You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2058 lines
87 KiB

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#include <sstream>
#include <string>
#include "android-base/file.h"
#include "android-base/strings.h"
#include "art_method-inl.h"
#include "base/globals.h"
#include "base/unix_file/fd_file.h"
#include "base/utils.h"
#include "common_runtime_test.h"
#include "dex/descriptors_names.h"
#include "dex/dex_file_structs.h"
#include "dex/dex_instruction-inl.h"
#include "dex/dex_instruction_iterator.h"
#include "dex/type_reference.h"
#include "exec_utils.h"
#include "linear_alloc.h"
#include "mirror/class-inl.h"
#include "obj_ptr-inl.h"
#include "profile/profile_compilation_info.h"
#include "profile/profile_test_helper.h"
#include "profile_assistant.h"
#include "scoped_thread_state_change-inl.h"
namespace art {
using TypeReferenceSet = std::set<TypeReference, TypeReferenceValueComparator>;
// TODO(calin): These tests share a lot with the ProfileCompilationInfo tests.
// we should introduce a better abstraction to extract the common parts.
class ProfileAssistantTest : public CommonRuntimeTest, public ProfileTestHelper {
public:
void PostRuntimeCreate() override {
allocator_.reset(new ArenaAllocator(Runtime::Current()->GetArenaPool()));
dex1 = BuildDex("location1", /*checksum=*/ 1, "LUnique1;", /*num_method_ids=*/ 10001);
dex2 = BuildDex("location2", /*checksum=*/ 2, "LUnique2;", /*num_method_ids=*/ 10002);
dex3 = BuildDex("location3", /*checksum=*/ 3, "LUnique3;", /*num_method_ids=*/ 10003);
dex4 = BuildDex("location4", /*checksum=*/ 4, "LUnique4;", /*num_method_ids=*/ 10004);
dex1_checksum_missmatch =
BuildDex("location1", /*checksum=*/ 12, "LUnique1;", /*num_method_ids=*/ 10001);
}
protected:
void SetupProfile(const DexFile* dex_file1,
const DexFile* dex_file2,
uint16_t number_of_methods,
uint16_t number_of_classes,
const ScratchFile& profile,
ProfileCompilationInfo* info,
uint16_t start_method_index = 0,
bool reverse_dex_write_order = false) {
for (uint16_t i = start_method_index; i < start_method_index + number_of_methods; i++) {
// reverse_dex_write_order controls the order in which the dex files will be added to
// the profile and thus written to disk.
std::vector<ProfileInlineCache> inline_caches =
GetTestInlineCaches(dex_file1, dex_file2, dex3);
Hotness::Flag flags =
static_cast<Hotness::Flag>(Hotness::kFlagHot | Hotness::kFlagPostStartup);
if (reverse_dex_write_order) {
ASSERT_TRUE(AddMethod(info, dex_file2, i, inline_caches, flags));
ASSERT_TRUE(AddMethod(info, dex_file1, i, inline_caches, flags));
} else {
ASSERT_TRUE(AddMethod(info, dex_file1, i, inline_caches, flags));
ASSERT_TRUE(AddMethod(info, dex_file2, i, inline_caches, flags));
}
}
for (uint16_t i = 0; i < number_of_classes; i++) {
ASSERT_TRUE(AddClass(info, dex_file1, dex::TypeIndex(i)));
}
ASSERT_TRUE(info->Save(GetFd(profile)));
ASSERT_EQ(0, profile.GetFile()->Flush());
}
void SetupBasicProfile(const DexFile* dex,
const std::vector<uint32_t>& hot_methods,
const std::vector<uint32_t>& startup_methods,
const std::vector<uint32_t>& post_startup_methods,
const ScratchFile& profile,
ProfileCompilationInfo* info) {
for (uint32_t idx : hot_methods) {
AddMethod(info, dex, idx, Hotness::kFlagHot);
}
for (uint32_t idx : startup_methods) {
AddMethod(info, dex, idx, Hotness::kFlagStartup);
}
for (uint32_t idx : post_startup_methods) {
AddMethod(info, dex, idx, Hotness::kFlagPostStartup);
}
ASSERT_TRUE(info->Save(GetFd(profile)));
ASSERT_EQ(0, profile.GetFile()->Flush());
}
// The dex1_substitute can be used to replace the default dex1 file.
std::vector<ProfileInlineCache> GetTestInlineCaches(
const DexFile* dex_file1, const DexFile* dex_file2, const DexFile* dex_file3) {
std::vector<ProfileInlineCache> inline_caches;
// Monomorphic
for (uint16_t dex_pc = 0; dex_pc < 11; dex_pc++) {
std::vector<TypeReference> types = {TypeReference(dex_file1, dex::TypeIndex(0))};
inline_caches.push_back(ProfileInlineCache(dex_pc, /* missing_types*/ false, types));
}
// Polymorphic
for (uint16_t dex_pc = 11; dex_pc < 22; dex_pc++) {
std::vector<TypeReference> types = {
TypeReference(dex_file1, dex::TypeIndex(0)),
TypeReference(dex_file2, dex::TypeIndex(1)),
TypeReference(dex_file3, dex::TypeIndex(2))};
inline_caches.push_back(ProfileInlineCache(dex_pc, /* missing_types*/ false, types));
}
// Megamorphic
for (uint16_t dex_pc = 22; dex_pc < 33; dex_pc++) {
// we need 5 types to make the cache megamorphic
std::vector<TypeReference> types = {
TypeReference(dex_file1, dex::TypeIndex(0)),
TypeReference(dex_file1, dex::TypeIndex(1)),
TypeReference(dex_file1, dex::TypeIndex(2)),
TypeReference(dex_file1, dex::TypeIndex(3)),
TypeReference(dex_file1, dex::TypeIndex(4))};
inline_caches.push_back(ProfileInlineCache(dex_pc, /* missing_types*/ false, types));
}
// Missing types
for (uint16_t dex_pc = 33; dex_pc < 44; dex_pc++) {
std::vector<TypeReference> types;
inline_caches.push_back(ProfileInlineCache(dex_pc, /* missing_types*/ true, types));
}
return inline_caches;
}
int GetFd(const ScratchFile& file) const {
return static_cast<int>(file.GetFd());
}
void CheckProfileInfo(ScratchFile& file, const ProfileCompilationInfo& info) {
ProfileCompilationInfo file_info;
ASSERT_TRUE(file_info.Load(GetFd(file)));
ASSERT_TRUE(file_info.Equals(info));
}
std::string GetProfmanCmd() {
std::string file_path = GetArtBinDir() + "/profman";
if (kIsDebugBuild) {
file_path += "d";
}
EXPECT_TRUE(OS::FileExists(file_path.c_str())) << file_path << " should be a valid file path";
return file_path;
}
// Runs test with given arguments.
int ProcessProfiles(
const std::vector<int>& profiles_fd,
int reference_profile_fd,
const std::vector<const std::string>& extra_args = std::vector<const std::string>()) {
std::string profman_cmd = GetProfmanCmd();
std::vector<std::string> argv_str;
argv_str.push_back(profman_cmd);
for (size_t k = 0; k < profiles_fd.size(); k++) {
argv_str.push_back("--profile-file-fd=" + std::to_string(profiles_fd[k]));
}
argv_str.push_back("--reference-profile-file-fd=" + std::to_string(reference_profile_fd));
argv_str.insert(argv_str.end(), extra_args.begin(), extra_args.end());
std::string error;
return ExecAndReturnCode(argv_str, &error);
}
bool GenerateTestProfile(const std::string& filename) {
std::string profman_cmd = GetProfmanCmd();
std::vector<std::string> argv_str;
argv_str.push_back(profman_cmd);
argv_str.push_back("--generate-test-profile=" + filename);
std::string error;
return ExecAndReturnCode(argv_str, &error);
}
bool GenerateTestProfileWithInputDex(const std::string& filename) {
std::string profman_cmd = GetProfmanCmd();
std::vector<std::string> argv_str;
argv_str.push_back(profman_cmd);
argv_str.push_back("--generate-test-profile=" + filename);
argv_str.push_back("--generate-test-profile-seed=0");
argv_str.push_back("--apk=" + GetLibCoreDexFileNames()[0]);
argv_str.push_back("--dex-location=" + GetLibCoreDexFileNames()[0]);
std::string error;
return ExecAndReturnCode(argv_str, &error);
}
bool CreateProfile(const std::string& profile_file_contents,
const std::string& filename,
const std::string& dex_location,
bool for_boot_image = false) {
ScratchFile class_names_file;
File* file = class_names_file.GetFile();
EXPECT_TRUE(file->WriteFully(profile_file_contents.c_str(), profile_file_contents.length()));
EXPECT_EQ(0, file->Flush());
std::string profman_cmd = GetProfmanCmd();
std::vector<std::string> argv_str;
argv_str.push_back(profman_cmd);
argv_str.push_back(for_boot_image ? "--output-profile-type=boot" : "--output-profile-type=app");
argv_str.push_back("--create-profile-from=" + class_names_file.GetFilename());
argv_str.push_back("--reference-profile-file=" + filename);
argv_str.push_back("--apk=" + dex_location);
argv_str.push_back("--dex-location=" + dex_location);
std::string error;
EXPECT_EQ(ExecAndReturnCode(argv_str, &error), 0) << error;
return true;
}
bool RunProfman(const std::string& filename,
std::vector<std::string>& extra_args,
std::string* output,
std::string_view target_apk) {
ScratchFile output_file;
std::string profman_cmd = GetProfmanCmd();
std::vector<std::string> argv_str;
argv_str.push_back(profman_cmd);
argv_str.insert(argv_str.end(), extra_args.begin(), extra_args.end());
argv_str.push_back("--profile-file=" + filename);
argv_str.push_back(std::string("--apk=").append(target_apk));
argv_str.push_back(std::string("--dex-location=").append(target_apk));
argv_str.push_back("--dump-output-to-fd=" + std::to_string(GetFd(output_file)));
std::string error;
EXPECT_EQ(ExecAndReturnCode(argv_str, &error), 0) << error;
File* file = output_file.GetFile();
EXPECT_EQ(0, file->Flush());
int64_t length = file->GetLength();
std::unique_ptr<char[]> buf(new char[length]);
EXPECT_EQ(file->Read(buf.get(), length, 0), length);
*output = std::string(buf.get(), length);
return true;
}
bool DumpClassesAndMethods(const std::string& filename,
std::string* file_contents,
std::optional<const std::string_view> target = std::nullopt) {
std::vector<std::string> extra_args;
extra_args.push_back("--dump-classes-and-methods");
return RunProfman(
filename, extra_args, file_contents, target.value_or(GetLibCoreDexFileNames()[0]));
}
bool DumpOnly(const std::string& filename, std::string* file_contents) {
std::vector<std::string> extra_args;
extra_args.push_back("--dump-only");
return RunProfman(filename, extra_args, file_contents, GetLibCoreDexFileNames()[0]);
}
bool CreateAndDump(const std::string& input_file_contents,
std::string* output_file_contents,
std::optional<const std::string> target = std::nullopt) {
ScratchFile profile_file;
EXPECT_TRUE(CreateProfile(input_file_contents,
profile_file.GetFilename(),
target.value_or(GetLibCoreDexFileNames()[0])));
EXPECT_TRUE(DumpClassesAndMethods(profile_file.GetFilename(), output_file_contents, target));
return true;
}
ObjPtr<mirror::Class> GetClass(ScopedObjectAccess& soa,
jobject class_loader,
const std::string& clazz) REQUIRES_SHARED(Locks::mutator_lock_) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
StackHandleScope<1> hs(soa.Self());
Handle<mirror::ClassLoader> h_loader(hs.NewHandle(
ObjPtr<mirror::ClassLoader>::DownCast(soa.Self()->DecodeJObject(class_loader))));
return class_linker->FindClass(soa.Self(), clazz.c_str(), h_loader);
}
ArtMethod* GetVirtualMethod(jobject class_loader,
const std::string& clazz,
const std::string& name) {
ScopedObjectAccess soa(Thread::Current());
ObjPtr<mirror::Class> klass = GetClass(soa, class_loader, clazz);
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
const auto pointer_size = class_linker->GetImagePointerSize();
ArtMethod* method = nullptr;
for (auto& m : klass->GetVirtualMethods(pointer_size)) {
if (name == m.GetName()) {
EXPECT_TRUE(method == nullptr);
method = &m;
}
}
return method;
}
static TypeReference MakeTypeReference(ObjPtr<mirror::Class> klass)
REQUIRES_SHARED(Locks::mutator_lock_) {
return TypeReference(&klass->GetDexFile(), klass->GetDexTypeIndex());
}
// Find the first dex-pc in the given method after 'start_pc' (if given) which
// contains a call to any method of 'klass'. If 'start_pc' is not given we
// will search from the first dex-pc.
uint16_t GetDexPcOfCallTo(ArtMethod* method,
Handle<mirror::Class> klass,
std::optional<uint32_t> start_pc = std::nullopt)
REQUIRES_SHARED(Locks::mutator_lock_) {
const DexFile* dex_file = method->GetDexFile();
for (const DexInstructionPcPair& inst :
CodeItemInstructionAccessor(*dex_file, method->GetCodeItem())) {
if (start_pc && inst.DexPc() <= *start_pc) {
continue;
} else if (inst->IsInvoke()) {
const dex::MethodId& method_id = dex_file->GetMethodId(inst->VRegB());
std::string_view desc(
dex_file->GetTypeDescriptor(dex_file->GetTypeId(method_id.class_idx_)));
std::string scratch;
if (desc == klass->GetDescriptor(&scratch)) {
return inst.DexPc();
}
}
}
EXPECT_TRUE(false) << "Unable to find dex-pc in " << method->PrettyMethod() << " for call to "
<< klass->PrettyClass()
<< " after dexpc: " << (start_pc ? static_cast<int64_t>(*start_pc) : -1);
return -1;
}
void AssertInlineCaches(ArtMethod* method,
uint16_t dex_pc,
const TypeReferenceSet& expected_classes,
const ProfileCompilationInfo& info,
bool is_megamorphic,
bool is_missing_types)
REQUIRES_SHARED(Locks::mutator_lock_) {
ProfileCompilationInfo::MethodHotness hotness =
info.GetMethodHotness(MethodReference(method->GetDexFile(), method->GetDexMethodIndex()));
ASSERT_TRUE(hotness.IsHot());
const ProfileCompilationInfo::InlineCacheMap* inline_caches = hotness.GetInlineCacheMap();
ASSERT_TRUE(inline_caches->find(dex_pc) != inline_caches->end());
AssertInlineCaches(expected_classes,
info,
method,
inline_caches->find(dex_pc)->second,
is_megamorphic,
is_missing_types);
}
void AssertInlineCaches(ArtMethod* method,
const TypeReferenceSet& expected_classes,
const ProfileCompilationInfo& info,
bool is_megamorphic,
bool is_missing_types)
REQUIRES_SHARED(Locks::mutator_lock_) {
ProfileCompilationInfo::MethodHotness hotness =
info.GetMethodHotness(MethodReference(method->GetDexFile(), method->GetDexMethodIndex()));
ASSERT_TRUE(hotness.IsHot());
const ProfileCompilationInfo::InlineCacheMap* inline_caches = hotness.GetInlineCacheMap();
ASSERT_EQ(inline_caches->size(), 1u);
AssertInlineCaches(expected_classes,
info,
method,
inline_caches->begin()->second,
is_megamorphic,
is_missing_types);
}
void AssertInlineCaches(const TypeReferenceSet& expected_clases,
const ProfileCompilationInfo& info,
ArtMethod* method,
const ProfileCompilationInfo::DexPcData& dex_pc_data,
bool is_megamorphic,
bool is_missing_types)
REQUIRES_SHARED(Locks::mutator_lock_) {
ASSERT_EQ(dex_pc_data.is_megamorphic, is_megamorphic);
ASSERT_EQ(dex_pc_data.is_missing_types, is_missing_types);
ASSERT_EQ(expected_clases.size(), dex_pc_data.classes.size());
const DexFile* dex_file = method->GetDexFile();
size_t found = 0;
for (const TypeReference& type_ref : expected_clases) {
if (type_ref.dex_file == dex_file) {
CHECK_LT(type_ref.TypeIndex().index_, dex_file->NumTypeIds());
for (dex::TypeIndex type_index : dex_pc_data.classes) {
ASSERT_TRUE(type_index.IsValid());
if (type_ref.TypeIndex() == type_index) {
++found;
}
}
} else {
// Match by descriptor.
const char* expected_descriptor = type_ref.dex_file->StringByTypeIdx(type_ref.TypeIndex());
for (dex::TypeIndex type_index : dex_pc_data.classes) {
ASSERT_TRUE(type_index.IsValid());
const char* descriptor = info.GetTypeDescriptor(dex_file, type_index);
if (strcmp(expected_descriptor, descriptor) == 0) {
++found;
}
}
}
}
ASSERT_EQ(expected_clases.size(), found);
}
int CheckCompilationMethodPercentChange(uint16_t methods_in_cur_profile,
uint16_t methods_in_ref_profile,
const std::vector<const std::string>& extra_args =
std::vector<const std::string>()) {
ScratchFile profile;
ScratchFile reference_profile;
std::vector<int> profile_fds({ GetFd(profile)});
int reference_profile_fd = GetFd(reference_profile);
std::vector<uint32_t> hot_methods_cur;
std::vector<uint32_t> hot_methods_ref;
std::vector<uint32_t> empty_vector;
for (size_t i = 0; i < methods_in_cur_profile; ++i) {
hot_methods_cur.push_back(i);
}
for (size_t i = 0; i < methods_in_ref_profile; ++i) {
hot_methods_ref.push_back(i);
}
ProfileCompilationInfo info1;
SetupBasicProfile(dex1, hot_methods_cur, empty_vector, empty_vector,
profile, &info1);
ProfileCompilationInfo info2;
SetupBasicProfile(dex1, hot_methods_ref, empty_vector, empty_vector,
reference_profile, &info2);
return ProcessProfiles(profile_fds, reference_profile_fd, extra_args);
}
int CheckCompilationClassPercentChange(uint16_t classes_in_cur_profile,
uint16_t classes_in_ref_profile,
const std::vector<const std::string>& extra_args =
std::vector<const std::string>()) {
uint16_t max_classes = std::max(classes_in_cur_profile, classes_in_ref_profile);
const DexFile* dex1_x = BuildDex(
"location1_x", /*checksum=*/ 0x101, "LUnique1_x;", /*num_method_ids=*/ 0, max_classes);
const DexFile* dex2_x = BuildDex(
"location2_x", /*checksum=*/ 0x102, "LUnique2_x;", /*num_method_ids=*/ 0, max_classes);
ScratchFile profile;
ScratchFile reference_profile;
std::vector<int> profile_fds({ GetFd(profile)});
int reference_profile_fd = GetFd(reference_profile);
ProfileCompilationInfo info1;
SetupProfile(dex1_x, dex2_x, 0, classes_in_cur_profile, profile, &info1);
ProfileCompilationInfo info2;
SetupProfile(dex1_x, dex2_x, 0, classes_in_ref_profile, reference_profile, &info2);
return ProcessProfiles(profile_fds, reference_profile_fd, extra_args);
}
std::unique_ptr<ArenaAllocator> allocator_;
const DexFile* dex1;
const DexFile* dex2;
const DexFile* dex3;
const DexFile* dex4;
const DexFile* dex1_checksum_missmatch;
};
TEST_F(ProfileAssistantTest, AdviseCompilationEmptyReferences) {
ScratchFile profile1;
ScratchFile profile2;
ScratchFile reference_profile;
std::vector<int> profile_fds({
GetFd(profile1),
GetFd(profile2)});
int reference_profile_fd = GetFd(reference_profile);
const uint16_t kNumberOfMethodsToEnableCompilation = 100;
ProfileCompilationInfo info1;
SetupProfile(dex1, dex2, kNumberOfMethodsToEnableCompilation, 0, profile1, &info1);
ProfileCompilationInfo info2;
SetupProfile(dex3, dex4, kNumberOfMethodsToEnableCompilation, 0, profile2, &info2);
// We should advise compilation.
ASSERT_EQ(ProfileAssistant::kCompile,
ProcessProfiles(profile_fds, reference_profile_fd));
// The resulting compilation info must be equal to the merge of the inputs.
ProfileCompilationInfo result;
ASSERT_TRUE(result.Load(reference_profile_fd));
ProfileCompilationInfo expected;
ASSERT_TRUE(expected.MergeWith(info1));
ASSERT_TRUE(expected.MergeWith(info2));
ASSERT_TRUE(expected.Equals(result));
// The information from profiles must remain the same.
CheckProfileInfo(profile1, info1);
CheckProfileInfo(profile2, info2);
}
// TODO(calin): Add more tests for classes.
TEST_F(ProfileAssistantTest, AdviseCompilationEmptyReferencesBecauseOfClasses) {
const uint16_t kNumberOfClassesToEnableCompilation = 100;
const DexFile* dex1_100 = BuildDex("location1_100",
/*checksum=*/ 101,
"LUnique1_100;",
/*num_method_ids=*/ 0,
/*num_type_ids=*/ 100);
const DexFile* dex2_100 = BuildDex("location2_100",
/*checksum=*/ 102,
"LUnique2_100;",
/*num_method_ids=*/ 0,
/*num_type_ids=*/ 100);
ScratchFile profile1;
ScratchFile reference_profile;
std::vector<int> profile_fds({
GetFd(profile1)});
int reference_profile_fd = GetFd(reference_profile);
ProfileCompilationInfo info1;
SetupProfile(dex1_100, dex2_100, 0, kNumberOfClassesToEnableCompilation, profile1, &info1);
// We should advise compilation.
ASSERT_EQ(ProfileAssistant::kCompile,
ProcessProfiles(profile_fds, reference_profile_fd));
// The resulting compilation info must be equal to the merge of the inputs.
ProfileCompilationInfo result;
ASSERT_TRUE(result.Load(reference_profile_fd));
ProfileCompilationInfo expected;
ASSERT_TRUE(expected.MergeWith(info1));
ASSERT_TRUE(expected.Equals(result));
// The information from profiles must remain the same.
CheckProfileInfo(profile1, info1);
}
TEST_F(ProfileAssistantTest, AdviseCompilationNonEmptyReferences) {
ScratchFile profile1;
ScratchFile profile2;
ScratchFile reference_profile;
std::vector<int> profile_fds({
GetFd(profile1),
GetFd(profile2)});
int reference_profile_fd = GetFd(reference_profile);
// The new profile info will contain the methods with indices 0-100.
const uint16_t kNumberOfMethodsToEnableCompilation = 100;
ProfileCompilationInfo info1;
SetupProfile(dex1, dex2, kNumberOfMethodsToEnableCompilation, 0, profile1, &info1);
ProfileCompilationInfo info2;
SetupProfile(dex3, dex4, kNumberOfMethodsToEnableCompilation, 0, profile2, &info2);
// The reference profile info will contain the methods with indices 50-150.
const uint16_t kNumberOfMethodsAlreadyCompiled = 100;
ProfileCompilationInfo reference_info;
SetupProfile(dex1, dex2, kNumberOfMethodsAlreadyCompiled, 0, reference_profile,
&reference_info, kNumberOfMethodsToEnableCompilation / 2);
// We should advise compilation.
ASSERT_EQ(ProfileAssistant::kCompile,
ProcessProfiles(profile_fds, reference_profile_fd));
// The resulting compilation info must be equal to the merge of the inputs
ProfileCompilationInfo result;
ASSERT_TRUE(result.Load(reference_profile_fd));
ProfileCompilationInfo expected;
ASSERT_TRUE(expected.MergeWith(info1));
ASSERT_TRUE(expected.MergeWith(info2));
ASSERT_TRUE(expected.MergeWith(reference_info));
ASSERT_TRUE(expected.Equals(result));
// The information from profiles must remain the same.
CheckProfileInfo(profile1, info1);
CheckProfileInfo(profile2, info2);
}
TEST_F(ProfileAssistantTest, DoNotAdviseCompilationEmptyProfile) {
ScratchFile profile1;
ScratchFile profile2;
ScratchFile reference_profile;
std::vector<int> profile_fds({
GetFd(profile1),
GetFd(profile2)});
int reference_profile_fd = GetFd(reference_profile);
ProfileCompilationInfo info1;
SetupProfile(dex1, dex2, /*number_of_methods=*/ 0, /*number_of_classes*/ 0, profile1, &info1);
ProfileCompilationInfo info2;
SetupProfile(dex3, dex4, /*number_of_methods=*/ 0, /*number_of_classes*/ 0, profile2, &info2);
// We should not advise compilation.
ASSERT_EQ(ProfileAssistant::kSkipCompilationEmptyProfiles,
ProcessProfiles(profile_fds, reference_profile_fd));
// The information from profiles must remain the same.
ProfileCompilationInfo file_info1;
ASSERT_TRUE(file_info1.Load(GetFd(profile1)));
ASSERT_TRUE(file_info1.Equals(info1));
ProfileCompilationInfo file_info2;
ASSERT_TRUE(file_info2.Load(GetFd(profile2)));
ASSERT_TRUE(file_info2.Equals(info2));
// Reference profile files must remain empty.
ASSERT_EQ(0, reference_profile.GetFile()->GetLength());
// The information from profiles must remain the same.
CheckProfileInfo(profile1, info1);
CheckProfileInfo(profile2, info2);
}
TEST_F(ProfileAssistantTest, DoNotAdviseCompilation) {
ScratchFile profile1;
ScratchFile profile2;
ScratchFile reference_profile;
std::vector<int> profile_fds({
GetFd(profile1),
GetFd(profile2)});
int reference_profile_fd = GetFd(reference_profile);
const uint16_t kNumberOfMethodsToSkipCompilation = 24; // Threshold is 100.
ProfileCompilationInfo info1;
SetupProfile(dex1, dex2, kNumberOfMethodsToSkipCompilation, 0, profile1, &info1);
ProfileCompilationInfo info2;
SetupProfile(dex3, dex4, kNumberOfMethodsToSkipCompilation, 0, profile2, &info2);
// We should not advise compilation.
ASSERT_EQ(ProfileAssistant::kSkipCompilationSmallDelta,
ProcessProfiles(profile_fds, reference_profile_fd));
// The information from profiles must remain the same.
ProfileCompilationInfo file_info1;
ASSERT_TRUE(file_info1.Load(GetFd(profile1)));
ASSERT_TRUE(file_info1.Equals(info1));
ProfileCompilationInfo file_info2;
ASSERT_TRUE(file_info2.Load(GetFd(profile2)));
ASSERT_TRUE(file_info2.Equals(info2));
// Reference profile files must remain empty.
ASSERT_EQ(0, reference_profile.GetFile()->GetLength());
// The information from profiles must remain the same.
CheckProfileInfo(profile1, info1);
CheckProfileInfo(profile2, info2);
}
TEST_F(ProfileAssistantTest, DoNotAdviseCompilationMethodPercentage) {
const uint16_t kNumberOfMethodsInRefProfile = 6000;
const uint16_t kNumberOfMethodsInCurProfile = 6100; // Threshold is 2%.
std::vector<const std::string> extra_args({"--min-new-methods-percent-change=2"});
// We should not advise compilation.
ASSERT_EQ(ProfileAssistant::kSkipCompilationSmallDelta,
CheckCompilationMethodPercentChange(kNumberOfMethodsInCurProfile,
kNumberOfMethodsInRefProfile,
extra_args));
}
TEST_F(ProfileAssistantTest, ShouldAdviseCompilationMethodPercentage) {
const uint16_t kNumberOfMethodsInRefProfile = 6000;
const uint16_t kNumberOfMethodsInCurProfile = 6200; // Threshold is 2%.
std::vector<const std::string> extra_args({"--min-new-methods-percent-change=2"});
// We should advise compilation.
ASSERT_EQ(ProfileAssistant::kCompile,
CheckCompilationMethodPercentChange(kNumberOfMethodsInCurProfile,
kNumberOfMethodsInRefProfile,
extra_args));
}
TEST_F(ProfileAssistantTest, DoNotAdviseCompilationMethodPercentageWithNewMin) {
const uint16_t kNumberOfMethodsInRefProfile = 6000;
const uint16_t kNumberOfMethodsInCurProfile = 6200; // Threshold is 20%.
// We should not advise compilation.
ASSERT_EQ(ProfileAssistant::kSkipCompilationSmallDelta,
CheckCompilationMethodPercentChange(kNumberOfMethodsInCurProfile,
kNumberOfMethodsInRefProfile));
}
TEST_F(ProfileAssistantTest, DoNotAdviseCompilationClassPercentage) {
const uint16_t kNumberOfClassesInRefProfile = 6000;
const uint16_t kNumberOfClassesInCurProfile = 6110; // Threshold is 2%.
std::vector<const std::string> extra_args({"--min-new-classes-percent-change=2"});
// We should not advise compilation.
ASSERT_EQ(ProfileAssistant::kSkipCompilationSmallDelta,
CheckCompilationClassPercentChange(kNumberOfClassesInCurProfile,
kNumberOfClassesInRefProfile,
extra_args));
}
TEST_F(ProfileAssistantTest, ShouldAdviseCompilationClassPercentage) {
const uint16_t kNumberOfClassesInRefProfile = 6000;
const uint16_t kNumberOfClassesInCurProfile = 6120; // Threshold is 2%.
std::vector<const std::string> extra_args({"--min-new-classes-percent-change=2"});
// We should advise compilation.
ASSERT_EQ(ProfileAssistant::kCompile,
CheckCompilationClassPercentChange(kNumberOfClassesInCurProfile,
kNumberOfClassesInRefProfile,
extra_args));
}
TEST_F(ProfileAssistantTest, DoNotAdviseCompilationClassPercentageWithNewMin) {
const uint16_t kNumberOfClassesInRefProfile = 6000;
const uint16_t kNumberOfClassesInCurProfile = 6200; // Threshold is 20%.
// We should not advise compilation.
ASSERT_EQ(ProfileAssistant::kSkipCompilationSmallDelta,
CheckCompilationClassPercentChange(kNumberOfClassesInCurProfile,
kNumberOfClassesInRefProfile));
}
TEST_F(ProfileAssistantTest, FailProcessingBecauseOfProfiles) {
ScratchFile profile1;
ScratchFile profile2;
ScratchFile reference_profile;
std::vector<int> profile_fds({
GetFd(profile1),
GetFd(profile2)});
int reference_profile_fd = GetFd(reference_profile);
const uint16_t kNumberOfMethodsToEnableCompilation = 100;
// Assign different hashes for the same dex file. This will make merging of information to fail.
ProfileCompilationInfo info1;
SetupProfile(dex1, dex2, kNumberOfMethodsToEnableCompilation, 0, profile1, &info1);
ProfileCompilationInfo info2;
SetupProfile(
dex1_checksum_missmatch, dex2, kNumberOfMethodsToEnableCompilation, 0, profile2, &info2);
// We should fail processing.
ASSERT_EQ(ProfileAssistant::kErrorBadProfiles,
ProcessProfiles(profile_fds, reference_profile_fd));
// The information from profiles must remain the same.
CheckProfileInfo(profile1, info1);
CheckProfileInfo(profile2, info2);
// Reference profile files must still remain empty.
ASSERT_EQ(0, reference_profile.GetFile()->GetLength());
}
TEST_F(ProfileAssistantTest, FailProcessingBecauseOfReferenceProfiles) {
ScratchFile profile1;
ScratchFile reference_profile;
std::vector<int> profile_fds({
GetFd(profile1)});
int reference_profile_fd = GetFd(reference_profile);
const uint16_t kNumberOfMethodsToEnableCompilation = 100;
// Assign different hashes for the same dex file. This will make merging of information to fail.
ProfileCompilationInfo info1;
SetupProfile(dex1, dex2, kNumberOfMethodsToEnableCompilation, 0, profile1, &info1);
ProfileCompilationInfo reference_info;
SetupProfile(dex1_checksum_missmatch,
dex2,
kNumberOfMethodsToEnableCompilation,
0,
reference_profile,
&reference_info);
// We should not advise compilation.
ASSERT_EQ(ProfileAssistant::kErrorBadProfiles,
ProcessProfiles(profile_fds, reference_profile_fd));
// The information from profiles must remain the same.
CheckProfileInfo(profile1, info1);
}
TEST_F(ProfileAssistantTest, TestProfileGeneration) {
ScratchFile profile;
// Generate a test profile.
GenerateTestProfile(profile.GetFilename());
// Verify that the generated profile is valid and can be loaded.
ProfileCompilationInfo info;
ASSERT_TRUE(info.Load(GetFd(profile)));
}
TEST_F(ProfileAssistantTest, TestProfileGenerationWithIndexDex) {
ScratchFile profile;
// Generate a test profile passing in a dex file as reference.
GenerateTestProfileWithInputDex(profile.GetFilename());
// Verify that the generated profile is valid and can be loaded.
ProfileCompilationInfo info;
ASSERT_TRUE(info.Load(GetFd(profile)));
}
TEST_F(ProfileAssistantTest, TestProfileCreationAllMatch) {
// Class names put here need to be in sorted order.
std::vector<std::string> class_names = {
"HLjava/lang/Object;-><init>()V",
"Ljava/lang/Comparable;",
"Ljava/lang/Math;",
"Ljava/lang/Object;",
"SPLjava/lang/Comparable;->compareTo(Ljava/lang/Object;)I",
"[[[[[[[[I", // No `TypeId`s in core-oj with this many array dimensions,
"[[[[[[[[Ljava/lang/Object;", // "extra descriptors" shall be used for these array classes.
};
std::string file_contents;
for (std::string& class_name : class_names) {
file_contents += class_name + std::string("\n");
}
std::string output_file_contents;
ASSERT_TRUE(CreateAndDump(file_contents, &output_file_contents));
ASSERT_EQ(output_file_contents, file_contents);
}
TEST_F(ProfileAssistantTest, TestArrayClass) {
std::vector<std::string> class_names = {
"[Ljava/lang/Comparable;",
};
std::string file_contents;
for (std::string& class_name : class_names) {
file_contents += class_name + std::string("\n");
}
std::string output_file_contents;
ASSERT_TRUE(CreateAndDump(file_contents, &output_file_contents));
ASSERT_EQ(output_file_contents, file_contents);
}
TEST_F(ProfileAssistantTest, TestProfileCreationGenerateMethods) {
// Class names put here need to be in sorted order.
std::vector<std::string> class_names = {
"HLjava/lang/Math;->*",
};
std::string input_file_contents;
std::string expected_contents;
for (std::string& class_name : class_names) {
input_file_contents += class_name + std::string("\n");
expected_contents += DescriptorToDot(class_name.c_str()) +
std::string("\n");
}
std::string output_file_contents;
ScratchFile profile_file;
EXPECT_TRUE(CreateProfile(input_file_contents,
profile_file.GetFilename(),
GetLibCoreDexFileNames()[0]));
ProfileCompilationInfo info;
ASSERT_TRUE(info.Load(GetFd(profile_file)));
// Verify that the profile has matching methods.
ScopedObjectAccess soa(Thread::Current());
ObjPtr<mirror::Class> klass = GetClass(soa, /*class_loader=*/ nullptr, "Ljava/lang/Math;");
ASSERT_TRUE(klass != nullptr);
size_t method_count = 0;
for (ArtMethod& method : klass->GetMethods(kRuntimePointerSize)) {
if (!method.IsCopied() && method.GetCodeItem() != nullptr) {
++method_count;
ProfileCompilationInfo::MethodHotness hotness =
info.GetMethodHotness(MethodReference(method.GetDexFile(), method.GetDexMethodIndex()));
ASSERT_TRUE(hotness.IsHot()) << method.PrettyMethod();
}
}
EXPECT_GT(method_count, 0u);
}
static std::string JoinProfileLines(const std::vector<std::string>& lines) {
std::string result = android::base::Join(lines, '\n');
return result + '\n';
}
TEST_F(ProfileAssistantTest, TestBootImageProfile) {
const std::string core_dex = GetLibCoreDexFileNames()[0];
std::vector<ScratchFile> profiles;
// In image with enough clean occurrences.
const std::string kCleanClass = "Ljava/lang/CharSequence;";
// In image with enough dirty occurrences.
const std::string kDirtyClass = "Ljava/lang/Object;";
// Not in image becauseof not enough occurrences.
const std::string kUncommonCleanClass = "Ljava/lang/Process;";
const std::string kUncommonDirtyClass = "Ljava/lang/Package;";
// Method that is common and hot. Should end up in profile.
const std::string kCommonHotMethod = "Ljava/lang/Comparable;->compareTo(Ljava/lang/Object;)I";
// Uncommon method, should not end up in profile
const std::string kUncommonMethod = "Ljava/util/HashMap;-><init>()V";
// Method that gets marked as hot since it's in multiple profile and marked as startup.
const std::string kStartupMethodForUpgrade = "Ljava/util/ArrayList;->clear()V";
// Startup method used by a special package which will get a different threshold;
const std::string kSpecialPackageStartupMethod =
"Ljava/lang/Object;->toString()Ljava/lang/String;";
// Method used by a special package which will get a different threshold;
const std::string kUncommonSpecialPackageMethod = "Ljava/lang/Object;->hashCode()I";
// Denylisted class
const std::string kPreloadedDenylistedClass = "Ljava/lang/Thread;";
// Thresholds for this test.
static const size_t kDirtyThreshold = 100;
static const size_t kCleanThreshold = 50;
static const size_t kPreloadedThreshold = 100;
static const size_t kMethodThreshold = 75;
static const size_t kSpecialThreshold = 50;
const std::string kSpecialPackage = "dex4";
// Create boot profile content, attributing the classes and methods to different dex files.
std::vector<std::string> input_data = {
"{dex1}" + kCleanClass,
"{dex1}" + kDirtyClass,
"{dex1}" + kUncommonCleanClass,
"{dex1}H" + kCommonHotMethod,
"{dex1}P" + kStartupMethodForUpgrade,
"{dex1}" + kUncommonDirtyClass,
"{dex1}" + kPreloadedDenylistedClass,
"{dex2}" + kCleanClass,
"{dex2}" + kDirtyClass,
"{dex2}P" + kCommonHotMethod,
"{dex2}P" + kStartupMethodForUpgrade,
"{dex2}" + kUncommonDirtyClass,
"{dex2}" + kPreloadedDenylistedClass,
"{dex3}P" + kUncommonMethod,
"{dex3}PS" + kStartupMethodForUpgrade,
"{dex3}S" + kCommonHotMethod,
"{dex3}S" + kSpecialPackageStartupMethod,
"{dex3}" + kDirtyClass,
"{dex3}" + kPreloadedDenylistedClass,
"{dex4}" + kDirtyClass,
"{dex4}P" + kCommonHotMethod,
"{dex4}S" + kSpecialPackageStartupMethod,
"{dex4}P" + kUncommonSpecialPackageMethod,
"{dex4}" + kPreloadedDenylistedClass,
};
std::string input_file_contents = JoinProfileLines(input_data);
ScratchFile preloaded_class_denylist;
std::string denylist_content = DescriptorToDot(kPreloadedDenylistedClass.c_str());
EXPECT_TRUE(preloaded_class_denylist.GetFile()->WriteFully(
denylist_content.c_str(), denylist_content.length()));
EXPECT_EQ(0, preloaded_class_denylist.GetFile()->Flush());
// Expected data
std::vector<std::string> expected_data = {
kCleanClass,
kDirtyClass,
kPreloadedDenylistedClass,
"HSP" + kCommonHotMethod,
"HS" + kSpecialPackageStartupMethod,
"HSP" + kStartupMethodForUpgrade
};
std::string expected_profile_content = JoinProfileLines(expected_data);
std::vector<std::string> expected_preloaded_data = {
DescriptorToDot(kDirtyClass.c_str())
};
std::string expected_preloaded_content = JoinProfileLines(expected_preloaded_data);
ScratchFile profile;
EXPECT_TRUE(CreateProfile(input_file_contents,
profile.GetFilename(),
core_dex,
/*for_boot_image=*/ true));
ProfileCompilationInfo bootProfile(/*for_boot_image=*/ true);
bootProfile.Load(profile.GetFilename(), /*clear_if_invalid=*/ true);
// Generate the boot profile.
ScratchFile out_profile;
ScratchFile out_preloaded_classes;
std::vector<std::string> args;
args.push_back(GetProfmanCmd());
args.push_back("--generate-boot-image-profile");
args.push_back("--class-threshold=" + std::to_string(kDirtyThreshold));
args.push_back("--clean-class-threshold=" + std::to_string(kCleanThreshold));
args.push_back("--method-threshold=" + std::to_string(kMethodThreshold));
args.push_back("--preloaded-class-threshold=" + std::to_string(kPreloadedThreshold));
args.push_back(
"--special-package=" + kSpecialPackage + ":" + std::to_string(kSpecialThreshold));
args.push_back("--profile-file=" + profile.GetFilename());
args.push_back("--out-profile-path=" + out_profile.GetFilename());
args.push_back("--out-preloaded-classes-path=" + out_preloaded_classes.GetFilename());
args.push_back("--apk=" + core_dex);
args.push_back("--dex-location=" + core_dex);
args.push_back("--preloaded-classes-denylist=" + preloaded_class_denylist.GetFilename());
std::string error;
ASSERT_EQ(ExecAndReturnCode(args, &error), 0) << error;
// Verify the boot profile contents.
std::string output_profile_contents;
ASSERT_TRUE(android::base::ReadFileToString(
out_profile.GetFilename(), &output_profile_contents));
ASSERT_EQ(output_profile_contents, expected_profile_content);
// Verify the preloaded classes content.
std::string output_preloaded_contents;
ASSERT_TRUE(android::base::ReadFileToString(
out_preloaded_classes.GetFilename(), &output_preloaded_contents));
ASSERT_EQ(output_preloaded_contents, expected_preloaded_content);
}
TEST_F(ProfileAssistantTest, TestBootImageProfileWith2RawProfiles) {
const std::string core_dex = GetLibCoreDexFileNames()[0];
std::vector<ScratchFile> profiles;
const std::string kCommonClassUsedByDex1 = "Ljava/lang/CharSequence;";
const std::string kCommonClassUsedByDex1Dex2 = "Ljava/lang/Object;";
const std::string kUncommonClass = "Ljava/lang/Process;";
const std::string kCommonHotMethodUsedByDex1 =
"Ljava/lang/Comparable;->compareTo(Ljava/lang/Object;)I";
const std::string kCommonHotMethodUsedByDex1Dex2 = "Ljava/lang/Object;->hashCode()I";
const std::string kUncommonHotMethod = "Ljava/util/HashMap;-><init>()V";
// Thresholds for this test.
static const size_t kDirtyThreshold = 100;
static const size_t kCleanThreshold = 100;
static const size_t kMethodThreshold = 100;
// Create boot profile content, attributing the classes and methods to different dex files.
std::vector<std::string> input_data1 = {
"{dex1}" + kCommonClassUsedByDex1,
"{dex1}" + kCommonClassUsedByDex1Dex2,
"{dex1}" + kUncommonClass,
"{dex1}H" + kCommonHotMethodUsedByDex1Dex2,
"{dex1}" + kCommonHotMethodUsedByDex1,
};
std::vector<std::string> input_data2 = {
"{dex1}" + kCommonClassUsedByDex1,
"{dex2}" + kCommonClassUsedByDex1Dex2,
"{dex1}H" + kCommonHotMethodUsedByDex1,
"{dex2}" + kCommonHotMethodUsedByDex1Dex2,
"{dex1}" + kUncommonHotMethod,
};
std::string input_file_contents1 = JoinProfileLines(input_data1);
std::string input_file_contents2 = JoinProfileLines(input_data2);
// Expected data
std::vector<std::string> expected_data = {
kCommonClassUsedByDex1,
kCommonClassUsedByDex1Dex2,
"H" + kCommonHotMethodUsedByDex1,
"H" + kCommonHotMethodUsedByDex1Dex2
};
std::string expected_profile_content = JoinProfileLines(expected_data);
ScratchFile profile1;
ScratchFile profile2;
EXPECT_TRUE(CreateProfile(input_file_contents1,
profile1.GetFilename(),
core_dex,
/*for_boot_image=*/ true));
EXPECT_TRUE(CreateProfile(input_file_contents2,
profile2.GetFilename(),
core_dex,
/*for_boot_image=*/ true));
ProfileCompilationInfo boot_profile1;
ProfileCompilationInfo boot_profile2;
boot_profile1.Load(profile1.GetFilename(), /*for_boot_image=*/ true);
boot_profile2.Load(profile2.GetFilename(), /*for_boot_image=*/ true);
// Generate the boot profile.
ScratchFile out_profile;
ScratchFile out_preloaded_classes;
std::vector<std::string> args;
args.push_back(GetProfmanCmd());
args.push_back("--generate-boot-image-profile");
args.push_back("--class-threshold=" + std::to_string(kDirtyThreshold));
args.push_back("--clean-class-threshold=" + std::to_string(kCleanThreshold));
args.push_back("--method-threshold=" + std::to_string(kMethodThreshold));
args.push_back("--profile-file=" + profile1.GetFilename());
args.push_back("--profile-file=" + profile2.GetFilename());
args.push_back("--out-profile-path=" + out_profile.GetFilename());
args.push_back("--out-preloaded-classes-path=" + out_preloaded_classes.GetFilename());
args.push_back("--apk=" + core_dex);
args.push_back("--dex-location=" + core_dex);
std::string error;
ASSERT_EQ(ExecAndReturnCode(args, &error), 0) << error;
// Verify the boot profile contents.
std::string output_profile_contents;
ASSERT_TRUE(android::base::ReadFileToString(
out_profile.GetFilename(), &output_profile_contents));
ASSERT_EQ(output_profile_contents, expected_profile_content);
}
TEST_F(ProfileAssistantTest, TestProfileCreationOneNotMatched) {
// Class names put here need to be in sorted order.
std::vector<std::string> class_names = {
"Ldoesnt/match/this/one;",
"Ljava/lang/Comparable;",
"Ljava/lang/Object;"
};
std::string input_file_contents;
for (std::string& class_name : class_names) {
input_file_contents += class_name + std::string("\n");
}
std::string output_file_contents;
ASSERT_TRUE(CreateAndDump(input_file_contents, &output_file_contents));
std::string expected_contents =
class_names[1] + std::string("\n") +
class_names[2] + std::string("\n");
ASSERT_EQ(output_file_contents, expected_contents);
}
TEST_F(ProfileAssistantTest, TestProfileCreationNoneMatched) {
// Class names put here need to be in sorted order.
std::vector<std::string> class_names = {
"Ldoesnt/match/this/one;",
"Ldoesnt/match/this/one/either;",
"Lnor/this/one;"
};
std::string input_file_contents;
for (std::string& class_name : class_names) {
input_file_contents += class_name + std::string("\n");
}
std::string output_file_contents;
ASSERT_TRUE(CreateAndDump(input_file_contents, &output_file_contents));
std::string expected_contents("");
ASSERT_EQ(output_file_contents, expected_contents);
}
// Test that we can dump profiles in a way they can be re-constituted.
// Test goes 'txt -> prof -> txt -> prof' and then compares the two profs.
TEST_F(ProfileAssistantTest, TestProfileRoundTrip) {
// Create the profile content.
std::vector<std::string_view> methods = {
"HLTestInline;->inlineMonomorphic(LSuper;)I+LSubA;",
"HLTestInline;->inlinePolymorphic(LSuper;)I+LSubA;,LSubB;,LSubC;",
"HLTestInline;->inlineMegamorphic(LSuper;)I+LSubA;,LSubB;,LSubC;,LSubD;,LSubE;",
"HLTestInline;->inlineMissingTypes(LSuper;)I+missing_types",
"HLTestInline;->noInlineCache(LSuper;)I",
"HLTestInline;->inlineMultiMonomorphic(LSuper;LSecret;)I+]LSuper;LSubA;]LSecret;LSubB;",
"HLTestInline;->inlineMultiPolymorphic(LSuper;LSecret;)I+]LSuper;LSubA;,LSubB;,LSubC;]LSecret;LSubB;,LSubC;",
"HLTestInline;->inlineMultiMegamorphic(LSuper;LSecret;)I+]LSuper;LSubA;,LSubB;,LSubC;,LSubD;,LSubE;]LSecret;megamorphic_types",
"HLTestInline;->inlineMultiMissingTypes(LSuper;LSecret;)I+]LSuper;missing_types]LSecret;missing_types",
"HLTestInline;->inlineTriplePolymorphic(LSuper;LSecret;LSecret;)I+]LSuper;LSubA;,LSubB;,LSubC;]LSecret;LSubB;,LSubC;",
"HLTestInline;->noInlineCacheMulti(LSuper;LSecret;)I",
};
std::ostringstream input_file_contents;
for (const std::string_view& m : methods) {
input_file_contents << m << "\n";
}
// Create the profile and save it to disk.
ScratchFile profile_file;
ASSERT_TRUE(CreateProfile(input_file_contents.str(),
profile_file.GetFilename(),
GetTestDexFileName("ProfileTestMultiDex")));
// Dump the file back into text.
std::string text_two;
ASSERT_TRUE(DumpClassesAndMethods(
profile_file.GetFilename(), &text_two, GetTestDexFileName("ProfileTestMultiDex")));
// Create another profile and save it to the disk as well.
ScratchFile profile_two;
ASSERT_TRUE(CreateProfile(
text_two, profile_two.GetFilename(), GetTestDexFileName("ProfileTestMultiDex")));
// These two profiles should be bit-identical.
// TODO We could compare the 'text_two' to the methods but since the order is
// arbitrary for many parts and there are multiple 'correct' dumps we'd need
// to basically parse everything and this is simply easier.
std::string error;
std::vector<std::string> args { kIsTargetBuild ? "/system/bin/cmp" : "/usr/bin/cmp",
"-s",
profile_file.GetFilename(),
profile_two.GetFilename() };
ASSERT_EQ(ExecAndReturnCode(args, &error), 0) << error << " from " << text_two;
}
// Test that we can dump profiles in a way they can be re-constituted and
// annotations don't interfere. Test goes 'txt -> ProfileWithAnnotations -> txt
// -> prof' and then compares that to one that is 'txt ->
// prof_without_annotations'.
TEST_F(ProfileAssistantTest, TestProfileRoundTripWithAnnotations) {
// Create the profile content.
std::vector<std::string_view> methods = {
"HLTestInline;->inlineMonomorphic(LSuper;)I+LSubA;",
"HLTestInline;->inlinePolymorphic(LSuper;)I+LSubA;,LSubB;,LSubC;",
"HLTestInline;->inlineMegamorphic(LSuper;)I+LSubA;,LSubB;,LSubC;,LSubD;,LSubE;",
"HLTestInline;->inlineMissingTypes(LSuper;)I+missing_types",
"HLTestInline;->noInlineCache(LSuper;)I",
"HLTestInline;->inlineMultiMonomorphic(LSuper;LSecret;)I+]LSuper;LSubA;]LSecret;LSubB;",
"HLTestInline;->inlineMultiPolymorphic(LSuper;LSecret;)I+]LSuper;LSubA;,LSubB;,LSubC;]LSecret;LSubB;,LSubC;",
"HLTestInline;->inlineMultiMegamorphic(LSuper;LSecret;)I+]LSuper;LSubA;,LSubB;,LSubC;,LSubD;,LSubE;]LSecret;megamorphic_types",
"HLTestInline;->inlineMultiMissingTypes(LSuper;LSecret;)I+]LSuper;missing_types]LSecret;missing_types",
"HLTestInline;->inlineTriplePolymorphic(LSuper;LSecret;LSecret;)I+]LSuper;LSubA;,LSubB;,LSubC;]LSecret;LSubB;,LSubC;",
"HLTestInline;->noInlineCacheMulti(LSuper;LSecret;)I",
};
std::ostringstream no_annotation_input_file_contents;
std::ostringstream with_annotation_input_file_contents;
for (const std::string_view& m : methods) {
no_annotation_input_file_contents << m << "\n";
with_annotation_input_file_contents << "{foobar}" << m << "\n";
}
// Create the profile and save it to disk.
ScratchFile with_annotation_profile_file;
ASSERT_TRUE(CreateProfile(with_annotation_input_file_contents.str(),
with_annotation_profile_file.GetFilename(),
GetTestDexFileName("ProfileTestMultiDex")));
ScratchFile no_annotation_profile_file;
ASSERT_TRUE(CreateProfile(no_annotation_input_file_contents.str(),
no_annotation_profile_file.GetFilename(),
GetTestDexFileName("ProfileTestMultiDex")));
// Dump the file back into text.
std::string text_two;
ASSERT_TRUE(DumpClassesAndMethods(with_annotation_profile_file.GetFilename(),
&text_two,
GetTestDexFileName("ProfileTestMultiDex")));
// Create another profile and save it to the disk as well.
ScratchFile profile_two;
ASSERT_TRUE(CreateProfile(
text_two, profile_two.GetFilename(), GetTestDexFileName("ProfileTestMultiDex")));
// These two profiles should be bit-identical.
// TODO We could compare the 'text_two' to the methods but since the order is
// arbitrary for many parts and there are multiple 'correct' dumps we'd need
// to basically parse everything and this is simply easier.
std::string error;
std::vector<std::string> args { kIsTargetBuild ? "/system/bin/cmp" : "/usr/bin/cmp",
"-s",
no_annotation_profile_file.GetFilename(),
profile_two.GetFilename() };
ASSERT_EQ(ExecAndReturnCode(args, &error), 0) << error << " from " << text_two;
}
TEST_F(ProfileAssistantTest, TestProfileCreateInlineCache) {
// Create the profile content.
std::vector<std::string_view> methods = {
"HLTestInline;->inlineMonomorphic(LSuper;)I+LSubA;",
"HLTestInline;->inlinePolymorphic(LSuper;)I+LSubA;,LSubB;,LSubC;",
"HLTestInline;->inlineMegamorphic(LSuper;)I+LSubA;,LSubB;,LSubC;,LSubD;,LSubE;",
"HLTestInline;->inlineMissingTypes(LSuper;)I+missing_types",
"HLTestInline;->noInlineCache(LSuper;)I",
"HLTestInline;->inlineMultiMonomorphic(LSuper;LSecret;)I+]LSuper;LSubA;]LSecret;LSubB;",
"HLTestInline;->inlineMultiPolymorphic(LSuper;LSecret;)I+]LSuper;LSubA;,LSubB;,LSubC;]LSecret;LSubB;,LSubC;",
"HLTestInline;->inlineMultiMegamorphic(LSuper;LSecret;)I+]LSuper;LSubA;,LSubB;,LSubC;,LSubD;,LSubE;]LSecret;LSubA;,LSubB;,LSubC;,LSubD;,LSubE;",
"HLTestInline;->inlineMultiMissingTypes(LSuper;LSecret;)I+]LSuper;missing_types]LSecret;missing_types",
"HLTestInline;->inlineTriplePolymorphic(LSuper;LSecret;LSecret;)I+]LSuper;LSubA;,LSubB;,LSubC;]LSecret;LSubB;,LSubC;",
"HLTestInline;->noInlineCacheMulti(LSuper;LSecret;)I",
};
std::ostringstream input_file_contents;
for (const std::string_view& m : methods) {
input_file_contents << m << "\n";
}
// Create the profile and save it to disk.
ScratchFile profile_file;
ASSERT_TRUE(CreateProfile(input_file_contents.str(),
profile_file.GetFilename(),
GetTestDexFileName("ProfileTestMultiDex")));
// Load the profile from disk.
ProfileCompilationInfo info;
ASSERT_TRUE(info.Load(GetFd(profile_file)));
// Load the dex files and verify that the profile contains the expected methods info.
ScopedObjectAccess soa(Thread::Current());
jobject class_loader = LoadDex("ProfileTestMultiDex");
ASSERT_NE(class_loader, nullptr);
StackHandleScope<5> hs(soa.Self());
Handle<mirror::Class> super_klass = hs.NewHandle(GetClass(soa, class_loader, "LSuper;"));
Handle<mirror::Class> secret_klass = hs.NewHandle(GetClass(soa, class_loader, "LSecret;"));
Handle<mirror::Class> sub_a = hs.NewHandle(GetClass(soa, class_loader, "LSubA;"));
Handle<mirror::Class> sub_b = hs.NewHandle(GetClass(soa, class_loader, "LSubB;"));
Handle<mirror::Class> sub_c = hs.NewHandle(GetClass(soa, class_loader, "LSubC;"));
ASSERT_TRUE(super_klass != nullptr);
ASSERT_TRUE(secret_klass != nullptr);
ASSERT_TRUE(sub_a != nullptr);
ASSERT_TRUE(sub_b != nullptr);
ASSERT_TRUE(sub_c != nullptr);
{
// Verify that method inlineMonomorphic has the expected inline caches and nothing else.
ArtMethod* inline_monomorphic = GetVirtualMethod(class_loader,
"LTestInline;",
"inlineMonomorphic");
ASSERT_TRUE(inline_monomorphic != nullptr);
TypeReferenceSet expected_monomorphic;
expected_monomorphic.insert(MakeTypeReference(sub_a.Get()));
AssertInlineCaches(inline_monomorphic,
expected_monomorphic,
info,
/*is_megamorphic=*/false,
/*is_missing_types=*/false);
}
{
// Verify that method inlinePolymorphic has the expected inline caches and nothing else.
ArtMethod* inline_polymorhic = GetVirtualMethod(class_loader,
"LTestInline;",
"inlinePolymorphic");
ASSERT_TRUE(inline_polymorhic != nullptr);
TypeReferenceSet expected_polymorphic;
expected_polymorphic.insert(MakeTypeReference(sub_a.Get()));
expected_polymorphic.insert(MakeTypeReference(sub_b.Get()));
expected_polymorphic.insert(MakeTypeReference(sub_c.Get()));
AssertInlineCaches(inline_polymorhic,
expected_polymorphic,
info,
/*is_megamorphic=*/false,
/*is_missing_types=*/false);
}
{
// Verify that method inlineMegamorphic has the expected inline caches and nothing else.
ArtMethod* inline_megamorphic = GetVirtualMethod(class_loader,
"LTestInline;",
"inlineMegamorphic");
ASSERT_TRUE(inline_megamorphic != nullptr);
TypeReferenceSet expected_megamorphic;
AssertInlineCaches(inline_megamorphic,
expected_megamorphic,
info,
/*is_megamorphic=*/true,
/*is_missing_types=*/false);
}
{
// Verify that method inlineMegamorphic has the expected inline caches and nothing else.
ArtMethod* inline_missing_types = GetVirtualMethod(class_loader,
"LTestInline;",
"inlineMissingTypes");
ASSERT_TRUE(inline_missing_types != nullptr);
TypeReferenceSet expected_missing_Types;
AssertInlineCaches(inline_missing_types,
expected_missing_Types,
info,
/*is_megamorphic=*/false,
/*is_missing_types=*/true);
}
{
// Verify that method noInlineCache has no inline caches in the profile.
ArtMethod* no_inline_cache = GetVirtualMethod(class_loader, "LTestInline;", "noInlineCache");
ASSERT_TRUE(no_inline_cache != nullptr);
ProfileCompilationInfo::MethodHotness hotness_no_inline_cache = info.GetMethodHotness(
MethodReference(no_inline_cache->GetDexFile(), no_inline_cache->GetDexMethodIndex()));
ASSERT_TRUE(hotness_no_inline_cache.IsHot());
ASSERT_TRUE(hotness_no_inline_cache.GetInlineCacheMap()->empty());
}
{
// Verify that method inlineMonomorphic has the expected inline caches and nothing else.
ArtMethod* inline_monomorphic = GetVirtualMethod(class_loader,
"LTestInline;",
"inlineMultiMonomorphic");
ASSERT_TRUE(inline_monomorphic != nullptr);
TypeReferenceSet expected_monomorphic_super;
TypeReferenceSet expected_monomorphic_secret;
expected_monomorphic_super.insert(MakeTypeReference(sub_a.Get()));
expected_monomorphic_secret.insert(MakeTypeReference(sub_b.Get()));
AssertInlineCaches(inline_monomorphic,
GetDexPcOfCallTo(inline_monomorphic, super_klass),
expected_monomorphic_super,
info,
/*is_megamorphic=*/false,
/*is_missing_types=*/false);
AssertInlineCaches(inline_monomorphic,
GetDexPcOfCallTo(inline_monomorphic, secret_klass),
expected_monomorphic_secret,
info,
/*is_megamorphic=*/false,
/*is_missing_types=*/false);
}
{
// Verify that method inlinePolymorphic has the expected inline caches and nothing else.
ArtMethod* inline_polymorhic = GetVirtualMethod(class_loader,
"LTestInline;",
"inlineMultiPolymorphic");
ASSERT_TRUE(inline_polymorhic != nullptr);
TypeReferenceSet expected_polymorphic_super;
expected_polymorphic_super.insert(MakeTypeReference(sub_a.Get()));
expected_polymorphic_super.insert(MakeTypeReference(sub_b.Get()));
expected_polymorphic_super.insert(MakeTypeReference(sub_c.Get()));
TypeReferenceSet expected_polymorphic_secret;
expected_polymorphic_secret.insert(MakeTypeReference(sub_b.Get()));
expected_polymorphic_secret.insert(MakeTypeReference(sub_c.Get()));
AssertInlineCaches(inline_polymorhic,
GetDexPcOfCallTo(inline_polymorhic, super_klass),
expected_polymorphic_super,
info,
/*is_megamorphic=*/false,
/*is_missing_types=*/false);
AssertInlineCaches(inline_polymorhic,
GetDexPcOfCallTo(inline_polymorhic, secret_klass),
expected_polymorphic_secret,
info,
/*is_megamorphic=*/false,
/*is_missing_types=*/false);
}
{
// Verify that method inlinePolymorphic has the expected inline caches and nothing else.
ArtMethod* inline_polymorhic = GetVirtualMethod(class_loader,
"LTestInline;",
"inlineTriplePolymorphic");
ASSERT_TRUE(inline_polymorhic != nullptr);
TypeReferenceSet expected_polymorphic_super;
expected_polymorphic_super.insert(MakeTypeReference(sub_a.Get()));
expected_polymorphic_super.insert(MakeTypeReference(sub_b.Get()));
expected_polymorphic_super.insert(MakeTypeReference(sub_c.Get()));
TypeReferenceSet expected_polymorphic_secret;
expected_polymorphic_secret.insert(MakeTypeReference(sub_b.Get()));
expected_polymorphic_secret.insert(MakeTypeReference(sub_c.Get()));
AssertInlineCaches(inline_polymorhic,
GetDexPcOfCallTo(inline_polymorhic, super_klass),
expected_polymorphic_super,
info,
/*is_megamorphic=*/false,
/*is_missing_types=*/false);
uint16_t first_call = GetDexPcOfCallTo(inline_polymorhic, secret_klass);
AssertInlineCaches(inline_polymorhic,
first_call,
expected_polymorphic_secret,
info,
/*is_megamorphic=*/false,
/*is_missing_types=*/false);
uint16_t second_call = GetDexPcOfCallTo(inline_polymorhic, secret_klass, first_call);
ASSERT_LT(first_call, second_call);
AssertInlineCaches(inline_polymorhic,
second_call,
expected_polymorphic_secret,
info,
/*is_megamorphic=*/false,
/*is_missing_types=*/false);
}
{
// Verify that method inlineMegamorphic has the expected inline caches and nothing else.
ArtMethod* inline_megamorphic = GetVirtualMethod(class_loader,
"LTestInline;",
"inlineMultiMegamorphic");
ASSERT_TRUE(inline_megamorphic != nullptr);
TypeReferenceSet expected_megamorphic;
AssertInlineCaches(inline_megamorphic,
GetDexPcOfCallTo(inline_megamorphic, super_klass),
expected_megamorphic,
info,
/*is_megamorphic=*/true,
/*is_missing_types=*/false);
AssertInlineCaches(inline_megamorphic,
GetDexPcOfCallTo(inline_megamorphic, secret_klass),
expected_megamorphic,
info,
/*is_megamorphic=*/true,
/*is_missing_types=*/false);
}
{
// Verify that method inlineMegamorphic has the expected inline caches and nothing else.
ArtMethod* inline_missing_types = GetVirtualMethod(class_loader,
"LTestInline;",
"inlineMultiMissingTypes");
ASSERT_TRUE(inline_missing_types != nullptr);
TypeReferenceSet expected_missing_Types;
AssertInlineCaches(inline_missing_types,
GetDexPcOfCallTo(inline_missing_types, super_klass),
expected_missing_Types,
info,
/*is_megamorphic=*/false,
/*is_missing_types=*/true);
AssertInlineCaches(inline_missing_types,
GetDexPcOfCallTo(inline_missing_types, secret_klass),
expected_missing_Types,
info,
/*is_megamorphic=*/false,
/*is_missing_types=*/true);
}
{
// Verify that method noInlineCacheMulti has no inline caches in the profile.
ArtMethod* no_inline_cache =
GetVirtualMethod(class_loader, "LTestInline;", "noInlineCacheMulti");
ASSERT_TRUE(no_inline_cache != nullptr);
ProfileCompilationInfo::MethodHotness hotness_no_inline_cache = info.GetMethodHotness(
MethodReference(no_inline_cache->GetDexFile(), no_inline_cache->GetDexMethodIndex()));
ASSERT_TRUE(hotness_no_inline_cache.IsHot());
ASSERT_TRUE(hotness_no_inline_cache.GetInlineCacheMap()->empty());
}
}
TEST_F(ProfileAssistantTest, MergeProfilesWithDifferentDexOrder) {
ScratchFile profile1;
ScratchFile reference_profile;
std::vector<int> profile_fds({GetFd(profile1)});
int reference_profile_fd = GetFd(reference_profile);
// The new profile info will contain the methods with indices 0-100.
const uint16_t kNumberOfMethodsToEnableCompilation = 100;
ProfileCompilationInfo info1;
SetupProfile(dex1, dex2, kNumberOfMethodsToEnableCompilation, 0, profile1, &info1,
/*start_method_index=*/0, /*reverse_dex_write_order=*/false);
// The reference profile info will contain the methods with indices 50-150.
// When setting up the profile reverse the order in which the dex files
// are added to the profile. This will verify that profman merges profiles
// with a different dex order correctly.
const uint16_t kNumberOfMethodsAlreadyCompiled = 100;
ProfileCompilationInfo reference_info;
SetupProfile(dex1, dex2, kNumberOfMethodsAlreadyCompiled, 0, reference_profile,
&reference_info, kNumberOfMethodsToEnableCompilation / 2, /*reverse_dex_write_order=*/true);
// We should advise compilation.
ASSERT_EQ(ProfileAssistant::kCompile,
ProcessProfiles(profile_fds, reference_profile_fd));
// The resulting compilation info must be equal to the merge of the inputs.
ProfileCompilationInfo result;
ASSERT_TRUE(result.Load(reference_profile_fd));
ProfileCompilationInfo expected;
ASSERT_TRUE(expected.MergeWith(reference_info));
ASSERT_TRUE(expected.MergeWith(info1));
ASSERT_TRUE(expected.Equals(result));
// The information from profile must remain the same.
CheckProfileInfo(profile1, info1);
}
TEST_F(ProfileAssistantTest, TestProfileCreateWithSubtype) {
// Create the profile content.
std::vector<std::string> profile_methods = {
"HLTestInlineSubtype;->inlineMonomorphic(LSuper;)I+]LSuper;LSubA;",
};
std::string input_file_contents;
for (std::string& m : profile_methods) {
input_file_contents += m + std::string("\n");
}
// Create the profile and save it to disk.
ScratchFile profile_file;
std::string dex_filename = GetTestDexFileName("ProfileTestMultiDex");
ASSERT_TRUE(CreateProfile(input_file_contents, profile_file.GetFilename(), dex_filename));
// Load the profile from disk.
ProfileCompilationInfo info;
ASSERT_TRUE(info.Load(GetFd(profile_file)));
LOG(ERROR) << profile_file.GetFilename();
// Load the dex files and verify that the profile contains the expected
// methods info.
ScopedObjectAccess soa(Thread::Current());
jobject class_loader = LoadDex("ProfileTestMultiDex");
ASSERT_NE(class_loader, nullptr);
// NB This is the supertype of the declared line!
ArtMethod* inline_monomorphic_super =
GetVirtualMethod(class_loader, "LTestInline;", "inlineMonomorphic");
const DexFile* dex_file = inline_monomorphic_super->GetDexFile();
// Verify that the inline cache is present in the superclass
ProfileCompilationInfo::MethodHotness hotness_super = info.GetMethodHotness(
MethodReference(dex_file, inline_monomorphic_super->GetDexMethodIndex()));
ASSERT_TRUE(hotness_super.IsHot());
const ProfileCompilationInfo::InlineCacheMap* inline_caches = hotness_super.GetInlineCacheMap();
ASSERT_EQ(inline_caches->size(), 1u);
const ProfileCompilationInfo::DexPcData& dex_pc_data = inline_caches->begin()->second;
dex::TypeIndex target_type_index(dex_file->GetIndexForTypeId(*dex_file->FindTypeId("LSubA;")));
ASSERT_EQ(1u, dex_pc_data.classes.size());
ASSERT_EQ(target_type_index, *dex_pc_data.classes.begin());
// Verify that the method is present in subclass but there are no
// inline-caches (since there is no code).
const dex::MethodId& super_method_id =
dex_file->GetMethodId(inline_monomorphic_super->GetDexMethodIndex());
uint32_t sub_method_index = dex_file->GetIndexForMethodId(
*dex_file->FindMethodId(*dex_file->FindTypeId("LTestInlineSubtype;"),
dex_file->GetStringId(super_method_id.name_idx_),
dex_file->GetProtoId(super_method_id.proto_idx_)));
ProfileCompilationInfo::MethodHotness hotness_sub =
info.GetMethodHotness(MethodReference(dex_file, sub_method_index));
ASSERT_TRUE(hotness_sub.IsHot());
ASSERT_EQ(hotness_sub.GetInlineCacheMap()->size(), 0u);
}
TEST_F(ProfileAssistantTest, TestProfileCreateWithSubtypeAndDump) {
// Create the profile content.
std::vector<std::string> profile_methods = {
"HLTestInlineSubtype;->inlineMonomorphic(LSuper;)I+]LSuper;LSubA;",
};
std::string input_file_contents;
for (std::string& m : profile_methods) {
input_file_contents += m + std::string("\n");
}
// Create the profile and save it to disk.
ScratchFile profile_file;
std::string dex_filename = GetTestDexFileName("ProfileTestMultiDex");
ASSERT_TRUE(CreateProfile(input_file_contents, profile_file.GetFilename(), dex_filename));
std::string dump_ic;
ASSERT_TRUE(DumpClassesAndMethods(
profile_file.GetFilename(), &dump_ic, GetTestDexFileName("ProfileTestMultiDex")));
std::vector<std::string> lines;
std::stringstream dump_stream(dump_ic);
std::string cur;
while (std::getline(dump_stream, cur, '\n')) {
lines.push_back(std::move(cur));
}
EXPECT_EQ(lines.size(), 2u);
EXPECT_TRUE(std::find(lines.cbegin(),
lines.cend(),
"HLTestInline;->inlineMonomorphic(LSuper;)I+]LSuper;LSubA;") !=
lines.cend());
EXPECT_TRUE(std::find(lines.cbegin(),
lines.cend(),
"HLTestInlineSubtype;->inlineMonomorphic(LSuper;)I") != lines.cend());
}
TEST_F(ProfileAssistantTest, TestProfileCreateWithInvalidData) {
// Create the profile content.
std::vector<std::string> profile_methods = {
"HLTestInline;->inlineMonomorphic(LSuper;)I+invalid_class", // Invalid descriptor for IC.
"HLTestInline;->invalid_method", // Invalid method spec (no signature).
"invalid_class", // Invalid descriptor.
};
std::string input_file_contents;
for (std::string& m : profile_methods) {
input_file_contents += m + std::string("\n");
}
// Create the profile and save it to disk.
ScratchFile profile_file;
std::string dex_filename = GetTestDexFileName("ProfileTestMultiDex");
ASSERT_TRUE(CreateProfile(input_file_contents,
profile_file.GetFilename(),
dex_filename));
// Load the profile from disk.
ProfileCompilationInfo info;
ASSERT_TRUE(info.Load(GetFd(profile_file)));
// Load the dex files and verify that the profile contains the expected methods info.
ScopedObjectAccess soa(Thread::Current());
jobject class_loader = LoadDex("ProfileTestMultiDex");
ASSERT_NE(class_loader, nullptr);
ArtMethod* inline_monomorphic = GetVirtualMethod(class_loader,
"LTestInline;",
"inlineMonomorphic");
const DexFile* dex_file = inline_monomorphic->GetDexFile();
// Invalid descriptor in IC results in rejection of the entire line.
ProfileCompilationInfo::MethodHotness hotness =
info.GetMethodHotness(MethodReference(dex_file, inline_monomorphic->GetDexMethodIndex()));
ASSERT_FALSE(hotness.IsHot());
// No data was recorded, so the dex file does not appear in the profile.
// TODO: Record all dex files passed to `profman` in the profile. Note that
// this makes sense only if there are no annotations, otherwise we do not
// know what annotation to use with each dex file.
std::set<dex::TypeIndex> classes;
std::set<uint16_t> hot_methods;
std::set<uint16_t> startup_methods;
std::set<uint16_t> post_start_methods;
ASSERT_FALSE(info.GetClassesAndMethods(*dex_file,
&classes,
&hot_methods,
&startup_methods,
&post_start_methods));
}
TEST_F(ProfileAssistantTest, DumpOnly) {
ScratchFile profile;
const uint32_t kNumberOfMethods = 64;
std::vector<uint32_t> hot_methods;
std::vector<uint32_t> startup_methods;
std::vector<uint32_t> post_startup_methods;
for (size_t i = 0; i < kNumberOfMethods; ++i) {
if (i % 2 == 0) {
hot_methods.push_back(i);
}
if (i % 3 == 1) {
startup_methods.push_back(i);
}
if (i % 4 == 2) {
post_startup_methods.push_back(i);
}
}
EXPECT_GT(hot_methods.size(), 0u);
EXPECT_GT(startup_methods.size(), 0u);
EXPECT_GT(post_startup_methods.size(), 0u);
ProfileCompilationInfo info1;
SetupBasicProfile(dex1,
hot_methods,
startup_methods,
post_startup_methods,
profile,
&info1);
std::string output;
DumpOnly(profile.GetFilename(), &output);
const size_t hot_offset = output.find("hot methods:");
const size_t startup_offset = output.find("startup methods:");
const size_t post_startup_offset = output.find("post startup methods:");
const size_t classes_offset = output.find("classes:");
ASSERT_NE(hot_offset, std::string::npos);
ASSERT_NE(startup_offset, std::string::npos);
ASSERT_NE(post_startup_offset, std::string::npos);
ASSERT_LT(hot_offset, startup_offset);
ASSERT_LT(startup_offset, post_startup_offset);
// Check the actual contents of the dump by looking at the offsets of the methods.
for (uint32_t m : hot_methods) {
const size_t pos = output.find(std::to_string(m) + "[],", hot_offset);
ASSERT_NE(pos, std::string::npos) << output;
EXPECT_LT(pos, startup_offset) << output;
}
for (uint32_t m : startup_methods) {
const size_t pos = output.find(std::to_string(m) + ",", startup_offset);
ASSERT_NE(pos, std::string::npos) << output;
EXPECT_LT(pos, post_startup_offset) << output;
}
for (uint32_t m : post_startup_methods) {
const size_t pos = output.find(std::to_string(m) + ",", post_startup_offset);
ASSERT_NE(pos, std::string::npos) << output;
EXPECT_LT(pos, classes_offset) << output;
}
}
TEST_F(ProfileAssistantTest, MergeProfilesWithFilter) {
ScratchFile profile1;
ScratchFile profile2;
ScratchFile reference_profile;
std::vector<int> profile_fds({
GetFd(profile1),
GetFd(profile2)});
int reference_profile_fd = GetFd(reference_profile);
// Use a real dex file to generate profile test data.
// The file will be used during merging to filter unwanted data.
std::vector<std::unique_ptr<const DexFile>> dex_files = OpenTestDexFiles("ProfileTestMultiDex");
const DexFile& d1 = *dex_files[0];
const DexFile& d2 = *dex_files[1];
// The new profile info will contain the methods with indices 0-100.
const uint16_t kNumberOfMethodsToEnableCompilation = 100;
ProfileCompilationInfo info1;
SetupProfile(&d1, dex1, kNumberOfMethodsToEnableCompilation, 0, profile1, &info1);
ProfileCompilationInfo info2;
SetupProfile(&d2, dex2, kNumberOfMethodsToEnableCompilation, 0, profile2, &info2);
// The reference profile info will contain the methods with indices 50-150.
const uint16_t kNumberOfMethodsAlreadyCompiled = 100;
ProfileCompilationInfo reference_info;
SetupProfile(&d1, dex1,
kNumberOfMethodsAlreadyCompiled, 0, reference_profile,
&reference_info, kNumberOfMethodsToEnableCompilation / 2);
// Run profman and pass the dex file with --apk-fd.
android::base::unique_fd apk_fd(
open(GetTestDexFileName("ProfileTestMultiDex").c_str(), O_RDONLY)); // NOLINT
ASSERT_GE(apk_fd.get(), 0);
std::string profman_cmd = GetProfmanCmd();
std::vector<std::string> argv_str;
argv_str.push_back(profman_cmd);
argv_str.push_back("--profile-file-fd=" + std::to_string(profile1.GetFd()));
argv_str.push_back("--profile-file-fd=" + std::to_string(profile2.GetFd()));
argv_str.push_back("--reference-profile-file-fd=" + std::to_string(reference_profile.GetFd()));
argv_str.push_back("--apk-fd=" + std::to_string(apk_fd.get()));
std::string error;
EXPECT_EQ(ExecAndReturnCode(argv_str, &error), ProfileAssistant::kCompile) << error;
// Verify that we can load the result.
ProfileCompilationInfo result;
ASSERT_TRUE(result.Load(reference_profile_fd));
// Verify that the result filtered out data not belonging to the dex file.
// This is equivalent to checking that the result is equal to the merging of
// all profiles while filtering out data not belonging to the dex file.
ProfileCompilationInfo::ProfileLoadFilterFn filter_fn =
[&d1, &d2](const std::string& dex_location, uint32_t checksum) -> bool {
return (dex_location == ProfileCompilationInfo::GetProfileDexFileBaseKey(d1.GetLocation())
&& checksum == d1.GetLocationChecksum())
|| (dex_location == ProfileCompilationInfo::GetProfileDexFileBaseKey(d2.GetLocation())
&& checksum == d2.GetLocationChecksum());
};
ProfileCompilationInfo info1_filter;
ProfileCompilationInfo info2_filter;
ProfileCompilationInfo expected;
info2_filter.Load(profile1.GetFd(), /*merge_classes=*/ true, filter_fn);
info2_filter.Load(profile2.GetFd(), /*merge_classes=*/ true, filter_fn);
expected.Load(reference_profile.GetFd(), /*merge_classes=*/ true, filter_fn);
ASSERT_TRUE(expected.MergeWith(info1_filter));
ASSERT_TRUE(expected.MergeWith(info2_filter));
ASSERT_TRUE(expected.Equals(result));
}
TEST_F(ProfileAssistantTest, CopyAndUpdateProfileKey) {
ScratchFile profile1;
ScratchFile reference_profile;
// Use a real dex file to generate profile test data. During the copy-and-update the
// matching is done based on checksum so we have to match with the real thing.
std::vector<std::unique_ptr<const DexFile>> dex_files = OpenTestDexFiles("ProfileTestMultiDex");
const DexFile& d1 = *dex_files[0];
const DexFile& d2 = *dex_files[1];
ProfileCompilationInfo info1;
uint16_t num_methods_to_add = std::min(d1.NumMethodIds(), d2.NumMethodIds());
const DexFile* dex_to_be_updated1 = BuildDex(
"fake-location1", d1.GetLocationChecksum(), "LC;", d1.NumMethodIds(), d1.NumTypeIds());
const DexFile* dex_to_be_updated2 = BuildDex(
"fake-location2", d2.GetLocationChecksum(), "LC;", d2.NumMethodIds(), d2.NumTypeIds());
SetupProfile(dex_to_be_updated1,
dex_to_be_updated2,
num_methods_to_add,
/*number_of_classes=*/ 0,
profile1,
&info1);
// Run profman and pass the dex file with --apk-fd.
android::base::unique_fd apk_fd(
open(GetTestDexFileName("ProfileTestMultiDex").c_str(), O_RDONLY)); // NOLINT
ASSERT_GE(apk_fd.get(), 0);
std::string profman_cmd = GetProfmanCmd();
std::vector<std::string> argv_str;
argv_str.push_back(profman_cmd);
argv_str.push_back("--profile-file-fd=" + std::to_string(profile1.GetFd()));
argv_str.push_back("--reference-profile-file-fd=" + std::to_string(reference_profile.GetFd()));
argv_str.push_back("--apk-fd=" + std::to_string(apk_fd.get()));
argv_str.push_back("--copy-and-update-profile-key");
std::string error;
ASSERT_EQ(ExecAndReturnCode(argv_str, &error), 0) << error;
// Verify that we can load the result.
ProfileCompilationInfo result;
ASSERT_TRUE(result.Load(reference_profile.GetFd()));
// Verify that the renaming was done.
for (uint16_t i = 0; i < num_methods_to_add; i ++) {
ASSERT_TRUE(result.GetMethodHotness(MethodReference(&d1, i)).IsHot()) << i;
ASSERT_TRUE(result.GetMethodHotness(MethodReference(&d2, i)).IsHot()) << i;
ASSERT_FALSE(result.GetMethodHotness(MethodReference(dex_to_be_updated1, i)).IsHot()) << i;
ASSERT_FALSE(result.GetMethodHotness(MethodReference(dex_to_be_updated2, i)).IsHot()) << i;
}
}
TEST_F(ProfileAssistantTest, BootImageMerge) {
ScratchFile profile;
ScratchFile reference_profile;
std::vector<int> profile_fds({GetFd(profile)});
int reference_profile_fd = GetFd(reference_profile);
std::vector<uint32_t> hot_methods_cur;
std::vector<uint32_t> hot_methods_ref;
std::vector<uint32_t> empty_vector;
size_t num_methods = 100;
for (size_t i = 0; i < num_methods; ++i) {
hot_methods_cur.push_back(i);
}
for (size_t i = 0; i < num_methods; ++i) {
hot_methods_ref.push_back(i);
}
ProfileCompilationInfo info1(/*for_boot_image=*/ true);
SetupBasicProfile(dex1, hot_methods_cur, empty_vector, empty_vector,
profile, &info1);
ProfileCompilationInfo info2(/*for_boot_image=*/true);
SetupBasicProfile(dex1, hot_methods_ref, empty_vector, empty_vector,
reference_profile, &info2);
std::vector<const std::string> extra_args({"--force-merge", "--boot-image-merge"});
int return_code = ProcessProfiles(profile_fds, reference_profile_fd, extra_args);
ASSERT_EQ(return_code, ProfileAssistant::kSuccess);
// Verify the result: it should be equal to info2 since info1 is a regular profile
// and should be ignored.
ProfileCompilationInfo result(/*for_boot_image=*/ true);
ASSERT_TRUE(result.Load(reference_profile.GetFd()));
ASSERT_TRUE(result.Equals(info2));
}
// Under default behaviour we should not advice compilation
// and the reference profile should not be updated.
// However we pass --force-merge to force aggregation and in this case
// we should see an update.
TEST_F(ProfileAssistantTest, ForceMerge) {
const uint16_t kNumberOfClassesInRefProfile = 6000;
const uint16_t kNumberOfClassesInCurProfile = 6110; // Threshold is 2%.
const DexFile* dex1_7000 = BuildDex("location1_7000",
/*checksum=*/ 7001,
"LUnique1_7000;",
/*num_method_ids=*/ 0,
/*num_type_ids=*/ 7000);
const DexFile* dex2_7000 = BuildDex("location2_7000",
/*checksum=*/ 7002,
"LUnique2_7000;",
/*num_method_ids=*/ 0,
/*num_type_ids=*/ 7000);
ScratchFile profile;
ScratchFile reference_profile;
std::vector<int> profile_fds({ GetFd(profile)});
int reference_profile_fd = GetFd(reference_profile);
ProfileCompilationInfo info1;
SetupProfile(dex1_7000, dex2_7000, 0, kNumberOfClassesInRefProfile, profile, &info1);
ProfileCompilationInfo info2;
SetupProfile(dex1_7000, dex2_7000, 0, kNumberOfClassesInCurProfile, reference_profile, &info2);
std::vector<const std::string> extra_args({"--force-merge"});
int return_code = ProcessProfiles(profile_fds, reference_profile_fd, extra_args);
ASSERT_EQ(return_code, ProfileAssistant::kSuccess);
// Check that the result is the aggregation.
ProfileCompilationInfo result;
ASSERT_TRUE(result.Load(reference_profile.GetFd()));
ASSERT_TRUE(info1.MergeWith(info2));
ASSERT_TRUE(result.Equals(info1));
}
// Test that we consider the annations when we merge boot image profiles.
TEST_F(ProfileAssistantTest, BootImageMergeWithAnnotations) {
ScratchFile profile;
ScratchFile reference_profile;
std::vector<int> profile_fds({GetFd(profile)});
int reference_profile_fd = GetFd(reference_profile);
// Use a real dex file to generate profile test data so that we can pass descriptors to profman.
std::vector<std::unique_ptr<const DexFile>> dex_files = OpenTestDexFiles("ProfileTestMultiDex");
const DexFile& d1 = *dex_files[0];
const DexFile& d2 = *dex_files[1];
// The new profile info will contain the methods with indices 0-100.
ProfileCompilationInfo info(/*for_boot_image=*/ true);
ProfileCompilationInfo::ProfileSampleAnnotation psa1("package1");
ProfileCompilationInfo::ProfileSampleAnnotation psa2("package2");
AddMethod(&info, &d1, 0, Hotness::kFlagHot, psa1);
AddMethod(&info, &d2, 0, Hotness::kFlagHot, psa2);
info.Save(profile.GetFd());
// Run profman and pass the dex file with --apk-fd.
android::base::unique_fd apk_fd(
open(GetTestDexFileName("ProfileTestMultiDex").c_str(), O_RDONLY)); // NOLINT
ASSERT_GE(apk_fd.get(), 0);
std::string profman_cmd = GetProfmanCmd();
std::vector<std::string> argv_str;
argv_str.push_back(profman_cmd);
argv_str.push_back("--profile-file-fd=" + std::to_string(profile.GetFd()));
argv_str.push_back("--reference-profile-file-fd=" + std::to_string(reference_profile.GetFd()));
argv_str.push_back("--apk-fd=" + std::to_string(apk_fd.get()));
argv_str.push_back("--force-merge");
argv_str.push_back("--boot-image-merge");
std::string error;
EXPECT_EQ(ExecAndReturnCode(argv_str, &error), ProfileAssistant::kSuccess) << error;
// Verify that we can load the result and that it equals to what we saved.
ProfileCompilationInfo result(/*for_boot_image=*/ true);
ASSERT_TRUE(result.Load(reference_profile_fd));
ASSERT_TRUE(info.Equals(result));
}
TEST_F(ProfileAssistantTest, DifferentProfileVersions) {
ScratchFile profile1;
ScratchFile profile2;
ProfileCompilationInfo info1(/*for_boot_image=*/ false);
info1.Save(profile1.GetFd());
ProfileCompilationInfo info2(/*for_boot_image=*/ true);
info2.Save(profile2.GetFd());
std::vector<int> profile_fds({ GetFd(profile1)});
int reference_profile_fd = GetFd(profile2);
std::vector<const std::string> boot_image_args({"--boot-image-merge"});
ASSERT_EQ(ProcessProfiles(profile_fds, reference_profile_fd, boot_image_args),
ProfileAssistant::kErrorDifferentVersions);
ASSERT_EQ(ProcessProfiles(profile_fds, reference_profile_fd),
ProfileAssistant::kErrorBadProfiles);
// Reverse the order of the profiles to verify we get the same behaviour.
profile_fds[0] = GetFd(profile2);
reference_profile_fd = GetFd(profile1);
ASSERT_EQ(ProcessProfiles(profile_fds, reference_profile_fd, boot_image_args),
ProfileAssistant::kErrorBadProfiles);
ASSERT_EQ(ProcessProfiles(profile_fds, reference_profile_fd),
ProfileAssistant::kErrorDifferentVersions);
}
// Under default behaviour we will abort if we cannot load a profile during a merge
// operation. However, if we pass --force-merge to force aggregation we should
// ignore files we cannot load
TEST_F(ProfileAssistantTest, ForceMergeIgnoreProfilesItCannotLoad) {
ScratchFile profile1;
ScratchFile profile2;
// Write corrupt data in the first file.
std::string content = "giberish";
ASSERT_TRUE(profile1.GetFile()->WriteFully(content.c_str(), content.length()));
ProfileCompilationInfo info2(/*for_boot_image=*/ true);
info2.Save(profile2.GetFd());
std::vector<int> profile_fds({ GetFd(profile1)});
int reference_profile_fd = GetFd(profile2);
// With force-merge we should merge successfully.
std::vector<const std::string> extra_args({"--force-merge", "--boot-image-merge"});
ASSERT_EQ(ProcessProfiles(profile_fds, reference_profile_fd, extra_args),
ProfileAssistant::kSuccess);
ProfileCompilationInfo result(/*for_boot_image=*/ true);
ASSERT_TRUE(result.Load(reference_profile_fd));
ASSERT_TRUE(info2.Equals(result));
// Without force-merge we should fail.
std::vector<const std::string> extra_args2({"--boot-image-merge"});
ASSERT_EQ(ProcessProfiles(profile_fds, reference_profile_fd, extra_args2),
ProfileAssistant::kErrorBadProfiles);
}
} // namespace art