/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__ANDROID__) && !defined(__ANDROID_APEX__) && !defined(__ANDROID_VNDK__) #include "bpf/BpfMap.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include "meminfo_private.h" namespace android { namespace meminfo { bool SysMemInfo::ReadMemInfo(const char* path) { return ReadMemInfo(path, SysMemInfo::kDefaultSysMemInfoTags.size(), &*SysMemInfo::kDefaultSysMemInfoTags.begin(), [&](std::string_view tag, uint64_t val) { // Safe to store the string_view in the map // because the tags from // kDefaultSysMemInfoTags are all // statically-allocated. mem_in_kb_[tag] = val; }); } bool SysMemInfo::ReadMemInfo(std::vector* out, const char* path) { out->clear(); out->resize(SysMemInfo::kDefaultSysMemInfoTags.size()); return ReadMemInfo(SysMemInfo::kDefaultSysMemInfoTags.size(), &*SysMemInfo::kDefaultSysMemInfoTags.begin(), out->data(), path); } bool SysMemInfo::ReadMemInfo(size_t ntags, const std::string_view* tags, uint64_t* out, const char* path) { return ReadMemInfo(path, ntags, tags, [&]([[maybe_unused]] std::string_view tag, uint64_t val) { auto it = std::find(tags, tags + ntags, tag); if (it == tags + ntags) { LOG(ERROR) << "Tried to store invalid tag: " << tag; return; } auto index = std::distance(tags, it); // store the values in the same order as the tags out[index] = val; }); } uint64_t SysMemInfo::ReadVmallocInfo() { return ::android::meminfo::ReadVmallocInfo(); } bool SysMemInfo::ReadMemInfo(const char* path, size_t ntags, const std::string_view* tags, std::function store_val) { char buffer[4096]; int fd = open(path, O_RDONLY | O_CLOEXEC); if (fd < 0) { PLOG(ERROR) << "Failed to open file :" << path; return false; } const int len = read(fd, buffer, sizeof(buffer) - 1); close(fd); if (len < 0) { return false; } buffer[len] = '\0'; char* p = buffer; uint32_t found = 0; uint32_t lineno = 0; bool zram_tag_found = false; while (*p && found < ntags) { for (size_t tagno = 0; tagno < ntags; ++tagno) { const std::string_view& tag = tags[tagno]; // Special case for "Zram:" tag that android_os_Debug and friends look // up along with the rest of the numbers from /proc/meminfo if (!zram_tag_found && tag == "Zram:") { store_val(tag, mem_zram_kb()); zram_tag_found = true; found++; continue; } if (strncmp(p, tag.data(), tag.size()) == 0) { p += tag.size(); while (*p == ' ') p++; char* endptr = nullptr; uint64_t val = strtoull(p, &endptr, 10); if (p == endptr) { PLOG(ERROR) << "Failed to parse line:" << lineno + 1 << " in file: " << path; return false; } store_val(tag, val); p = endptr; found++; break; } } while (*p && *p != '\n') { p++; } if (*p) p++; lineno++; } return true; } uint64_t SysMemInfo::mem_zram_kb(const char* zram_dev_cstr) { uint64_t mem_zram_total = 0; if (zram_dev_cstr) { if (!MemZramDevice(zram_dev_cstr, &mem_zram_total)) { return 0; } return mem_zram_total / 1024; } constexpr uint32_t kMaxZramDevices = 256; for (uint32_t i = 0; i < kMaxZramDevices; i++) { std::string zram_dev_abspath = ::android::base::StringPrintf("/sys/block/zram%u/", i); if (access(zram_dev_abspath.c_str(), F_OK)) { // We assume zram devices appear in range 0-255 and appear always in sequence // under /sys/block. So, stop looking for them once we find one is missing. break; } uint64_t mem_zram_dev; if (!MemZramDevice(zram_dev_abspath.c_str(), &mem_zram_dev)) { return 0; } mem_zram_total += mem_zram_dev; } return mem_zram_total / 1024; } bool SysMemInfo::MemZramDevice(const char* zram_dev, uint64_t* mem_zram_dev) { std::string mmstat = ::android::base::StringPrintf("%s/%s", zram_dev, "mm_stat"); auto mmstat_fp = std::unique_ptr{fopen(mmstat.c_str(), "re"), fclose}; if (mmstat_fp != nullptr) { // only if we do have mmstat, use it. Otherwise, fall through to trying out the old // 'mem_used_total' if (fscanf(mmstat_fp.get(), "%*" SCNu64 " %*" SCNu64 " %" SCNu64, mem_zram_dev) != 1) { PLOG(ERROR) << "Malformed mm_stat file in: " << zram_dev; return false; } return true; } std::string content; if (::android::base::ReadFileToString( ::android::base::StringPrintf("%s/mem_used_total", zram_dev), &content)) { *mem_zram_dev = strtoull(content.c_str(), NULL, 10); if (*mem_zram_dev == ULLONG_MAX) { PLOG(ERROR) << "Malformed mem_used_total file for zram dev: " << zram_dev << " content: " << content; return false; } return true; } LOG(ERROR) << "Can't find memory status under: " << zram_dev; return false; } // Public methods uint64_t ReadVmallocInfo(const char* path) { uint64_t vmalloc_total = 0; auto fp = std::unique_ptr{fopen(path, "re"), fclose}; if (fp == nullptr) { return vmalloc_total; } char* line = nullptr; size_t line_alloc = 0; while (getline(&line, &line_alloc, fp.get()) > 0) { // We are looking for lines like // // 0x0000000000000000-0x0000000000000000 12288 drm_property_create_blob+0x44/0xec pages=2 vmalloc // 0x0000000000000000-0x0000000000000000 8192 wlan_logging_sock_init_svc+0xf8/0x4f0 [wlan] pages=1 vmalloc // // Notice that if the caller is coming from a module, the kernel prints and extra // "[module_name]" after the address and the symbol of the call site. This means we can't // use the old sscanf() method of getting the # of pages. char* p_start = strstr(line, "pages="); if (p_start == nullptr) { // we didn't find anything continue; } uint64_t nr_pages; if (sscanf(p_start, "pages=%" SCNu64 "", &nr_pages) == 1) { vmalloc_total += (nr_pages * getpagesize()); } } free(line); return vmalloc_total; } static bool ReadSysfsFile(const std::string& path, uint64_t* value) { std::string content; if (!::android::base::ReadFileToString(path, &content)) { LOG(ERROR) << "Can't open file: " << path; return false; } *value = strtoull(content.c_str(), NULL, 10); if (*value == ULLONG_MAX) { PLOG(ERROR) << "Invalid file format: " << path; return false; } return true; } bool ReadIonHeapsSizeKb(uint64_t* size, const std::string& path) { return ReadSysfsFile(path, size); } bool ReadIonPoolsSizeKb(uint64_t* size, const std::string& path) { return ReadSysfsFile(path, size); } bool ReadDmabufHeapPoolsSizeKb(uint64_t* size, const std::string& dma_heap_pool_size_path) { static bool support_dmabuf_heap_pool_size = [dma_heap_pool_size_path]() -> bool { bool ret = (access(dma_heap_pool_size_path.c_str(), R_OK) == 0); if (!ret) LOG(ERROR) << "Unable to read DMA-BUF heap total pool size, read ION total pool " "size instead."; return ret; }(); if (!support_dmabuf_heap_pool_size) return ReadIonPoolsSizeKb(size); return ReadSysfsFile(dma_heap_pool_size_path, size); } bool ReadDmabufHeapTotalExportedKb(uint64_t* size, const std::string& dma_heap_root_path, const std::string& dmabuf_sysfs_stats_path) { static bool support_dmabuf_heaps = [dma_heap_root_path]() -> bool { bool ret = (access(dma_heap_root_path.c_str(), R_OK) == 0); if (!ret) LOG(ERROR) << "DMA-BUF heaps not supported, read ION heap total instead."; return ret; }(); if (!support_dmabuf_heaps) return ReadIonHeapsSizeKb(size); std::unique_ptr dir(opendir(dma_heap_root_path.c_str()), closedir); if (!dir) { return false; } std::unordered_set heap_list; struct dirent* dent; while ((dent = readdir(dir.get()))) { if (!strcmp(dent->d_name, ".") || !strcmp(dent->d_name, "..")) continue; heap_list.insert(dent->d_name); } if (heap_list.empty()) return false; android::dmabufinfo::DmabufSysfsStats stats; if (!android::dmabufinfo::GetDmabufSysfsStats(&stats, dmabuf_sysfs_stats_path)) return false; auto exporter_info = stats.exporter_info(); *size = 0; for (const auto& heap : heap_list) { auto iter = exporter_info.find(heap); if (iter != exporter_info.end()) *size += iter->second.size; } *size = *size / 1024; return true; } bool ReadGpuTotalUsageKb(uint64_t* size) { #if defined(__ANDROID__) && !defined(__ANDROID_APEX__) && !defined(__ANDROID_VNDK__) static constexpr const char kBpfGpuMemTotalMap[] = "/sys/fs/bpf/map_gpu_mem_gpu_mem_total_map"; static constexpr uint64_t kBpfKeyGpuTotalUsage = 0; // Use the read-only wrapper BpfMapRO to properly retrieve the read-only map. auto map = bpf::BpfMapRO(kBpfGpuMemTotalMap); if (!map.isValid()) { LOG(ERROR) << "Can't open file: " << kBpfGpuMemTotalMap; return false; } auto res = map.readValue(kBpfKeyGpuTotalUsage); if (!res.ok()) { LOG(ERROR) << "Invalid file format: " << kBpfGpuMemTotalMap; return false; } if (size) { *size = res.value() / 1024; } return true; #else if (size) { *size = 0; } return false; #endif } } // namespace meminfo } // namespace android