You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

350 lines
12 KiB

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_OPTIMIZING_CODEGEN_TEST_UTILS_H_
#define ART_COMPILER_OPTIMIZING_CODEGEN_TEST_UTILS_H_
#include "arch/arm/registers_arm.h"
#include "arch/instruction_set.h"
#include "arch/x86/registers_x86.h"
#include "code_simulator.h"
#include "code_simulator_container.h"
#include "common_compiler_test.h"
#include "graph_checker.h"
#include "prepare_for_register_allocation.h"
#include "ssa_liveness_analysis.h"
#ifdef ART_ENABLE_CODEGEN_arm
#include "code_generator_arm_vixl.h"
#endif
#ifdef ART_ENABLE_CODEGEN_arm64
#include "code_generator_arm64.h"
#endif
#ifdef ART_ENABLE_CODEGEN_x86
#include "code_generator_x86.h"
#endif
#ifdef ART_ENABLE_CODEGEN_x86_64
#include "code_generator_x86_64.h"
#endif
namespace art {
typedef CodeGenerator* (*CreateCodegenFn)(HGraph*, const CompilerOptions&);
class CodegenTargetConfig {
public:
CodegenTargetConfig(InstructionSet isa, CreateCodegenFn create_codegen)
: isa_(isa), create_codegen_(create_codegen) {
}
InstructionSet GetInstructionSet() const { return isa_; }
CodeGenerator* CreateCodeGenerator(HGraph* graph, const CompilerOptions& compiler_options) {
return create_codegen_(graph, compiler_options);
}
private:
InstructionSet isa_;
CreateCodegenFn create_codegen_;
};
#ifdef ART_ENABLE_CODEGEN_arm
// Special ARM code generator for codegen testing in a limited code
// generation environment (i.e. with no runtime support).
//
// Note: If we want to exercise certains HIR constructions
// (e.g. reference field load in Baker read barrier configuration) in
// codegen tests in the future, we should also:
// - save the Thread Register (R9) and possibly the Marking Register
// (R8) before entering the generated function (both registers are
// callee-save in AAPCS);
// - set these registers to meaningful values before or upon entering
// the generated function (so that generated code using them is
// correct);
// - restore their original values before leaving the generated
// function.
// Provide our own codegen, that ensures the C calling conventions
// are preserved. Currently, ART and C do not match as R4 is caller-save
// in ART, and callee-save in C. Alternatively, we could use or write
// the stub that saves and restores all registers, but it is easier
// to just overwrite the code generator.
class TestCodeGeneratorARMVIXL : public arm::CodeGeneratorARMVIXL {
public:
TestCodeGeneratorARMVIXL(HGraph* graph, const CompilerOptions& compiler_options)
: arm::CodeGeneratorARMVIXL(graph, compiler_options) {
AddAllocatedRegister(Location::RegisterLocation(arm::R6));
AddAllocatedRegister(Location::RegisterLocation(arm::R7));
}
void SetupBlockedRegisters() const override {
arm::CodeGeneratorARMVIXL::SetupBlockedRegisters();
blocked_core_registers_[arm::R4] = true;
blocked_core_registers_[arm::R6] = false;
blocked_core_registers_[arm::R7] = false;
}
void MaybeGenerateMarkingRegisterCheck(int code ATTRIBUTE_UNUSED,
Location temp_loc ATTRIBUTE_UNUSED) override {
// When turned on, the marking register checks in
// CodeGeneratorARMVIXL::MaybeGenerateMarkingRegisterCheck expects the
// Thread Register and the Marking Register to be set to
// meaningful values. This is not the case in codegen testing, so
// just disable them entirely here (by doing nothing in this
// method).
}
};
#endif
#ifdef ART_ENABLE_CODEGEN_arm64
// Special ARM64 code generator for codegen testing in a limited code
// generation environment (i.e. with no runtime support).
//
// Note: If we want to exercise certains HIR constructions
// (e.g. reference field load in Baker read barrier configuration) in
// codegen tests in the future, we should also:
// - save the Thread Register (X19) and possibly the Marking Register
// (X20) before entering the generated function (both registers are
// callee-save in AAPCS64);
// - set these registers to meaningful values before or upon entering
// the generated function (so that generated code using them is
// correct);
// - restore their original values before leaving the generated
// function.
class TestCodeGeneratorARM64 : public arm64::CodeGeneratorARM64 {
public:
TestCodeGeneratorARM64(HGraph* graph, const CompilerOptions& compiler_options)
: arm64::CodeGeneratorARM64(graph, compiler_options) {}
void MaybeGenerateMarkingRegisterCheck(int codem ATTRIBUTE_UNUSED,
Location temp_loc ATTRIBUTE_UNUSED) override {
// When turned on, the marking register checks in
// CodeGeneratorARM64::MaybeGenerateMarkingRegisterCheck expect the
// Thread Register and the Marking Register to be set to
// meaningful values. This is not the case in codegen testing, so
// just disable them entirely here (by doing nothing in this
// method).
}
};
#endif
#ifdef ART_ENABLE_CODEGEN_x86
class TestCodeGeneratorX86 : public x86::CodeGeneratorX86 {
public:
TestCodeGeneratorX86(HGraph* graph, const CompilerOptions& compiler_options)
: x86::CodeGeneratorX86(graph, compiler_options) {
// Save edi, we need it for getting enough registers for long multiplication.
AddAllocatedRegister(Location::RegisterLocation(x86::EDI));
}
void SetupBlockedRegisters() const override {
x86::CodeGeneratorX86::SetupBlockedRegisters();
// ebx is a callee-save register in C, but caller-save for ART.
blocked_core_registers_[x86::EBX] = true;
// Make edi available.
blocked_core_registers_[x86::EDI] = false;
}
};
#endif
class InternalCodeAllocator : public CodeAllocator {
public:
InternalCodeAllocator() : size_(0) { }
uint8_t* Allocate(size_t size) override {
size_ = size;
memory_.reset(new uint8_t[size]);
return memory_.get();
}
size_t GetSize() const { return size_; }
ArrayRef<const uint8_t> GetMemory() const override {
return ArrayRef<const uint8_t>(memory_.get(), size_);
}
private:
size_t size_;
std::unique_ptr<uint8_t[]> memory_;
DISALLOW_COPY_AND_ASSIGN(InternalCodeAllocator);
};
static bool CanExecuteOnHardware(InstructionSet target_isa) {
return (target_isa == kRuntimeISA)
// Handle the special case of ARM, with two instructions sets (ARM32 and Thumb-2).
|| (kRuntimeISA == InstructionSet::kArm && target_isa == InstructionSet::kThumb2);
}
static bool CanExecute(InstructionSet target_isa) {
CodeSimulatorContainer simulator(target_isa);
return CanExecuteOnHardware(target_isa) || simulator.CanSimulate();
}
template <typename Expected>
inline static Expected SimulatorExecute(CodeSimulator* simulator, Expected (*f)());
template <>
inline bool SimulatorExecute<bool>(CodeSimulator* simulator, bool (*f)()) {
simulator->RunFrom(reinterpret_cast<intptr_t>(f));
return simulator->GetCReturnBool();
}
template <>
inline int32_t SimulatorExecute<int32_t>(CodeSimulator* simulator, int32_t (*f)()) {
simulator->RunFrom(reinterpret_cast<intptr_t>(f));
return simulator->GetCReturnInt32();
}
template <>
inline int64_t SimulatorExecute<int64_t>(CodeSimulator* simulator, int64_t (*f)()) {
simulator->RunFrom(reinterpret_cast<intptr_t>(f));
return simulator->GetCReturnInt64();
}
template <typename Expected>
static void VerifyGeneratedCode(InstructionSet target_isa,
Expected (*f)(),
bool has_result,
Expected expected) {
ASSERT_TRUE(CanExecute(target_isa)) << "Target isa is not executable.";
// Verify on simulator.
CodeSimulatorContainer simulator(target_isa);
if (simulator.CanSimulate()) {
Expected result = SimulatorExecute<Expected>(simulator.Get(), f);
if (has_result) {
ASSERT_EQ(expected, result);
}
}
// Verify on hardware.
if (CanExecuteOnHardware(target_isa)) {
Expected result = f();
if (has_result) {
ASSERT_EQ(expected, result);
}
}
}
template <typename Expected>
static void Run(const InternalCodeAllocator& allocator,
const CodeGenerator& codegen,
bool has_result,
Expected expected) {
InstructionSet target_isa = codegen.GetInstructionSet();
struct CodeHolder : CommonCompilerTestImpl {
protected:
ClassLinker* GetClassLinker() override { return nullptr; }
Runtime* GetRuntime() override { return nullptr; }
};
CodeHolder code_holder;
const void* code_ptr =
code_holder.MakeExecutable(allocator.GetMemory(), ArrayRef<const uint8_t>(), target_isa);
typedef Expected (*fptr)();
fptr f = reinterpret_cast<fptr>(reinterpret_cast<uintptr_t>(code_ptr));
if (target_isa == InstructionSet::kThumb2) {
// For thumb we need the bottom bit set.
f = reinterpret_cast<fptr>(reinterpret_cast<uintptr_t>(f) + 1);
}
VerifyGeneratedCode(target_isa, f, has_result, expected);
}
static void ValidateGraph(HGraph* graph) {
GraphChecker graph_checker(graph);
graph_checker.Run();
if (!graph_checker.IsValid()) {
for (const std::string& error : graph_checker.GetErrors()) {
std::cout << error << std::endl;
}
}
ASSERT_TRUE(graph_checker.IsValid());
}
template <typename Expected>
static void RunCodeNoCheck(CodeGenerator* codegen,
HGraph* graph,
const std::function<void(HGraph*)>& hook_before_codegen,
bool has_result,
Expected expected) {
{
ScopedArenaAllocator local_allocator(graph->GetArenaStack());
SsaLivenessAnalysis liveness(graph, codegen, &local_allocator);
PrepareForRegisterAllocation(graph, codegen->GetCompilerOptions()).Run();
liveness.Analyze();
std::unique_ptr<RegisterAllocator> register_allocator =
RegisterAllocator::Create(&local_allocator, codegen, liveness);
register_allocator->AllocateRegisters();
}
hook_before_codegen(graph);
InternalCodeAllocator allocator;
codegen->Compile(&allocator);
Run(allocator, *codegen, has_result, expected);
}
template <typename Expected>
static void RunCode(CodeGenerator* codegen,
HGraph* graph,
std::function<void(HGraph*)> hook_before_codegen,
bool has_result,
Expected expected) {
ValidateGraph(graph);
RunCodeNoCheck(codegen, graph, hook_before_codegen, has_result, expected);
}
template <typename Expected>
static void RunCode(CodegenTargetConfig target_config,
const CompilerOptions& compiler_options,
HGraph* graph,
std::function<void(HGraph*)> hook_before_codegen,
bool has_result,
Expected expected) {
std::unique_ptr<CodeGenerator> codegen(target_config.CreateCodeGenerator(graph,
compiler_options));
RunCode(codegen.get(), graph, hook_before_codegen, has_result, expected);
}
#ifdef ART_ENABLE_CODEGEN_arm
inline CodeGenerator* create_codegen_arm_vixl32(HGraph* graph, const CompilerOptions& compiler_options) {
return new (graph->GetAllocator()) TestCodeGeneratorARMVIXL(graph, compiler_options);
}
#endif
#ifdef ART_ENABLE_CODEGEN_arm64
inline CodeGenerator* create_codegen_arm64(HGraph* graph, const CompilerOptions& compiler_options) {
return new (graph->GetAllocator()) TestCodeGeneratorARM64(graph, compiler_options);
}
#endif
#ifdef ART_ENABLE_CODEGEN_x86
inline CodeGenerator* create_codegen_x86(HGraph* graph, const CompilerOptions& compiler_options) {
return new (graph->GetAllocator()) TestCodeGeneratorX86(graph, compiler_options);
}
#endif
#ifdef ART_ENABLE_CODEGEN_x86_64
inline CodeGenerator* create_codegen_x86_64(HGraph* graph, const CompilerOptions& compiler_options) {
return new (graph->GetAllocator()) x86_64::CodeGeneratorX86_64(graph, compiler_options);
}
#endif
} // namespace art
#endif // ART_COMPILER_OPTIMIZING_CODEGEN_TEST_UTILS_H_