRACE(v); float4_value result = invokeRoutine(routine, float4_value{ v.first }, float4_value{ v.second }); float4_value expected = float4_value{ GetParam().refFunc(v.first, v.second) }; EXPECT_NEAR(result.v[0], expected.v[0], INTRINSIC_PRECISION); EXPECT_NEAR(result.v[1], expected.v[1], INTRINSIC_PRECISION); EXPECT_NEAR(result.v[2], expected.v[2], INTRINSIC_PRECISION); EXPECT_NEAR(result.v[3], expected.v[3], INTRINSIC_PRECISION); } } }; // clang-format off INSTANTIATE_TEST_SUITE_P(IntrinsicTestParams_Float, IntrinsicTest_Float, testing::Values( IntrinsicTestParams_Float{ [](Float v) { return rr::Exp2(v); }, exp2f, {0.f, 1.f, 123.f} }, IntrinsicTestParams_Float{ [](Float v) { return rr::Log2(v); }, log2f, {1.f, 123.f} }, IntrinsicTestParams_Float{ [](Float v) { return rr::Sqrt(v); }, sqrtf, {0.f, 1.f, 123.f} } )); // clang-format on // TODO(b/149110874) Use coshf/sinhf when we've implemented SpirV versions at the SpirV level float vulkan_sinhf(float a) { return ((expf(a) - expf(-a)) / 2); } float vulkan_coshf(float a) { return ((expf(a) + expf(-a)) / 2); } // clang-format off constexpr float PI = 3.141592653589793f; INSTANTIATE_TEST_SUITE_P(IntrinsicTestParams_Float4, IntrinsicTest_Float4, testing::Values( IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Sin(v); }, sinf, {0.f, 1.f, PI, 123.f} }, IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Cos(v); }, cosf, {0.f, 1.f, PI, 123.f} }, IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Tan(v); }, tanf, {0.f, 1.f, PI, 123.f} }, IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Asin(v, Precision::Full); }, asinf, {0.f, 1.f, -1.f} }, IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Acos(v, Precision::Full); }, acosf, {0.f, 1.f, -1.f} }, IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Atan(v); }, atanf, {0.f, 1.f, PI, 123.f} }, IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Sinh(v); }, vulkan_sinhf, {0.f, 1.f, PI} }, IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Cosh(v); }, vulkan_coshf, {0.f, 1.f, PI} }, IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Tanh(v); }, tanhf, {0.f, 1.f, PI} }, IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Asinh(v); }, asinhf, {0.f, 1.f, PI, 123.f} }, IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Acosh(v); }, acoshf, { 1.f, PI, 123.f} }, IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Atanh(v); }, atanhf, {0.f, 0.9999f, -0.9999f} }, IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Exp(v); }, expf, {0.f, 1.f, PI} }, IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Log(v); }, logf, {1.f, PI, 123.f} }, IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Exp2(v); }, exp2f, {0.f, 1.f, PI, 123.f} }, IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Log2(v); }, log2f, {1.f, PI, 123.f} }, IntrinsicTestParams_Float4{ [](RValue<Float4> v) { return rr::Sqrt(v); }, sqrtf, {0.f, 1.f, PI, 123.f} } )); // clang-format on // clang-format off INSTANTIATE_TEST_SUITE_P(IntrinsicTestParams_Float4_Float4, IntrinsicTest_Float4_Float4, testing::Values( IntrinsicTestParams_Float4_Float4{ [](RValue<Float4> v1, RValue<Float4> v2) { return Atan2(v1, v2); }, atan2f, { {0.f, 0.f}, {0.f, -1.f}, {-1.f, 0.f}, {123.f, 123.f} } }, IntrinsicTestParams_Float4_Float4{ [](RValue<Float4> v1, RValue<Float4> v2) { return Pow(v1, v2); }, powf, { {1.f, 0.f}, {1.f, -1.f}, {-1.f, 0.f} } } )); // clang-format on TEST_P(IntrinsicTest_Float, Test) { test(); } TEST_P(IntrinsicTest_Float4, Test) { test(); } TEST_P(IntrinsicTest_Float4_Float4, Test) { test(); } TEST(ReactorUnitTests, Intrinsics_Ctlz) { // ctlz: counts number of leading zeros { Function<UInt(UInt x)> function; { UInt x = function.Arg<0>(); Return(rr::Ctlz(x, false)); } auto routine = function(testName().c_str()); auto callable = (uint32_t(*)(uint32_t))routine->getEntry(); for(uint32_t i = 0; i < 31; ++i) { uint32_t result = callable(1 << i); EXPECT_EQ(result, 31 - i); } // Input 0 should return 32 for isZeroUndef == false { uint32_t result = callable(0); EXPECT_EQ(result, 32u); } } { Function<Void(Pointer<UInt4>, UInt x)> function; { Pointer<UInt4> out = function.Arg<0>(); UInt x = function.Arg<1>(); *out = rr::Ctlz(UInt4(x), false); } auto routine = function(testName().c_str()); auto callable = (void (*)(uint32_t *, uint32_t))routine->getEntry(); uint32_t x[4]; for(uint32_t i = 0; i < 31; ++i) { callable(x, 1 << i); EXPECT_EQ(x[0], 31 - i); EXPECT_EQ(x[1], 31 - i); EXPECT_EQ(x[2], 31 - i); EXPECT_EQ(x[3], 31 - i); } // Input 0 should return 32 for isZeroUndef == false { callable(x, 0); EXPECT_EQ(x[0], 32u); EXPECT_EQ(x[1], 32u); EXPECT_EQ(x[2], 32u); EXPECT_EQ(x[3], 32u); } } } TEST(ReactorUnitTests, Intrinsics_Cttz) { // cttz: counts number of trailing zeros { Function<UInt(UInt x)> function; { UInt x = function.Arg<0>(); Return(rr::Cttz(x, false)); } auto routine = function(testName().c_str()); auto callable = (uint32_t(*)(uint32_t))routine->getEntry(); for(uint32_t i = 0; i < 31; ++i) { uint32_t result = callable(1 << i); EXPECT_EQ(result, i); } // Input 0 should return 32 for isZeroUndef == false { uint32_t result = callable(0); EXPECT_EQ(result, 32u); } } { Function<Void(Pointer<UInt4>, UInt x)> function; { Pointer<UInt4> out = function.Arg<0>(); UInt x = function.Arg<1>(); *out = rr::Cttz(UInt4(x), false); } auto routine = function(testName().c_str()); auto callable = (void (*)(uint32_t *, uint32_t))routine->getEntry(); uint32_t x[4]; for(uint32_t i = 0; i < 31; ++i) { callable(x, 1 << i); EXPECT_EQ(x[0], i); EXPECT_EQ(x[1], i); EXPECT_EQ(x[2], i); EXPECT_EQ(x[3], i); } // Input 0 should return 32 for isZeroUndef == false { callable(x, 0); EXPECT_EQ(x[0], 32u); EXPECT_EQ(x[1], 32u); EXPECT_EQ(x[2], 32u); EXPECT_EQ(x[3], 32u); } } } TEST(ReactorUnitTests, Intrinsics_Scatter) { Function<Void(Pointer<Float> base, Pointer<Float4> val, Pointer<Int4> offsets)> function; { Pointer<Float> base = function.Arg<0>(); Pointer<Float4> val = function.Arg<1>(); Pointer<Int4> offsets = function.Arg<2>(); auto mask = Int4(~0, ~0, ~0, ~0); unsigned int alignment = 1; Scatter(base, *val, *offsets, mask, alignment); } float buffer[16] = { 0 }; constexpr auto elemSize = sizeof(buffer[0]); int offsets[] = { 1 * elemSize, 6 * elemSize, 11 * elemSize, 13 * elemSize }; float val[4] = { 10, 60, 110, 130 }; auto routine = function(testName().c_str()); auto entry = (void (*)(float *, float *, int *))routine->getEntry(); entry(buffer, val, offsets); EXPECT_EQ(buffer[offsets[0] / sizeof(buffer[0])], 10); EXPECT_EQ(buffer[offsets[1] / sizeof(buffer[0])], 60); EXPECT_EQ(buffer[offsets[2] / sizeof(buffer[0])], 110); EXPECT_EQ(buffer[offsets[3] / sizeof(buffer[0])], 130); } TEST(ReactorUnitTests, Intrinsics_Gather) { Function<Void(Pointer<Float> base, Pointer<Int4> offsets, Pointer<Float4> result)> function; { Pointer<Float> base = function.Arg<0>(); Pointer<Int4> offsets = function.Arg<1>(); Pointer<Float4> result = function.Arg<2>(); auto mask = Int4(~0, ~0, ~0, ~0); unsigned int alignment = 1; bool zeroMaskedLanes = true; *result = Gather(base, *offsets, mask, alignment, zeroMaskedLanes); } float buffer[] = { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150 }; constexpr auto elemSize = sizeof(buffer[0]); int offsets[] = { 1 * elemSize, 6 * elemSize, 11 * elemSize, 13 * elemSize }; auto routine = function(testName().c_str()); auto entry = (void (*)(float *, int *, float *))routine->getEntry(); float result[4] = {}; entry(buffer, offsets, result); EXPECT_EQ(result[0], 10); EXPECT_EQ(result[1], 60); EXPECT_EQ(result[2], 110); EXPECT_EQ(result[3], 130); } TEST(ReactorUnitTests, ExtractFromRValue) { Function<Void(Pointer<Int4> values, Pointer<Int4> result)> function; { Pointer<Int4> vIn = function.Arg<0>(); Pointer<Int4> resultIn = function.Arg<1>(); RValue<Int4> v = *vIn; Int4 result(678); If(Extract(v, 0) == 42) { result = Insert(result, 1, 0); } If(Extract(v, 1) == 42) { result = Insert(result, 1, 1); } *resultIn = result; Return(); } auto routine = function(testName().c_str()); auto entry = (void (*)(int *, int *))routine->getEntry(); int v[4] = { 42, 42, 42, 42 }; int result[4] = { 99, 99, 99, 99 }; entry(v, result); EXPECT_EQ(result[0], 1); EXPECT_EQ(result[1], 1); EXPECT_EQ(result[2], 678); EXPECT_EQ(result[3], 678); } TEST(ReactorUnitTests, AddAtomic) { FunctionT<uint32_t(uint32_t * p, uint32_t a)> function; { Pointer<UInt> p = function.Arg<0>(); UInt a = function.Arg<1>(); UInt r = rr::AddAtomic(p, a, std::memory_order_relaxed); Return(r); } auto routine = function(testName().c_str()); uint32_t x = 123; uint32_t y = 456; uint32_t prevX = routine(&x, y); EXPECT_EQ(prevX, 123u); EXPECT_EQ(x, 579u); } TEST(ReactorUnitTests, SubAtomic) { FunctionT<uint32_t(uint32_t * p, uint32_t a)> function; { Pointer<UInt> p = function.Arg<0>(); UInt a = function.Arg<1>(); UInt r = rr::SubAtomic(p, a, std::memory_order_relaxed); Return(r); } auto routine = function(testName().c_str()); uint32_t x = 456; uint32_t y = 123; uint32_t prevX = routine(&x, y); EXPECT_EQ(prevX, 456u); EXPECT_EQ(x, 333u); } TEST(ReactorUnitTests, AndAtomic) { FunctionT<uint32_t(uint32_t * p, uint32_t a)> function; { Pointer<UInt> p = function.Arg<0>(); UInt a = function.Arg<1>(); UInt r = rr::AndAtomic(p, a, std::memory_order_relaxed); Return(r); } auto routine = function(testName().c_str()); uint32_t x = 0b1111'0000; uint32_t y = 0b1010'1100; uint32_t prevX = routine(&x, y); EXPECT_EQ(prevX, 0b1111'0000u); EXPECT_EQ(x, 0b1010'0000u); } TEST(ReactorUnitTests, OrAtomic) { FunctionT<uint32_t(uint32_t * p, uint32_t a)> function; { Pointer<UInt> p = function.Arg<0>(); UInt a = function.Arg<1>(); UInt r = rr::OrAtomic(p, a, std::memory_order_relaxed); Return(r); } auto routine = function(testName().c_str()); uint32_t x = 0b1111'0000; uint32_t y = 0b1010'1100; uint32_t prevX = routine(&x, y); EXPECT_EQ(prevX, 0b1111'0000u); EXPECT_EQ(x, 0b1111'1100u); } TEST(ReactorUnitTests, XorAtomic) { FunctionT<uint32_t(uint32_t * p, uint32_t a)> function; { Pointer<UInt> p = function.Arg<0>(); UInt a = function.Arg<1>(); UInt r = rr::XorAtomic(p, a, std::memory_order_relaxed); Return(r); } auto routine = function(testName().c_str()); uint32_t x = 0b1111'0000; uint32_t y = 0b1010'1100; uint32_t prevX = routine(&x, y); EXPECT_EQ(prevX, 0b1111'0000u); EXPECT_EQ(x, 0b0101'1100u); } TEST(ReactorUnitTests, MinAtomic) { { FunctionT<uint32_t(uint32_t * p, uint32_t a)> function; { Pointer<UInt> p = function.Arg<0>(); UInt a = function.Arg<1>(); UInt r = rr::MinAtomic(p, a, std::memory_order_relaxed); Return(r); } auto routine = function(testName().c_str()); uint32_t x = 123; uint32_t y = 100; uint32_t prevX = routine(&x, y); EXPECT_EQ(prevX, 123u); EXPECT_EQ(x, 100u); } { FunctionT<int32_t(int32_t * p, int32_t a)> function; { Pointer<Int> p = function.Arg<0>(); Int a = function.Arg<1>(); Int r = rr::MinAtomic(p, a, std::memory_order_relaxed); Return(r); } auto routine = function(testName().c_str()); int32_t x = -123; int32_t y = -200; int32_t prevX = routine(&x, y); EXPECT_EQ(prevX, -123); EXPECT_EQ(x, -200); } } TEST(ReactorUnitTests, MaxAtomic) { { FunctionT<uint32_t(uint32_t * p, uint32_t a)> function; { Pointer<UInt> p = function.Arg<0>(); UInt a = function.Arg<1>(); UInt r = rr::MaxAtomic(p, a, std::memory_order_relaxed); Return(r); } auto routine = function(testName().c_str()); uint32_t x = 123; uint32_t y = 100; uint32_t prevX = routine(&x, y); EXPECT_EQ(prevX, 123u); EXPECT_EQ(x, 123u); } { FunctionT<int32_t(int32_t * p, int32_t a)> function; { Pointer<Int> p = function.Arg<0>(); Int a = function.Arg<1>(); Int r = rr::MaxAtomic(p, a, std::memory_order_relaxed); Return(r); } auto routine = function(testName().c_str()); int32_t x = -123; int32_t y = -200; int32_t prevX = routine(&x, y); EXPECT_EQ(prevX, -123); EXPECT_EQ(x, -123); } } TEST(ReactorUnitTests, ExchangeAtomic) { FunctionT<uint32_t(uint32_t * p, uint32_t a)> function; { Pointer<UInt> p = function.Arg<0>(); UInt a = function.Arg<1>(); UInt r = rr::ExchangeAtomic(p, a, std::memory_order_relaxed); Return(r); } auto routine = function(testName().c_str()); uint32_t x = 123; uint32_t y = 456; uint32_t prevX = routine(&x, y); EXPECT_EQ(prevX, 123u); EXPECT_EQ(x, y); } TEST(ReactorUnitTests, CompareExchangeAtomic) { FunctionT<uint32_t(uint32_t * x, uint32_t y, uint32_t compare)> function; { Pointer<UInt> x = function.Arg<0>(); UInt y = function.Arg<1>(); UInt compare = function.Arg<2>(); UInt r = rr::CompareExchangeAtomic(x, y, compare, std::memory_order_relaxed, std::memory_order_relaxed); Return(r); } auto routine = function(testName().c_str()); uint32_t x = 123; uint32_t y = 456; uint32_t compare = 123; uint32_t prevX = routine(&x, y, compare); EXPECT_EQ(prevX, 123u); EXPECT_EQ(x, y); x = 123; y = 456; compare = 456; prevX = routine(&x, y, compare); EXPECT_EQ(prevX, 123u); EXPECT_EQ(x, 123u); } TEST(ReactorUnitTests, SRem) { FunctionT<void(int4 *, int4 *)> function; { Pointer<Int4> a = function.Arg<0>(); Pointer<Int4> b = function.Arg<1>(); *a = *a % *b; } auto routine = function(testName().c_str()); int4_value result = invokeRoutine(routine, int4_value{ 10, 11, 12, 13 }, int4_value{ 3, 3, 3, 3 }); int4_value expected = int4_value{ 10 % 3, 11 % 3, 12 % 3, 13 % 3 }; EXPECT_FLOAT_EQ(result.v[0], expected.v[0]); EXPECT_FLOAT_EQ(result.v[1], expected.v[1]); EXPECT_FLOAT_EQ(result.v[2], expected.v[2]); EXPECT_FLOAT_EQ(result.v[3], expected.v[3]); } TEST(ReactorUnitTests, FRem) { FunctionT<void(float4 *, float4 *)> function; { Pointer<Float4> a = function.Arg<0>(); Pointer<Float4> b = function.Arg<1>(); *a = *a % *b; } auto routine = function(testName().c_str()); float4_value result = invokeRoutine(routine, float4_value{ 10.1f, 11.2f, 12.3f, 13.4f }, float4_value{ 3.f, 3.f, 3.f, 3.f }); float4_value expected = float4_value{ fmodf(10.1f, 3.f), fmodf(11.2f, 3.f), fmodf(12.3f, 3.f), fmodf(13.4f, 3.f) }; EXPECT_FLOAT_EQ(result.v[0], expected.v[0]); EXPECT_FLOAT_EQ(result.v[1], expected.v[1]); EXPECT_FLOAT_EQ(result.v[2], expected.v[2]); EXPECT_FLOAT_EQ(result.v[3], expected.v[3]); } // Subzero's load instruction assumes that a Constant ptr value is an offset, rather than an absolute // pointer, and would fail during codegen. This was fixed by casting the constant to a non-const // variable, and loading from it instead. This test makes sure this works. TEST(ReactorUnitTests, LoadFromConstantData) { const int value = 123; FunctionT<int()> function; { auto p = Pointer<Int>{ ConstantData(&value, sizeof(value)) }; Int v = *p; Return(v); } const int result = function(testName().c_str())(); EXPECT_EQ(result, value); } TEST(ReactorUnitTests, Multithreaded_Function) { constexpr int numThreads = 8; constexpr int numLoops = 16; auto threads = std::unique_ptr<std::thread[]>(new std::thread[numThreads]); auto results = std::unique_ptr<int[]>(new int[numThreads * numLoops]); for(int t = 0; t < numThreads; t++) { auto threadFunc = [&](int t) { for(int l = 0; l < numLoops; l++) { FunctionT<int(int, int)> function; { Int a = function.Arg<0>(); Int b = function.Arg<1>(); Return((a << 16) | b); } auto f = function("%s_thread%d_loop%d", testName().c_str(), t, l); results[t * numLoops + l] = f(t, l); } }; threads[t] = std::thread(threadFunc, t); } for(int t = 0; t < numThreads; t++) { threads[t].join(); } for(int t = 0; t < numThreads; t++) { for(int l = 0; l < numLoops; l++) { auto expect = (t << 16) | l; auto result = results[t * numLoops + l]; EXPECT_EQ(result, expect); } } } TEST(ReactorUnitTests, Multithreaded_Coroutine) { if(!rr::Caps.CoroutinesSupported) { SUCCEED() << "Coroutines not supported"; return; } constexpr int numThreads = 8; constexpr int numLoops = 16; struct Result { bool yieldReturns[3]; int yieldValues[3]; }; auto threads = std::unique_ptr<std::thread[]>(new std::thread[numThreads]); auto results = std::unique_ptr<Result[]>(new Result[numThreads * numLoops]); for(int t = 0; t < numThreads; t++) { auto threadFunc = [&](int t) { for(int l = 0; l < numLoops; l++) { Coroutine<int(int, int)> function; { Int a = function.Arg<0>(); Int b = function.Arg<1>(); Yield(a); Yield(b); } function.finalize((testName() + "_thread" + std::to_string(t) + "_loop" + std::to_string(l)).c_str()); auto coroutine = function(t, l); auto &result = results[t * numLoops + l]; result = {}; result.yieldReturns[0] = coroutine->await(result.yieldValues[0]); result.yieldReturns[1] = coroutine->await(result.yieldValues[1]); result.yieldReturns[2] = coroutine->await(result.yieldValues[2]); } }; threads[t] = std::thread(threadFunc, t); } for(int t = 0; t < numThreads; t++) { threads[t].join(); } for(int t = 0; t < numThreads; t++) { for(int l = 0; l < numLoops; l++) { auto const &result = results[t * numLoops + l]; EXPECT_EQ(result.yieldReturns[0], true); EXPECT_EQ(result.yieldValues[0], t); EXPECT_EQ(result.yieldReturns[1], true); EXPECT_EQ(result.yieldValues[1], l); EXPECT_EQ(result.yieldReturns[2], false); EXPECT_EQ(result.yieldValues[2], 0); } } } // For gtest printing of pairs namespace std { template<typename T, typename U> std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &value) { return os << "{ " << value.first << ", " << value.second << " }"; } } // namespace std class StdOutCapture { public: ~StdOutCapture() { stopIfCapturing(); } void start() { stopIfCapturing(); capturing = true; testing::internal::CaptureStdout(); } std::string stop() { assert(capturing); capturing = false; return testing::internal::GetCapturedStdout(); } private: void stopIfCapturing() { if(capturing) { // This stops the capture testing::internal::GetCapturedStdout(); } } bool capturing = false; }; std::vector<std::string> split(const std::string &s) { std::vector<std::string> result; std::istringstream iss(s); for(std::string line; std::getline(iss, line);) { result.push_back(line); } return result; } TEST(ReactorUnitTests, PrintPrimitiveTypes) { #if defined(ENABLE_RR_PRINT) && !defined(ENABLE_RR_EMIT_PRINT_LOCATION) FunctionT<void()> function; { bool b(true); int8_t i8(-1); uint8_t ui8(1); int16_t i16(-1); uint16_t ui16(1); int32_t i32(-1); uint32_t ui32(1); int64_t i64(-1); uint64_t ui64(1); float f(1); double d(2); const char *cstr = "const char*"; std::string str = "std::string"; int *p = nullptr; RR_WATCH(b); RR_WATCH(i8); RR_WATCH(ui8); RR_WATCH(i16); RR_WATCH(ui16); RR_WATCH(i32); RR_WATCH(ui32); RR_WATCH(i64); RR_WATCH(ui64); RR_WATCH(f); RR_WATCH(d); RR_WATCH(cstr); RR_WATCH(str); RR_WATCH(p); } auto routine = function(testName().c_str()); char pNullptr[64]; snprintf(pNullptr, sizeof(pNullptr), " p: %p", nullptr); const char *expected[] = { " b: true", " i8: -1", " ui8: 1", " i16: -1", " ui16: 1", " i32: -1", " ui32: 1", " i64: -1", " ui64: 1", " f: 1.000000", " d: 2.000000", " cstr: const char*", " str: std::string", pNullptr, }; constexpr size_t expectedSize = sizeof(expected) / sizeof(expected[0]); StdOutCapture capture; capture.start(); routine(); auto output = split(capture.stop()); for(size_t i = 0, j = 1; i < expectedSize; ++i, j += 2) { ASSERT_EQ(expected[i], output[j]); } #endif } TEST(ReactorUnitTests, PrintReactorTypes) { #if defined(ENABLE_RR_PRINT) && !defined(ENABLE_RR_EMIT_PRINT_LOCATION) FunctionT<void()> function; { Bool b(true); Int i(-1); Int2 i2(-1, -2); Int4 i4(-1, -2, -3, -4); UInt ui(1); UInt2 ui2(1, 2); UInt4 ui4(1, 2, 3, 4); Short s(-1); Short4 s4(-1, -2, -3, -4); UShort us(1); UShort4 us4(1, 2, 3, 4); Float f(1); Float4 f4(1, 2, 3, 4); Long l(i); Pointer<Int> pi = nullptr; RValue<Int> rvi = i; Byte by('a'); Byte4 by4(i4); RR_WATCH(b); RR_WATCH(i); RR_WATCH(i2); RR_WATCH(i4); RR_WATCH(ui); RR_WATCH(ui2); RR_WATCH(ui4); RR_WATCH(s); RR_WATCH(s4); RR_WATCH(us); RR_WATCH(us4); RR_WATCH(f); RR_WATCH(f4); RR_WATCH(l); RR_WATCH(pi); RR_WATCH(rvi); RR_WATCH(by); RR_WATCH(by4); } auto routine = function(testName().c_str()); char piNullptr[64]; snprintf(piNullptr, sizeof(piNullptr), " pi: %p", nullptr); const char *expected[] = { " b: true", " i: -1", " i2: [-1, -2]", " i4: [-1, -2, -3, -4]", " ui: 1", " ui2: [1, 2]", " ui4: [1, 2, 3, 4]", " s: -1", " s4: [-1, -2, -3, -4]", " us: 1", " us4: [1, 2, 3, 4]", " f: 1.000000", " f4: [1.000000, 2.000000, 3.000000, 4.000000]", " l: -1", piNullptr, " rvi: -1", " by: 97", " by4: [255, 254, 253, 252]", }; constexpr size_t expectedSize = sizeof(expected) / sizeof(expected[0]); StdOutCapture capture; capture.start(); routine(); auto output = split(capture.stop()); for(size_t i = 0, j = 1; i < expectedSize; ++i, j += 2) { ASSERT_EQ(expected[i], output[j]); } #endif } // Test constant <op> variable template<typename T, typename Func> T Arithmetic_LhsConstArg(T arg1, T arg2, Func f) { using ReactorT = CToReactorT<T>; FunctionT<T(T)> function; { ReactorT lhs = arg1; ReactorT rhs = function.template Arg<0>(); ReactorT result = f(lhs, rhs); Return(result); } auto routine = function(testName().c_str()); return routine(arg2); } // Test variable <op> constant template<typename T, typename Func> T Arithmetic_RhsConstArg(T arg1, T arg2, Func f) { using ReactorT = CToReactorT<T>; FunctionT<T(T)> function; { ReactorT lhs = function.template Arg<0>(); ReactorT rhs = arg2; ReactorT result = f(lhs, rhs); Return(result); } auto routine = function(testName().c_str()); return routine(arg1); } // Test constant <op> constant template<typename T, typename Func> T Arithmetic_TwoConstArgs(T arg1, T arg2, Func f) { using ReactorT = CToReactorT<T>; FunctionT<T()> function; { ReactorT lhs = arg1; ReactorT rhs = arg2; ReactorT result = f(lhs, rhs); Return(result); } auto routine = function(testName().c_str()); return routine(); } template<typename T, typename Func> void Arithmetic_ConstArgs(T arg1, T arg2, T expected, Func f) { SCOPED_TRACE(std::to_string(arg1) + " <op> " + std::to_string(arg2) + " = " + std::to_string(expected)); T result{}; result = Arithmetic_LhsConstArg(arg1, arg2, std::forward<Func>(f)); EXPECT_EQ(result, expected); result = Arithmetic_RhsConstArg(arg1, arg2, std::forward<Func>(f)); EXPECT_EQ(result, expected); result = Arithmetic_TwoConstArgs(arg1, arg2, std::forward<Func>(f)); EXPECT_EQ(result, expected); } // Test that we generate valid code for when one or both args to arithmetic operations // are constant. In particular, we want to validate the case for two const args, as // often lowered instructions do not support this case. TEST(ReactorUnitTests, Arithmetic_ConstantArgs) { Arithmetic_ConstArgs(2, 3, 5, [](auto c1, auto c2) { return c1 + c2; }); Arithmetic_ConstArgs(5, 3, 2, [](auto c1, auto c2) { return c1 - c2; }); Arithmetic_ConstArgs(2, 3, 6, [](auto c1, auto c2) { return c1 * c2; }); Arithmetic_ConstArgs(6, 3, 2, [](auto c1, auto c2) { return c1 / c2; }); Arithmetic_ConstArgs(0xF0F0, 0xAAAA, 0xA0A0, [](auto c1, auto c2) { return c1 & c2; }); Arithmetic_ConstArgs(0xF0F0, 0xAAAA, 0xFAFA, [](auto c1, auto c2) { return c1 | c2; }); Arithmetic_ConstArgs(0xF0F0, 0xAAAA, 0x5A5A, [](auto c1, auto c2) { return c1 ^ c2; }); Arithmetic_ConstArgs(2.f, 3.f, 5.f, [](auto c1, auto c2) { return c1 + c2; }); Arithmetic_ConstArgs(5.f, 3.f, 2.f, [](auto c1, auto c2) { return c1 - c2; }); Arithmetic_ConstArgs(2.f, 3.f, 6.f, [](auto c1, auto c2) { return c1 * c2; }); Arithmetic_ConstArgs(6.f, 3.f, 2.f, [](auto c1, auto c2) { return c1 / c2; }); } // Test for Subzero bad code-gen that was fixed in swiftshader-cl/50008 // This tests the case of copying enough arguments to local variables so that the locals // get spilled to the stack when no more registers remain, and making sure these copies // are generated correctly. Without the aforementioned fix, this fails 100% on Windows x86. TEST(ReactorUnitTests, SpillLocalCopiesOfArgs) { struct Helpers { static bool True() { return true; } }; const int numLoops = 5; // 2 should be enough, but loop more to make sure FunctionT<int(int, int, int, int, int, int, int, int, int, int, int, int)> function; { Int result = 0; Int a1 = function.Arg<0>(); Int a2 = function.Arg<1>(); Int a3 = function.Arg<2>(); Int a4 = function.Arg<3>(); Int a5 = function.Arg<4>(); Int a6 = function.Arg<5>(); Int a7 = function.Arg<6>(); Int a8 = function.Arg<7>(); Int a9 = function.Arg<8>(); Int a10 = function.Arg<9>(); Int a11 = function.Arg<10>(); Int a12 = function.Arg<11>(); for(int i = 0; i < numLoops; ++i) { // Copy all arguments to locals so that Ice::LocalVariableSplitter::handleSimpleVarAssign // creates Variable copies of arguments. We loop so that we create enough of these so // that some spill over to the stack. Int i1 = a1; Int i2 = a2; Int i3 = a3; Int i4 = a4; Int i5 = a5; Int i6 = a6; Int i7 = a7; Int i8 = a8; Int i9 = a9; Int i10 = a10; Int i11 = a11; Int i12 = a12; // Forcibly materialize all variables so that Ice::Variable instances are created for each // local; otherwise, Reactor r-value optimizations kick in, and the locals are elided. Variable::materializeAll(); // We also need to create a separate block that uses the variables declared above // so that rr::optimize() doesn't optimize them out when attempting to eliminate stores // followed by a load in the same block. If(Call(Helpers::True)) { result += (i1 + i2 + i3 + i4 + i5 + i6 + i7 + i8 + i9 + i10 + i11 + i12); } } Return(result); } auto routine = function(testName().c_str()); int result = routine(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12); int expected = numLoops * (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12); EXPECT_EQ(result, expected); } #if defined(ENABLE_RR_EMIT_ASM_FILE) TEST(ReactorUnitTests, EmitAsm) { // Only supported by LLVM for now if(BackendName().find("LLVM") == std::string::npos) return; namespace fs = std::filesystem; FunctionT<int(void)> function; { Int sum; For(Int i = 0, i < 10, i++) { sum += i; } Return(sum); } auto routine = function(testName().c_str()); // Returns path to first match of filename in current directory auto findFile = [](const std::string filename) -> fs::path { for(auto &p : fs::directory_iterator(".")) { if(!p.is_regular_file()) continue; auto currFilename = p.path().filename().string(); auto index = currFilename.find(testName()); if(index != std::string::npos) { return p.path(); } } return {}; }; fs::path path = findFile(testName()); EXPECT_FALSE(path.empty()); // Make sure an asm file was created std::ifstream fin(path); EXPECT_TRUE(fin); // Make sure address of routine is in the file auto findAddressInFile = [](std::ifstream &fin, size_t address) { std::string addressString = [&] { std::stringstream addressSS; addressSS << "0x" << std::uppercase << std::hex << address; return addressSS.str(); }(); std::string token; while(fin >> token) { if(token.find(addressString) != std::string::npos) return true; } return false; }; size_t address = reinterpret_cast<size_t>(routine.getEntry()); EXPECT_TRUE(findAddressInFile(fin, address)); // Delete the file in case subsequent runs generate one with a different sequence number fin.close(); std::filesystem::remove(path); } #endif //////////////////////////////// // Trait compile time checks. // //////////////////////////////// // Assert CToReactorT resolves to expected types. static_assert(std::is_same<CToReactorT<void>, Void>::value, ""); static_assert(std::is_same<CToReactorT<bool>, Bool>::value, ""); static_assert(std::is_same<CToReactorT<uint8_t>, Byte>::value, ""); static_assert(std::is_same<CToReactorT<int8_t>, SByte>::value, ""); static_assert(std::is_same<CToReactorT<int16_t>, Short>::value, ""); static_assert(std::is_same<CToReactorT<uint16_t>, UShort>::value, ""); static_assert(std::is_same<CToReactorT<int32_t>, Int>::value, ""); static_assert(std::is_same<CToReactorT<uint64_t>, Long>::value, ""); static_assert(std::is_same<CToReactorT<uint32_t>, UInt>::value, ""); static_assert(std::is_same<CToReactorT<float>, Float>::value, ""); // Assert CToReactorT for known pointer types resolves to expected types. static_assert(std::is_same<CToReactorT<void *>, Pointer<Byte>>::value, ""); static_assert(std::is_same<CToReactorT<bool *>, Pointer<Bool>>::value, ""); static_assert(std::is_same<CToReactorT<uint8_t *>, Pointer<Byte>>::value, ""); static_assert(std::is_same<CToReactorT<int8_t *>, Pointer<SByte>>::value, ""); static_assert(std::is_same<CToReactorT<int16_t *>, Pointer<Short>>::value, ""); static_assert(std::is_same<CToReactorT<uint16_t *>, Pointer<UShort>>::value, ""); static_assert(std::is_same<CToReactorT<int32_t *>, Pointer<Int>>::value, ""); static_assert(std::is_same<CToReactorT<uint64_t *>, Pointer<Long>>::value, ""); static_assert(std::is_same<CToReactorT<uint32_t *>, Pointer<UInt>>::value, ""); static_assert(std::is_same<CToReactorT<float *>, Pointer<Float>>::value, ""); static_assert(std::is_same<CToReactorT<uint16_t **>, Pointer<Pointer<UShort>>>::value, ""); static_assert(std::is_same<CToReactorT<uint16_t ***>, Pointer<Pointer<Pointer<UShort>>>>::value, ""); // Assert CToReactorT for unknown pointer types resolves to Pointer<Byte>. struct S {}; static_assert(std::is_same<CToReactorT<S *>, Pointer<Byte>>::value, ""); static_assert(std::is_same<CToReactorT<S **>, Pointer<Pointer<Byte>>>::value, ""); static_assert(std::is_same<CToReactorT<S ***>, Pointer<Pointer<Pointer<Byte>>>>::value, ""); // Assert IsRValue<> resolves true for RValue<> types. static_assert(IsRValue<RValue<Void>>::value, ""); static_assert(IsRValue<RValue<Bool>>::value, ""); static_assert(IsRValue<RValue<Byte>>::value, ""); static_assert(IsRValue<RValue<SByte>>::value, ""); static_assert(IsRValue<RValue<Short>>::value, ""); static_assert(IsRValue<RValue<UShort>>::value, ""); static_assert(IsRValue<RValue<Int>>::value, ""); static_assert(IsRValue<RValue<Long>>::value, ""); static_assert(IsRValue<RValue<UInt>>::value, ""); static_assert(IsRValue<RValue<Float>>::value, ""); // Assert IsLValue<> resolves true for LValue types. static_assert(IsLValue<Bool>::value, ""); static_assert(IsLValue<Byte>::value, ""); static_assert(IsLValue<SByte>::value, ""); static_assert(IsLValue<Short>::value, ""); static_assert(IsLValue<UShort>::value, ""); static_assert(IsLValue<Int>::value, ""); static_assert(IsLValue<Long>::value, ""); static_assert(IsLValue<UInt>::value, ""); static_assert(IsLValue<Float>::value, ""); // Assert IsReference<> resolves true for Reference types. static_assert(IsReference<Reference<Bool>>::value, ""); static_assert(IsReference<Reference<Byte>>::value, ""); static_assert(IsReference<Reference<SByte>>::value, ""); static_assert(IsReference<Reference<Short>>::value, ""); static_assert(IsReference<Reference<UShort>>::value, ""); static_assert(IsReference<Reference<Int>>::value, ""); static_assert(IsReference<Reference<Long>>::value, ""); static_assert(IsReference<Reference<UInt>>::value, ""); static_assert(IsReference<Reference<Float>>::value, ""); // Assert IsRValue<> resolves false for LValue types. static_assert(!IsRValue<Void>::value, ""); static_assert(!IsRValue<Bool>::value, ""); static_assert(!IsRValue<Byte>::value, ""); static_assert(!IsRValue<SByte>::value, ""); static_assert(!IsRValue<Short>::value, ""); static_assert(!IsRValue<UShort>::value, ""); static_assert(!IsRValue<Int>::value, ""); static_assert(!IsRValue<Long>::value, ""); static_assert(!IsRValue<UInt>::value, ""); static_assert(!IsRValue<Float>::value, ""); // Assert IsRValue<> resolves false for Reference types. static_assert(!IsRValue<Reference<Void>>::value, ""); static_assert(!IsRValue<Reference<Bool>>::value, ""); static_assert(!IsRValue<Reference<Byte>>::value, ""); static_assert(!IsRValue<Reference<SByte>>::value, ""); static_assert(!IsRValue<Reference<Short>>::value, ""); static_assert(!IsRValue<Reference<UShort>>::value, ""); static_assert(!IsRValue<Reference<Int>>::value, ""); static_assert(!IsRValue<Reference<Long>>::value, ""); static_assert(!IsRValue<Reference<UInt>>::value, ""); static_assert(!IsRValue<Reference<Float>>::value, ""); // Assert IsRValue<> resolves false for C types. static_assert(!IsRValue<void>::value, ""); static_assert(!IsRValue<bool>::value, ""); static_assert(!IsRValue<uint8_t>::value, ""); static_assert(!IsRValue<int8_t>::value, ""); static_assert(!IsRValue<int16_t>::value, ""); static_assert(!IsRValue<uint16_t>::value, ""); static_assert(!IsRValue<int32_t>::value, ""); static_assert(!IsRValue<uint64_t>::value, ""); static_assert(!IsRValue<uint32_t>::value, ""); static_assert(!IsRValue<float>::value, ""); // Assert IsLValue<> resolves false for RValue<> types. static_assert(!IsLValue<RValue<Void>>::value, ""); static_assert(!IsLValue<RValue<Bool>>::value, ""); static_assert(!IsLValue<RValue<Byte>>::value, ""); static_assert(!IsLValue<RValue<SByte>>::value, ""); static_assert(!IsLValue<RValue<Short>>::value, ""); static_assert(!IsLValue<RValue<UShort>>::value, ""); static_assert(!IsLValue<RValue<Int>>::value, ""); static_assert(!IsLValue<RValue<Long>>::value, ""); static_assert(!IsLValue<RValue<UInt>>::value, ""); static_assert(!IsLValue<RValue<Float>>::value, ""); // Assert IsLValue<> resolves false for Void type. static_assert(!IsLValue<Void>::value, ""); // Assert IsLValue<> resolves false for Reference<> types. static_assert(!IsLValue<Reference<Void>>::value, ""); static_assert(!IsLValue<Reference<Bool>>::value, ""); static_assert(!IsLValue<Reference<Byte>>::value, ""); static_assert(!IsLValue<Reference<SByte>>::value, ""); static_assert(!IsLValue<Reference<Short>>::value, ""); static_assert(!IsLValue<Reference<UShort>>::value, ""); static_assert(!IsLValue<Reference<Int>>::value, ""); static_assert(!IsLValue<Reference<Long>>::value, ""); static_assert(!IsLValue<Reference<UInt>>::value, ""); static_assert(!IsLValue<Reference<Float>>::value, ""); // Assert IsLValue<> resolves false for C types. static_assert(!IsLValue<void>::value, ""); static_assert(!IsLValue<bool>::value, ""); static_assert(!IsLValue<uint8_t>::value, ""); static_assert(!IsLValue<int8_t>::value, ""); static_assert(!IsLValue<int16_t>::value, ""); static_assert(!IsLValue<uint16_t>::value, ""); static_assert(!IsLValue<int32_t>::value, ""); static_assert(!IsLValue<uint64_t>::value, ""); static_assert(!IsLValue<uint32_t>::value, ""); static_assert(!IsLValue<float>::value, ""); // Assert IsDefined<> resolves true for RValue<> types. static_assert(IsDefined<RValue<Void>>::value, ""); static_assert(IsDefined<RValue<Bool>>::value, ""); static_assert(IsDefined<RValue<Byte>>::value, ""); static_assert(IsDefined<RValue<SByte>>::value, ""); static_assert(IsDefined<RValue<Short>>::value, ""); static_assert(IsDefined<RValue<UShort>>::value, ""); static_assert(IsDefined<RValue<Int>>::value, ""); static_assert(IsDefined<RValue<Long>>::value, ""); static_assert(IsDefined<RValue<UInt>>::value, ""); static_assert(IsDefined<RValue<Float>>::value, ""); // Assert IsDefined<> resolves true for LValue types. static_assert(IsDefined<Void>::value, ""); static_assert(IsDefined<Bool>::value, ""); static_assert(IsDefined<Byte>::value, ""); static_assert(IsDefined<SByte>::value, ""); static_assert(IsDefined<Short>::value, ""); static_assert(IsDefined<UShort>::value, ""); static_assert(IsDefined<Int>::value, ""); static_assert(IsDefined<Long>::value, ""); static_assert(IsDefined<UInt>::value, ""); static_assert(IsDefined<Float>::value, ""); // Assert IsDefined<> resolves true for Reference<> types. static_assert(IsDefined<Reference<Bool>>::value, ""); static_assert(IsDefined<Reference<Byte>>::value, ""); static_assert(IsDefined<Reference<SByte>>::value, ""); static_assert(IsDefined<Reference<Short>>::value, ""); static_assert(IsDefined<Reference<UShort>>::value, ""); static_assert(IsDefined<Reference<Int>>::value, ""); static_assert(IsDefined<Reference<Long>>::value, ""); static_assert(IsDefined<Reference<UInt>>::value, ""); static_assert(IsDefined<Reference<Float>>::value, ""); // Assert IsDefined<> resolves true for C types. static_assert(IsDefined<void>::value, ""); static_assert(IsDefined<bool>::value, ""); static_assert(IsDefined<uint8_t>::value, ""); static_assert(IsDefined<int8_t>::value, ""); static_assert(IsDefined<int16_t>::value, ""); static_assert(IsDefined<uint16_t>::value, ""); static_assert(IsDefined<int32_t>::value, ""); static_assert(IsDefined<uint64_t>::value, ""); static_assert(IsDefined<uint32_t>::value, ""); static_assert(IsDefined<float>::value, "");