/*
* Copyright 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include
#include
#include
#include
#include "hci/src/packet_fragmenter.cc"
#include "osi/test/AllocationTestHarness.h"
extern void allocation_tracker_uninit(void);
enum kPacketOrder {
kStart = 1,
kContinuation = 2,
};
struct AclPacketHeader {
struct {
uint16_t handle : 12;
uint16_t continuation : 1;
uint16_t start : 1;
uint16_t reserved : 2;
} s;
uint16_t length;
uint16_t GetRawHandle() const { return *(uint16_t*)(this); }
uint16_t GetHandle() const { return s.handle; }
uint16_t GetLength() const { return length; }
} __attribute__((packed));
struct L2capPacketHeader {
uint16_t length;
uint16_t cid;
} __attribute__((packed));
struct AclL2capPacketHeader {
struct AclPacketHeader acl_header;
struct L2capPacketHeader l2cap_header;
} __attribute__((packed));
namespace {
constexpr uint16_t kHandle = 0x123;
constexpr uint16_t kCid = 0x4567;
constexpr uint16_t kMaxPacketSize = BT_DEFAULT_BUFFER_SIZE - sizeof(BT_HDR) -
L2CAP_HEADER_SIZE - HCI_ACL_PREAMBLE_SIZE;
constexpr size_t kTypicalPacketSizes[] = {
1, 2, 3, 4, 8, 16, 32, 64, 127, 128, 129, 256, 1024, 2048, kMaxPacketSize};
constexpr size_t kNumberOfTypicalPacketSizes =
sizeof(kTypicalPacketSizes) / sizeof(kTypicalPacketSizes[0]);
void FreeBuffer(BT_HDR* bt_hdr) { osi_free(bt_hdr); }
struct TestMutables {
struct {
int access_count_{0};
} fragmented;
struct {
int access_count_{0};
std::queue> queue;
} reassembled;
struct {
int access_count_{0};
} transmit_finished;
};
TestMutables test_state_;
void OnFragmented(BT_HDR* packet, bool send_transmit_finished) {
test_state_.fragmented.access_count_++;
}
void OnReassembled(BT_HDR* packet) {
test_state_.reassembled.access_count_++;
test_state_.reassembled.queue.push(
std::unique_ptr(packet, &FreeBuffer));
}
void OnTransmitFinished(BT_HDR* packet, bool all_fragments_sent) {
test_state_.transmit_finished.access_count_++;
}
packet_fragmenter_callbacks_t result_callbacks = {
.fragmented = OnFragmented,
.reassembled = OnReassembled,
.transmit_finished = OnTransmitFinished,
};
AclPacketHeader* AclHeader(BT_HDR* packet) {
return (AclPacketHeader*)packet->data;
}
L2capPacketHeader* L2capHeader(BT_HDR* packet) {
return &((AclL2capPacketHeader*)packet->data)->l2cap_header;
}
uint8_t* Data(BT_HDR* packet) {
AclPacketHeader* acl_header =
reinterpret_cast(packet->data);
return acl_header->s.start
? (uint8_t*)(packet->data + sizeof(AclL2capPacketHeader))
: (uint8_t*)(packet->data + sizeof(AclPacketHeader));
}
} // namespace
// Needed for linkage
const controller_t* controller_get_interface() { return nullptr; }
/**
* Test class to test selected functionality in hci/src/hci_layer.cc
*/
class HciPacketFragmenterTest : public AllocationTestHarness {
protected:
void SetUp() override {
AllocationTestHarness::SetUp();
// Disable our allocation tracker to allow ASAN full range
allocation_tracker_uninit();
packet_fragmenter_ = packet_fragmenter_get_interface();
packet_fragmenter_->init(&result_callbacks);
test_state_ = TestMutables();
}
void TearDown() override {
FlushPartialPackets();
while (!test_state_.reassembled.queue.empty()) {
test_state_.reassembled.queue.pop();
}
packet_fragmenter_->cleanup();
AllocationTestHarness::TearDown();
}
const packet_fragmenter_t* packet_fragmenter_;
// Start acl packet
BT_HDR* AllocateL2capPacket(size_t l2cap_length,
const std::vector data) const {
auto packet =
AllocateAclPacket(data.size() + sizeof(L2capPacketHeader), kStart);
L2capHeader(packet)->length = l2cap_length;
L2capHeader(packet)->cid = kCid;
std::copy(data.cbegin(), data.cend(), Data(packet));
return packet;
}
// Continuation acl packet
BT_HDR* AllocateL2capPacket(const std::vector data) const {
auto packet = AllocateAclPacket(data.size(), kContinuation);
std::copy(data.cbegin(), data.cend(), Data(packet));
return packet;
}
const std::vector CreateData(size_t size) const {
CHECK(size > 0);
std::vector v(size);
uint8_t sum = 0;
for (size_t s = 0; s < size; s++) {
sum += v[s] = s;
}
v[0] = (~sum + 1); // First byte has sum complement
return v;
}
// Verify packet integrity
bool VerifyData(const uint8_t* data, size_t size) const {
CHECK(size > 0);
uint8_t sum = 0;
for (size_t s = 0; s < size; s++) {
sum += data[s];
}
return sum == 0;
}
private:
BT_HDR* AllocateAclPacket(size_t acl_length,
kPacketOrder packet_order) const {
BT_HDR* packet = AllocatePacket(sizeof(AclPacketHeader) + acl_length,
MSG_HC_TO_STACK_HCI_ACL);
AclHeader(packet)->s.handle = kHandle;
AclHeader(packet)->length = acl_length;
switch (packet_order) {
case kStart:
AclHeader(packet)->s.start = 1;
break;
case kContinuation:
AclHeader(packet)->s.continuation = 1;
break;
}
return packet;
}
BT_HDR* AllocatePacket(size_t packet_length, uint16_t event_mask) const {
BT_HDR* packet =
static_cast(osi_calloc(sizeof(BT_HDR) + packet_length));
packet->event = event_mask;
packet->len = static_cast(packet_length);
return packet;
}
void FlushPartialPackets() const {
while (!partial_packets.empty()) {
BT_HDR* partial_packet = partial_packets.at(kHandle);
partial_packets.erase(kHandle);
osi_free(partial_packet);
}
}
};
TEST_F(HciPacketFragmenterTest, TestStruct_Handle) {
AclPacketHeader acl_header;
memset(&acl_header, 0, sizeof(acl_header));
for (uint16_t h = 0; h < UINT16_MAX; h++) {
acl_header.s.handle = h;
CHECK(acl_header.GetHandle() == (h & HANDLE_MASK));
CHECK(acl_header.s.continuation == 0);
CHECK(acl_header.s.start == 0);
CHECK(acl_header.s.reserved == 0);
CHECK((acl_header.GetRawHandle() & HANDLE_MASK) == (h & HANDLE_MASK));
GET_BOUNDARY_FLAG(acl_header.GetRawHandle() == 0);
}
}
TEST_F(HciPacketFragmenterTest, TestStruct_Continuation) {
AclPacketHeader acl_header;
memset(&acl_header, 0, sizeof(acl_header));
for (uint16_t h = 0; h < UINT16_MAX; h++) {
acl_header.s.continuation = h;
CHECK(acl_header.GetHandle() == 0);
CHECK(acl_header.s.continuation == (h & 0x1));
CHECK(acl_header.s.start == 0);
CHECK(acl_header.s.reserved == 0);
CHECK((acl_header.GetRawHandle() & HANDLE_MASK) == 0);
GET_BOUNDARY_FLAG(acl_header.GetRawHandle() == (h & 0x3));
}
}
TEST_F(HciPacketFragmenterTest, TestStruct_Start) {
AclPacketHeader acl_header;
memset(&acl_header, 0, sizeof(acl_header));
for (uint16_t h = 0; h < UINT16_MAX; h++) {
acl_header.s.start = h;
CHECK(acl_header.GetHandle() == 0);
CHECK(acl_header.s.continuation == 0);
CHECK(acl_header.s.start == (h & 0x1));
CHECK(acl_header.s.reserved == 0);
CHECK((acl_header.GetRawHandle() & HANDLE_MASK) == 0);
GET_BOUNDARY_FLAG(acl_header.GetRawHandle() == (h & 0x3));
}
}
TEST_F(HciPacketFragmenterTest, TestStruct_Reserved) {
AclPacketHeader acl_header;
memset(&acl_header, 0, sizeof(acl_header));
for (uint16_t h = 0; h < UINT16_MAX; h++) {
acl_header.s.reserved = h;
CHECK(acl_header.GetHandle() == 0);
CHECK(acl_header.s.continuation == 0);
CHECK(acl_header.s.start == 0);
CHECK(acl_header.s.reserved == (h & 0x3));
}
}
TEST_F(HciPacketFragmenterTest, CreateAndVerifyPackets) {
const size_t size_check[] = {1, 2, 3, 4, 8, 16, 32,
64, 127, 128, 129, 256, 1024, 0xfff0};
const std::vector sizes(
size_check, size_check + sizeof(size_check) / sizeof(size_check[0]));
for (const auto packet_size : sizes) {
const std::vector data = CreateData(packet_size);
uint8_t buf[packet_size];
std::copy(data.cbegin(), data.cend(), buf);
CHECK(VerifyData(buf, packet_size));
}
}
TEST_F(HciPacketFragmenterTest, OnePacket_Immediate) {
const std::vector sizes(
kTypicalPacketSizes, kTypicalPacketSizes + kNumberOfTypicalPacketSizes);
int reassembled_access_count = 0;
for (const auto packet_size : sizes) {
const std::vector data = CreateData(packet_size);
reassemble_and_dispatch(AllocateL2capPacket(data.size(), data));
CHECK(partial_packets.size() == 0);
CHECK(test_state_.reassembled.access_count_ == ++reassembled_access_count);
auto packet = std::move(test_state_.reassembled.queue.front());
test_state_.reassembled.queue.pop();
CHECK(VerifyData(Data(packet.get()), packet_size));
}
}
TEST_F(HciPacketFragmenterTest, OnePacket_ImmediateTooBig) {
const size_t packet_size = kMaxPacketSize + 1;
const std::vector data = CreateData(packet_size);
reassemble_and_dispatch(AllocateL2capPacket(data.size(), data));
CHECK(partial_packets.size() == 0);
CHECK(test_state_.reassembled.access_count_ == 0);
}
TEST_F(HciPacketFragmenterTest, ThreePackets_Immediate) {
const size_t packet_size = 512;
const std::vector data = CreateData(packet_size);
reassemble_and_dispatch(AllocateL2capPacket(data.size(), data));
reassemble_and_dispatch(AllocateL2capPacket(data.size(), data));
reassemble_and_dispatch(AllocateL2capPacket(data.size(), data));
CHECK(partial_packets.size() == 0);
CHECK(test_state_.reassembled.access_count_ == 3);
}
TEST_F(HciPacketFragmenterTest, OnePacket_SplitTwo) {
const std::vector sizes(
kTypicalPacketSizes, kTypicalPacketSizes + kNumberOfTypicalPacketSizes);
int reassembled_access_count = 0;
for (auto packet_size : sizes) {
const std::vector data = CreateData(packet_size);
const std::vector part1(data.cbegin(),
data.cbegin() + packet_size / 2);
reassemble_and_dispatch(AllocateL2capPacket(data.size(), part1));
CHECK(partial_packets.size() == 1);
CHECK(test_state_.reassembled.access_count_ == reassembled_access_count);
const std::vector part2(data.cbegin() + packet_size / 2,
data.cend());
reassemble_and_dispatch(AllocateL2capPacket(part2));
CHECK(partial_packets.size() == 0);
CHECK(test_state_.reassembled.access_count_ == ++reassembled_access_count);
auto packet = std::move(test_state_.reassembled.queue.front());
test_state_.reassembled.queue.pop();
CHECK(VerifyData(Data(packet.get()), packet_size));
}
}
TEST_F(HciPacketFragmenterTest, OnePacket_SplitALot) {
const size_t packet_size = 512;
const size_t stride = 2;
const std::vector data = CreateData(packet_size);
const std::vector first_part(data.cbegin(), data.cbegin() + stride);
reassemble_and_dispatch(AllocateL2capPacket(data.size(), first_part));
CHECK(partial_packets.size() == 1);
for (size_t i = 2; i < packet_size - stride; i += stride) {
const std::vector middle_part(data.cbegin() + i,
data.cbegin() + i + stride);
reassemble_and_dispatch(AllocateL2capPacket(middle_part));
}
CHECK(partial_packets.size() == 1);
CHECK(test_state_.reassembled.access_count_ == 0);
const std::vector last_part(data.cbegin() + packet_size - stride,
data.cend());
reassemble_and_dispatch(AllocateL2capPacket(last_part));
CHECK(partial_packets.size() == 0);
CHECK(test_state_.reassembled.access_count_ == 1);
auto packet = std::move(test_state_.reassembled.queue.front());
CHECK(VerifyData(Data(packet.get()), packet_size));
}
TEST_F(HciPacketFragmenterTest, TwoPacket_InvalidLength) {
const size_t packet_size = UINT16_MAX;
const std::vector data = CreateData(packet_size);
const std::vector first_part(data.cbegin(),
data.cbegin() + packet_size / 2);
reassemble_and_dispatch(AllocateL2capPacket(data.size(), first_part));
CHECK(partial_packets.size() == 0);
CHECK(test_state_.reassembled.access_count_ == 0);
const std::vector second_part(data.cbegin() + packet_size / 2,
data.cend());
reassemble_and_dispatch(AllocateL2capPacket(second_part));
CHECK(partial_packets.size() == 0);
CHECK(test_state_.reassembled.access_count_ == 0);
}
TEST_F(HciPacketFragmenterTest, TwoPacket_HugeBogusSecond) {
const size_t packet_size = kMaxPacketSize;
const std::vector data = CreateData(UINT16_MAX);
const std::vector first_part(data.cbegin(),
data.cbegin() + packet_size - 1);
reassemble_and_dispatch(AllocateL2capPacket(packet_size, first_part));
CHECK(partial_packets.size() == 1);
CHECK(test_state_.reassembled.access_count_ == 0);
const std::vector second_part(data.cbegin() + packet_size - 1,
data.cend());
reassemble_and_dispatch(AllocateL2capPacket(second_part));
CHECK(partial_packets.size() == 0);
CHECK(test_state_.reassembled.access_count_ == 1);
}