You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2589 lines
106 KiB

/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "art_method-inl.h"
#include "base/callee_save_type.h"
#include "base/enums.h"
#include "callee_save_frame.h"
#include "common_throws.h"
#include "class_root-inl.h"
#include "debug_print.h"
#include "debugger.h"
#include "dex/dex_file-inl.h"
#include "dex/dex_file_types.h"
#include "dex/dex_instruction-inl.h"
#include "dex/method_reference.h"
#include "entrypoints/entrypoint_utils-inl.h"
#include "entrypoints/quick/callee_save_frame.h"
#include "entrypoints/runtime_asm_entrypoints.h"
#include "gc/accounting/card_table-inl.h"
#include "imt_conflict_table.h"
#include "imtable-inl.h"
#include "instrumentation.h"
#include "interpreter/interpreter.h"
#include "interpreter/interpreter_common.h"
#include "interpreter/shadow_frame-inl.h"
#include "jit/jit.h"
#include "jit/jit_code_cache.h"
#include "linear_alloc.h"
#include "method_handles.h"
#include "mirror/class-inl.h"
#include "mirror/dex_cache-inl.h"
#include "mirror/method.h"
#include "mirror/method_handle_impl.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/var_handle.h"
#include "oat.h"
#include "oat_file.h"
#include "oat_quick_method_header.h"
#include "quick_exception_handler.h"
#include "runtime.h"
#include "scoped_thread_state_change-inl.h"
#include "stack.h"
#include "thread-inl.h"
#include "var_handles.h"
#include "well_known_classes.h"
namespace art {
// Visits the arguments as saved to the stack by a CalleeSaveType::kRefAndArgs callee save frame.
class QuickArgumentVisitor {
// Number of bytes for each out register in the caller method's frame.
static constexpr size_t kBytesStackArgLocation = 4;
// Frame size in bytes of a callee-save frame for RefsAndArgs.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
RuntimeCalleeSaveFrame::GetFrameSize(CalleeSaveType::kSaveRefsAndArgs);
// Offset of first GPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
RuntimeCalleeSaveFrame::GetGpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
// Offset of first FPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
RuntimeCalleeSaveFrame::GetFpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
// Offset of return address.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_ReturnPcOffset =
RuntimeCalleeSaveFrame::GetReturnPcOffset(CalleeSaveType::kSaveRefsAndArgs);
#if defined(__arm__)
// The callee save frame is pointed to by SP.
// | argN | |
// | ... | |
// | arg4 | |
// | arg3 spill | | Caller's frame
// | arg2 spill | |
// | arg1 spill | |
// | Method* | ---
// | LR |
// | ... | 4x6 bytes callee saves
// | R3 |
// | R2 |
// | R1 |
// | S15 |
// | : |
// | S0 |
// | | 4x2 bytes padding
// | Method* | <- sp
static constexpr bool kSplitPairAcrossRegisterAndStack = false;
static constexpr bool kAlignPairRegister = true;
static constexpr bool kQuickSoftFloatAbi = false;
static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = true;
static constexpr bool kQuickSkipOddFpRegisters = false;
static constexpr size_t kNumQuickGprArgs = 3;
static constexpr size_t kNumQuickFprArgs = 16;
static constexpr bool kGprFprLockstep = false;
static size_t GprIndexToGprOffset(uint32_t gpr_index) {
return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
}
#elif defined(__aarch64__)
// The callee save frame is pointed to by SP.
// | argN | |
// | ... | |
// | arg4 | |
// | arg3 spill | | Caller's frame
// | arg2 spill | |
// | arg1 spill | |
// | Method* | ---
// | LR |
// | X29 |
// | : |
// | X20 |
// | X7 |
// | : |
// | X1 |
// | D7 |
// | : |
// | D0 |
// | | padding
// | Method* | <- sp
static constexpr bool kSplitPairAcrossRegisterAndStack = false;
static constexpr bool kAlignPairRegister = false;
static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
static constexpr bool kQuickSkipOddFpRegisters = false;
static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs.
static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs.
static constexpr bool kGprFprLockstep = false;
static size_t GprIndexToGprOffset(uint32_t gpr_index) {
return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
}
#elif defined(__i386__)
// The callee save frame is pointed to by SP.
// | argN | |
// | ... | |
// | arg4 | |
// | arg3 spill | | Caller's frame
// | arg2 spill | |
// | arg1 spill | |
// | Method* | ---
// | Return |
// | EBP,ESI,EDI | callee saves
// | EBX | arg3
// | EDX | arg2
// | ECX | arg1
// | XMM3 | float arg 4
// | XMM2 | float arg 3
// | XMM1 | float arg 2
// | XMM0 | float arg 1
// | EAX/Method* | <- sp
static constexpr bool kSplitPairAcrossRegisterAndStack = false;
static constexpr bool kAlignPairRegister = false;
static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
static constexpr bool kQuickSkipOddFpRegisters = false;
static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs.
static constexpr size_t kNumQuickFprArgs = 4; // 4 arguments passed in FPRs.
static constexpr bool kGprFprLockstep = false;
static size_t GprIndexToGprOffset(uint32_t gpr_index) {
return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
}
#elif defined(__x86_64__)
// The callee save frame is pointed to by SP.
// | argN | |
// | ... | |
// | reg. arg spills | | Caller's frame
// | Method* | ---
// | Return |
// | R15 | callee save
// | R14 | callee save
// | R13 | callee save
// | R12 | callee save
// | R9 | arg5
// | R8 | arg4
// | RSI/R6 | arg1
// | RBP/R5 | callee save
// | RBX/R3 | callee save
// | RDX/R2 | arg2
// | RCX/R1 | arg3
// | XMM7 | float arg 8
// | XMM6 | float arg 7
// | XMM5 | float arg 6
// | XMM4 | float arg 5
// | XMM3 | float arg 4
// | XMM2 | float arg 3
// | XMM1 | float arg 2
// | XMM0 | float arg 1
// | Padding |
// | RDI/Method* | <- sp
static constexpr bool kSplitPairAcrossRegisterAndStack = false;
static constexpr bool kAlignPairRegister = false;
static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
static constexpr bool kQuickSkipOddFpRegisters = false;
static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs.
static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs.
static constexpr bool kGprFprLockstep = false;
static size_t GprIndexToGprOffset(uint32_t gpr_index) {
switch (gpr_index) {
case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
default:
LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
UNREACHABLE();
}
}
#else
#error "Unsupported architecture"
#endif
public:
// Special handling for proxy methods. Proxy methods are instance methods so the
// 'this' object is the 1st argument. They also have the same frame layout as the
// kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
// 1st GPR.
static StackReference<mirror::Object>* GetProxyThisObjectReference(ArtMethod** sp)
REQUIRES_SHARED(Locks::mutator_lock_) {
CHECK((*sp)->IsProxyMethod());
CHECK_GT(kNumQuickGprArgs, 0u);
constexpr uint32_t kThisGprIndex = 0u; // 'this' is in the 1st GPR.
size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
GprIndexToGprOffset(kThisGprIndex);
uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address);
}
static ArtMethod* GetCallingMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK((*sp)->IsCalleeSaveMethod());
return GetCalleeSaveMethodCaller(sp, CalleeSaveType::kSaveRefsAndArgs);
}
static ArtMethod* GetOuterMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK((*sp)->IsCalleeSaveMethod());
uint8_t* previous_sp =
reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
return *reinterpret_cast<ArtMethod**>(previous_sp);
}
static uint32_t GetCallingDexPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK((*sp)->IsCalleeSaveMethod());
constexpr size_t callee_frame_size =
RuntimeCalleeSaveFrame::GetFrameSize(CalleeSaveType::kSaveRefsAndArgs);
ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
if (current_code->IsOptimized()) {
CodeInfo code_info = CodeInfo::DecodeInlineInfoOnly(current_code);
StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset);
DCHECK(stack_map.IsValid());
BitTableRange<InlineInfo> inline_infos = code_info.GetInlineInfosOf(stack_map);
if (!inline_infos.empty()) {
return inline_infos.back().GetDexPc();
} else {
return stack_map.GetDexPc();
}
} else {
return current_code->ToDexPc(caller_sp, outer_pc);
}
}
static uint8_t* GetCallingPcAddr(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK((*sp)->IsCalleeSaveMethod());
uint8_t* return_adress_spill =
reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_ReturnPcOffset;
return return_adress_spill;
}
// For the given quick ref and args quick frame, return the caller's PC.
static uintptr_t GetCallingPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
return *reinterpret_cast<uintptr_t*>(GetCallingPcAddr(sp));
}
QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) :
is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
+ sizeof(ArtMethod*)), // Skip ArtMethod*.
gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
"Number of Quick FPR arguments unexpected");
static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
"Double alignment unexpected");
// For register alignment, we want to assume that counters(fpr_double_index_) are even if the
// next register is even.
static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
"Number of Quick FPR arguments not even");
DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
}
virtual ~QuickArgumentVisitor() {}
virtual void Visit() = 0;
Primitive::Type GetParamPrimitiveType() const {
return cur_type_;
}
uint8_t* GetParamAddress() const {
if (!kQuickSoftFloatAbi) {
Primitive::Type type = GetParamPrimitiveType();
if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
}
} else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
}
return stack_args_ + (stack_index_ * kBytesStackArgLocation);
}
}
if (gpr_index_ < kNumQuickGprArgs) {
return gpr_args_ + GprIndexToGprOffset(gpr_index_);
}
return stack_args_ + (stack_index_ * kBytesStackArgLocation);
}
bool IsSplitLongOrDouble() const {
if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
(GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
return is_split_long_or_double_;
} else {
return false; // An optimization for when GPR and FPRs are 64bit.
}
}
bool IsParamAReference() const {
return GetParamPrimitiveType() == Primitive::kPrimNot;
}
bool IsParamALongOrDouble() const {
Primitive::Type type = GetParamPrimitiveType();
return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
}
uint64_t ReadSplitLongParam() const {
// The splitted long is always available through the stack.
return *reinterpret_cast<uint64_t*>(stack_args_
+ stack_index_ * kBytesStackArgLocation);
}
void IncGprIndex() {
gpr_index_++;
if (kGprFprLockstep) {
fpr_index_++;
}
}
void IncFprIndex() {
fpr_index_++;
if (kGprFprLockstep) {
gpr_index_++;
}
}
void VisitArguments() REQUIRES_SHARED(Locks::mutator_lock_) {
// (a) 'stack_args_' should point to the first method's argument
// (b) whatever the argument type it is, the 'stack_index_' should
// be moved forward along with every visiting.
gpr_index_ = 0;
fpr_index_ = 0;
if (kQuickDoubleRegAlignedFloatBackFilled) {
fpr_double_index_ = 0;
}
stack_index_ = 0;
if (!is_static_) { // Handle this.
cur_type_ = Primitive::kPrimNot;
is_split_long_or_double_ = false;
Visit();
stack_index_++;
if (kNumQuickGprArgs > 0) {
IncGprIndex();
}
}
for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
cur_type_ = Primitive::GetType(shorty_[shorty_index]);
switch (cur_type_) {
case Primitive::kPrimNot:
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
is_split_long_or_double_ = false;
Visit();
stack_index_++;
if (gpr_index_ < kNumQuickGprArgs) {
IncGprIndex();
}
break;
case Primitive::kPrimFloat:
is_split_long_or_double_ = false;
Visit();
stack_index_++;
if (kQuickSoftFloatAbi) {
if (gpr_index_ < kNumQuickGprArgs) {
IncGprIndex();
}
} else {
if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
IncFprIndex();
if (kQuickDoubleRegAlignedFloatBackFilled) {
// Double should not overlap with float.
// For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
// Float should not overlap with double.
if (fpr_index_ % 2 == 0) {
fpr_index_ = std::max(fpr_double_index_, fpr_index_);
}
} else if (kQuickSkipOddFpRegisters) {
IncFprIndex();
}
}
}
break;
case Primitive::kPrimDouble:
case Primitive::kPrimLong:
if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
if (cur_type_ == Primitive::kPrimLong &&
gpr_index_ == 0 &&
kAlignPairRegister) {
// Currently, this is only for ARM, where we align long parameters with
// even-numbered registers by skipping R1 and using R2 instead.
IncGprIndex();
}
is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
((gpr_index_ + 1) == kNumQuickGprArgs);
if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
// We don't want to split this. Pass over this register.
gpr_index_++;
is_split_long_or_double_ = false;
}
Visit();
if (kBytesStackArgLocation == 4) {
stack_index_+= 2;
} else {
CHECK_EQ(kBytesStackArgLocation, 8U);
stack_index_++;
}
if (gpr_index_ < kNumQuickGprArgs) {
IncGprIndex();
if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
if (gpr_index_ < kNumQuickGprArgs) {
IncGprIndex();
}
}
}
} else {
is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
Visit();
if (kBytesStackArgLocation == 4) {
stack_index_+= 2;
} else {
CHECK_EQ(kBytesStackArgLocation, 8U);
stack_index_++;
}
if (kQuickDoubleRegAlignedFloatBackFilled) {
if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
fpr_double_index_ += 2;
// Float should not overlap with double.
if (fpr_index_ % 2 == 0) {
fpr_index_ = std::max(fpr_double_index_, fpr_index_);
}
}
} else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
IncFprIndex();
if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
IncFprIndex();
}
}
}
}
break;
default:
LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
}
}
}
protected:
const bool is_static_;
const char* const shorty_;
const uint32_t shorty_len_;
private:
uint8_t* const gpr_args_; // Address of GPR arguments in callee save frame.
uint8_t* const fpr_args_; // Address of FPR arguments in callee save frame.
uint8_t* const stack_args_; // Address of stack arguments in caller's frame.
uint32_t gpr_index_; // Index into spilled GPRs.
// Index into spilled FPRs.
// In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
// holds a higher register number.
uint32_t fpr_index_;
// Index into spilled FPRs for aligned double.
// Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
// terms of singles, may be behind fpr_index.
uint32_t fpr_double_index_;
uint32_t stack_index_; // Index into arguments on the stack.
// The current type of argument during VisitArguments.
Primitive::Type cur_type_;
// Does a 64bit parameter straddle the register and stack arguments?
bool is_split_long_or_double_;
};
// Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
// allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
REQUIRES_SHARED(Locks::mutator_lock_) {
return QuickArgumentVisitor::GetProxyThisObjectReference(sp)->AsMirrorPtr();
}
// Visits arguments on the stack placing them into the shadow frame.
class BuildQuickShadowFrameVisitor final : public QuickArgumentVisitor {
public:
BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
private:
ShadowFrame* const sf_;
uint32_t cur_reg_;
DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
};
void BuildQuickShadowFrameVisitor::Visit() {
Primitive::Type type = GetParamPrimitiveType();
switch (type) {
case Primitive::kPrimLong: // Fall-through.
case Primitive::kPrimDouble:
if (IsSplitLongOrDouble()) {
sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
} else {
sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
}
++cur_reg_;
break;
case Primitive::kPrimNot: {
StackReference<mirror::Object>* stack_ref =
reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
}
break;
case Primitive::kPrimBoolean: // Fall-through.
case Primitive::kPrimByte: // Fall-through.
case Primitive::kPrimChar: // Fall-through.
case Primitive::kPrimShort: // Fall-through.
case Primitive::kPrimInt: // Fall-through.
case Primitive::kPrimFloat:
sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
break;
case Primitive::kPrimVoid:
LOG(FATAL) << "UNREACHABLE";
UNREACHABLE();
}
++cur_reg_;
}
// Don't inline. See b/65159206.
NO_INLINE
static void HandleDeoptimization(JValue* result,
ArtMethod* method,
ShadowFrame* deopt_frame,
ManagedStack* fragment)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Coming from partial-fragment deopt.
Thread* self = Thread::Current();
if (kIsDebugBuild) {
// Consistency-check: are the methods as expected? We check that the last shadow frame
// (the bottom of the call-stack) corresponds to the called method.
ShadowFrame* linked = deopt_frame;
while (linked->GetLink() != nullptr) {
linked = linked->GetLink();
}
CHECK_EQ(method, linked->GetMethod()) << method->PrettyMethod() << " "
<< ArtMethod::PrettyMethod(linked->GetMethod());
}
if (VLOG_IS_ON(deopt)) {
// Print out the stack to verify that it was a partial-fragment deopt.
LOG(INFO) << "Continue-ing from deopt. Stack is:";
QuickExceptionHandler::DumpFramesWithType(self, true);
}
ObjPtr<mirror::Throwable> pending_exception;
bool from_code = false;
DeoptimizationMethodType method_type;
self->PopDeoptimizationContext(/* out */ result,
/* out */ &pending_exception,
/* out */ &from_code,
/* out */ &method_type);
// Push a transition back into managed code onto the linked list in thread.
self->PushManagedStackFragment(fragment);
// Ensure that the stack is still in order.
if (kIsDebugBuild) {
class EntireStackVisitor : public StackVisitor {
public:
explicit EntireStackVisitor(Thread* self_in) REQUIRES_SHARED(Locks::mutator_lock_)
: StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
// Nothing to do here. In a debug build, ValidateFrame will do the work in the walking
// logic. Just always say we want to continue.
return true;
}
};
EntireStackVisitor esv(self);
esv.WalkStack();
}
// Restore the exception that was pending before deoptimization then interpret the
// deoptimized frames.
if (pending_exception != nullptr) {
self->SetException(pending_exception);
}
interpreter::EnterInterpreterFromDeoptimize(self,
deopt_frame,
result,
from_code,
DeoptimizationMethodType::kDefault);
}
extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Ensure we don't get thread suspension until the object arguments are safely in the shadow
// frame.
ScopedQuickEntrypointChecks sqec(self);
if (UNLIKELY(!method->IsInvokable())) {
method->ThrowInvocationTimeError();
return 0;
}
JValue tmp_value;
ShadowFrame* deopt_frame = self->PopStackedShadowFrame(
StackedShadowFrameType::kDeoptimizationShadowFrame, false);
ManagedStack fragment;
DCHECK(!method->IsNative()) << method->PrettyMethod();
uint32_t shorty_len = 0;
ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
DCHECK(non_proxy_method->GetCodeItem() != nullptr) << method->PrettyMethod();
CodeItemDataAccessor accessor(non_proxy_method->DexInstructionData());
const char* shorty = non_proxy_method->GetShorty(&shorty_len);
JValue result;
bool force_frame_pop = false;
if (UNLIKELY(deopt_frame != nullptr)) {
HandleDeoptimization(&result, method, deopt_frame, &fragment);
} else {
const char* old_cause = self->StartAssertNoThreadSuspension(
"Building interpreter shadow frame");
uint16_t num_regs = accessor.RegistersSize();
// No last shadow coming from quick.
ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
CREATE_SHADOW_FRAME(num_regs, /* link= */ nullptr, method, /* dex_pc= */ 0);
ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
size_t first_arg_reg = accessor.RegistersSize() - accessor.InsSize();
BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
shadow_frame, first_arg_reg);
shadow_frame_builder.VisitArguments();
// Push a transition back into managed code onto the linked list in thread.
self->PushManagedStackFragment(&fragment);
self->PushShadowFrame(shadow_frame);
self->EndAssertNoThreadSuspension(old_cause);
if (NeedsClinitCheckBeforeCall(method)) {
ObjPtr<mirror::Class> declaring_class = method->GetDeclaringClass();
if (UNLIKELY(!declaring_class->IsVisiblyInitialized())) {
// Ensure static method's class is initialized.
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_class(hs.NewHandle(declaring_class));
if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
DCHECK(Thread::Current()->IsExceptionPending()) << method->PrettyMethod();
self->PopManagedStackFragment(fragment);
return 0;
}
}
}
result = interpreter::EnterInterpreterFromEntryPoint(self, accessor, shadow_frame);
force_frame_pop = shadow_frame->GetForcePopFrame();
}
// Pop transition.
self->PopManagedStackFragment(fragment);
// Request a stack deoptimization if needed
ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp);
// If caller_pc is the instrumentation exit stub, the stub will check to see if deoptimization
// should be done and it knows the real return pc. NB If the upcall is null we don't need to do
// anything. This can happen during shutdown or early startup.
if (UNLIKELY(
caller != nullptr &&
caller_pc != reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()) &&
(self->IsForceInterpreter() || Dbg::IsForcedInterpreterNeededForUpcall(self, caller)))) {
if (!Runtime::Current()->IsAsyncDeoptimizeable(caller_pc)) {
LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
<< caller->PrettyMethod();
} else {
VLOG(deopt) << "Forcing deoptimization on return from method " << method->PrettyMethod()
<< " to " << caller->PrettyMethod()
<< (force_frame_pop ? " for frame-pop" : "");
DCHECK(!force_frame_pop || result.GetJ() == 0) << "Force frame pop should have no result.";
if (force_frame_pop && self->GetException() != nullptr) {
LOG(WARNING) << "Suppressing exception for instruction-retry: "
<< self->GetException()->Dump();
}
// Push the context of the deoptimization stack so we can restore the return value and the
// exception before executing the deoptimized frames.
self->PushDeoptimizationContext(
result,
shorty[0] == 'L' || shorty[0] == '[', /* class or array */
force_frame_pop ? nullptr : self->GetException(),
/* from_code= */ false,
DeoptimizationMethodType::kDefault);
// Set special exception to cause deoptimization.
self->SetException(Thread::GetDeoptimizationException());
}
}
// No need to restore the args since the method has already been run by the interpreter.
return result.GetJ();
}
// Visits arguments on the stack placing them into the args vector, Object* arguments are converted
// to jobjects.
class BuildQuickArgumentVisitor final : public QuickArgumentVisitor {
public:
BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
private:
ScopedObjectAccessUnchecked* const soa_;
std::vector<jvalue>* const args_;
DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
};
void BuildQuickArgumentVisitor::Visit() {
jvalue val;
Primitive::Type type = GetParamPrimitiveType();
switch (type) {
case Primitive::kPrimNot: {
StackReference<mirror::Object>* stack_ref =
reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
break;
}
case Primitive::kPrimLong: // Fall-through.
case Primitive::kPrimDouble:
if (IsSplitLongOrDouble()) {
val.j = ReadSplitLongParam();
} else {
val.j = *reinterpret_cast<jlong*>(GetParamAddress());
}
break;
case Primitive::kPrimBoolean: // Fall-through.
case Primitive::kPrimByte: // Fall-through.
case Primitive::kPrimChar: // Fall-through.
case Primitive::kPrimShort: // Fall-through.
case Primitive::kPrimInt: // Fall-through.
case Primitive::kPrimFloat:
val.i = *reinterpret_cast<jint*>(GetParamAddress());
break;
case Primitive::kPrimVoid:
LOG(FATAL) << "UNREACHABLE";
UNREACHABLE();
}
args_->push_back(val);
}
// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
// which is responsible for recording callee save registers. We explicitly place into jobjects the
// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
// field within the proxy object, which will box the primitive arguments and deal with error cases.
extern "C" uint64_t artQuickProxyInvokeHandler(
ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(proxy_method->IsProxyMethod()) << proxy_method->PrettyMethod();
DCHECK(receiver->GetClass()->IsProxyClass()) << proxy_method->PrettyMethod();
// Ensure we don't get thread suspension until the object arguments are safely in jobjects.
const char* old_cause =
self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
// Register the top of the managed stack, making stack crawlable.
DCHECK_EQ((*sp), proxy_method) << proxy_method->PrettyMethod();
self->VerifyStack();
// Start new JNI local reference state.
JNIEnvExt* env = self->GetJniEnv();
ScopedObjectAccessUnchecked soa(env);
ScopedJniEnvLocalRefState env_state(env);
// Create local ref. copies of proxy method and the receiver.
jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
// Placing arguments into args vector and remove the receiver.
ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
CHECK(!non_proxy_method->IsStatic()) << proxy_method->PrettyMethod() << " "
<< non_proxy_method->PrettyMethod();
std::vector<jvalue> args;
uint32_t shorty_len = 0;
const char* shorty = non_proxy_method->GetShorty(&shorty_len);
BuildQuickArgumentVisitor local_ref_visitor(
sp, /* is_static= */ false, shorty, shorty_len, &soa, &args);
local_ref_visitor.VisitArguments();
DCHECK_GT(args.size(), 0U) << proxy_method->PrettyMethod();
args.erase(args.begin());
// Convert proxy method into expected interface method.
ArtMethod* interface_method = proxy_method->FindOverriddenMethod(kRuntimePointerSize);
DCHECK(interface_method != nullptr) << proxy_method->PrettyMethod();
DCHECK(!interface_method->IsProxyMethod()) << interface_method->PrettyMethod();
self->EndAssertNoThreadSuspension(old_cause);
DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
DCHECK(!Runtime::Current()->IsActiveTransaction());
ObjPtr<mirror::Method> interface_reflect_method =
mirror::Method::CreateFromArtMethod<kRuntimePointerSize>(soa.Self(), interface_method);
if (interface_reflect_method == nullptr) {
soa.Self()->AssertPendingOOMException();
return 0;
}
jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_reflect_method);
// All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
// that performs allocations or instrumentation events.
instrumentation::Instrumentation* instr = Runtime::Current()->GetInstrumentation();
if (instr->HasMethodEntryListeners()) {
instr->MethodEnterEvent(soa.Self(),
soa.Decode<mirror::Object>(rcvr_jobj),
proxy_method,
0);
if (soa.Self()->IsExceptionPending()) {
instr->MethodUnwindEvent(self,
soa.Decode<mirror::Object>(rcvr_jobj),
proxy_method,
0);
return 0;
}
}
JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
if (soa.Self()->IsExceptionPending()) {
if (instr->HasMethodUnwindListeners()) {
instr->MethodUnwindEvent(self,
soa.Decode<mirror::Object>(rcvr_jobj),
proxy_method,
0);
}
} else if (instr->HasMethodExitListeners()) {
instr->MethodExitEvent(self,
soa.Decode<mirror::Object>(rcvr_jobj),
proxy_method,
0,
{},
result);
}
return result.GetJ();
}
// Visitor returning a reference argument at a given position in a Quick stack frame.
// NOTE: Only used for testing purposes.
class GetQuickReferenceArgumentAtVisitor final : public QuickArgumentVisitor {
public:
GetQuickReferenceArgumentAtVisitor(ArtMethod** sp,
const char* shorty,
uint32_t shorty_len,
size_t arg_pos)
: QuickArgumentVisitor(sp, /* is_static= */ false, shorty, shorty_len),
cur_pos_(0u),
arg_pos_(arg_pos),
ref_arg_(nullptr) {
CHECK_LT(arg_pos, shorty_len) << "Argument position greater than the number arguments";
}
void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override {
if (cur_pos_ == arg_pos_) {
Primitive::Type type = GetParamPrimitiveType();
CHECK_EQ(type, Primitive::kPrimNot) << "Argument at searched position is not a reference";
ref_arg_ = reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
}
++cur_pos_;
}
StackReference<mirror::Object>* GetReferenceArgument() {
return ref_arg_;
}
private:
// The position of the currently visited argument.
size_t cur_pos_;
// The position of the searched argument.
const size_t arg_pos_;
// The reference argument, if found.
StackReference<mirror::Object>* ref_arg_;
DISALLOW_COPY_AND_ASSIGN(GetQuickReferenceArgumentAtVisitor);
};
// Returning reference argument at position `arg_pos` in Quick stack frame at address `sp`.
// NOTE: Only used for testing purposes.
extern "C" StackReference<mirror::Object>* artQuickGetProxyReferenceArgumentAt(size_t arg_pos,
ArtMethod** sp)
REQUIRES_SHARED(Locks::mutator_lock_) {
ArtMethod* proxy_method = *sp;
ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
CHECK(!non_proxy_method->IsStatic())
<< proxy_method->PrettyMethod() << " " << non_proxy_method->PrettyMethod();
uint32_t shorty_len = 0;
const char* shorty = non_proxy_method->GetShorty(&shorty_len);
GetQuickReferenceArgumentAtVisitor ref_arg_visitor(sp, shorty, shorty_len, arg_pos);
ref_arg_visitor.VisitArguments();
StackReference<mirror::Object>* ref_arg = ref_arg_visitor.GetReferenceArgument();
return ref_arg;
}
// Visitor returning all the reference arguments in a Quick stack frame.
class GetQuickReferenceArgumentsVisitor final : public QuickArgumentVisitor {
public:
GetQuickReferenceArgumentsVisitor(ArtMethod** sp,
bool is_static,
const char* shorty,
uint32_t shorty_len)
: QuickArgumentVisitor(sp, is_static, shorty, shorty_len) {}
void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override {
Primitive::Type type = GetParamPrimitiveType();
if (type == Primitive::kPrimNot) {
StackReference<mirror::Object>* ref_arg =
reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
ref_args_.push_back(ref_arg);
}
}
std::vector<StackReference<mirror::Object>*> GetReferenceArguments() {
return ref_args_;
}
private:
// The reference arguments.
std::vector<StackReference<mirror::Object>*> ref_args_;
DISALLOW_COPY_AND_ASSIGN(GetQuickReferenceArgumentsVisitor);
};
// Returning all reference arguments in Quick stack frame at address `sp`.
std::vector<StackReference<mirror::Object>*> GetProxyReferenceArguments(ArtMethod** sp)
REQUIRES_SHARED(Locks::mutator_lock_) {
ArtMethod* proxy_method = *sp;
ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
CHECK(!non_proxy_method->IsStatic())
<< proxy_method->PrettyMethod() << " " << non_proxy_method->PrettyMethod();
uint32_t shorty_len = 0;
const char* shorty = non_proxy_method->GetShorty(&shorty_len);
GetQuickReferenceArgumentsVisitor ref_args_visitor(sp, /*is_static=*/ false, shorty, shorty_len);
ref_args_visitor.VisitArguments();
std::vector<StackReference<mirror::Object>*> ref_args = ref_args_visitor.GetReferenceArguments();
return ref_args;
}
// Read object references held in arguments from quick frames and place in a JNI local references,
// so they don't get garbage collected.
class RememberForGcArgumentVisitor final : public QuickArgumentVisitor {
public:
RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
private:
ScopedObjectAccessUnchecked* const soa_;
// References which we must update when exiting in case the GC moved the objects.
std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
};
void RememberForGcArgumentVisitor::Visit() {
if (IsParamAReference()) {
StackReference<mirror::Object>* stack_ref =
reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
jobject reference =
soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
references_.push_back(std::make_pair(reference, stack_ref));
}
}
void RememberForGcArgumentVisitor::FixupReferences() {
// Fixup any references which may have changed.
for (const auto& pair : references_) {
pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
soa_->Env()->DeleteLocalRef(pair.first);
}
}
extern "C" const void* artInstrumentationMethodEntryFromCode(ArtMethod* method,
mirror::Object* this_object,
Thread* self,
ArtMethod** sp)
REQUIRES_SHARED(Locks::mutator_lock_) {
const void* result;
// Instrumentation changes the stack. Thus, when exiting, the stack cannot be verified, so skip
// that part.
ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
DCHECK(!method->IsProxyMethod())
<< "Proxy method " << method->PrettyMethod()
<< " (declaring class: " << method->GetDeclaringClass()->PrettyClass() << ")"
<< " should not hit instrumentation entrypoint.";
if (instrumentation->IsDeoptimized(method)) {
result = GetQuickToInterpreterBridge();
} else {
// This will get the entry point either from the oat file, the JIT or the appropriate bridge
// method if none of those can be found.
result = instrumentation->GetCodeForInvoke(method);
jit::Jit* jit = Runtime::Current()->GetJit();
DCHECK_NE(result, GetQuickInstrumentationEntryPoint()) << method->PrettyMethod();
DCHECK(jit == nullptr ||
// Native methods come through here in Interpreter entrypoints. We might not have
// disabled jit-gc but that is fine since we won't return jit-code for native methods.
method->IsNative() ||
!jit->GetCodeCache()->GetGarbageCollectCode());
DCHECK(!method->IsNative() ||
jit == nullptr ||
!jit->GetCodeCache()->ContainsPc(result))
<< method->PrettyMethod() << " code will jump to possibly cleaned up jit code!";
}
bool interpreter_entry = (result == GetQuickToInterpreterBridge());
bool is_static = method->IsStatic();
uint32_t shorty_len;
const char* shorty =
method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty(&shorty_len);
ScopedObjectAccessUnchecked soa(self);
RememberForGcArgumentVisitor visitor(sp, is_static, shorty, shorty_len, &soa);
visitor.VisitArguments();
instrumentation->PushInstrumentationStackFrame(self,
is_static ? nullptr : this_object,
method,
reinterpret_cast<uintptr_t>(
QuickArgumentVisitor::GetCallingPcAddr(sp)),
QuickArgumentVisitor::GetCallingPc(sp),
interpreter_entry);
visitor.FixupReferences();
if (UNLIKELY(self->IsExceptionPending())) {
return nullptr;
}
CHECK(result != nullptr) << method->PrettyMethod();
return result;
}
extern "C" TwoWordReturn artInstrumentationMethodExitFromCode(Thread* self,
ArtMethod** sp,
uint64_t* gpr_result,
uint64_t* fpr_result)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK_EQ(reinterpret_cast<uintptr_t>(self), reinterpret_cast<uintptr_t>(Thread::Current()));
CHECK(gpr_result != nullptr);
CHECK(fpr_result != nullptr);
// Instrumentation exit stub must not be entered with a pending exception.
CHECK(!self->IsExceptionPending()) << "Enter instrumentation exit stub with pending exception "
<< self->GetException()->Dump();
// Compute address of return PC and check that it currently holds 0.
constexpr size_t return_pc_offset =
RuntimeCalleeSaveFrame::GetReturnPcOffset(CalleeSaveType::kSaveEverything);
uintptr_t* return_pc_addr = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(sp) +
return_pc_offset);
CHECK_EQ(*return_pc_addr, 0U);
// Pop the frame filling in the return pc. The low half of the return value is 0 when
// deoptimization shouldn't be performed with the high-half having the return address. When
// deoptimization should be performed the low half is zero and the high-half the address of the
// deoptimization entry point.
instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
TwoWordReturn return_or_deoptimize_pc = instrumentation->PopInstrumentationStackFrame(
self, return_pc_addr, gpr_result, fpr_result);
if (self->IsExceptionPending() || self->ObserveAsyncException()) {
return GetTwoWordFailureValue();
}
return return_or_deoptimize_pc;
}
static std::string DumpInstruction(ArtMethod* method, uint32_t dex_pc)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (dex_pc == static_cast<uint32_t>(-1)) {
CHECK(method == jni::DecodeArtMethod(WellKnownClasses::java_lang_String_charAt));
return "<native>";
} else {
CodeItemInstructionAccessor accessor = method->DexInstructions();
CHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
return accessor.InstructionAt(dex_pc).DumpString(method->GetDexFile());
}
}
static void DumpB74410240ClassData(ObjPtr<mirror::Class> klass)
REQUIRES_SHARED(Locks::mutator_lock_) {
std::string storage;
const char* descriptor = klass->GetDescriptor(&storage);
LOG(FATAL_WITHOUT_ABORT) << " " << DescribeLoaders(klass->GetClassLoader(), descriptor);
const OatDexFile* oat_dex_file = klass->GetDexFile().GetOatDexFile();
if (oat_dex_file != nullptr) {
const OatFile* oat_file = oat_dex_file->GetOatFile();
const char* dex2oat_cmdline =
oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kDex2OatCmdLineKey);
LOG(FATAL_WITHOUT_ABORT) << " OatFile: " << oat_file->GetLocation()
<< "; " << (dex2oat_cmdline != nullptr ? dex2oat_cmdline : "<not recorded>");
}
}
static void DumpB74410240DebugData(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
// Mimick the search for the caller and dump some data while doing so.
LOG(FATAL_WITHOUT_ABORT) << "Dumping debugging data, please attach a bugreport to b/74410240.";
constexpr CalleeSaveType type = CalleeSaveType::kSaveRefsAndArgs;
CHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(type));
constexpr size_t callee_frame_size = RuntimeCalleeSaveFrame::GetFrameSize(type);
auto** caller_sp = reinterpret_cast<ArtMethod**>(
reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
constexpr size_t callee_return_pc_offset = RuntimeCalleeSaveFrame::GetReturnPcOffset(type);
uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>(
(reinterpret_cast<uint8_t*>(sp) + callee_return_pc_offset));
ArtMethod* outer_method = *caller_sp;
if (UNLIKELY(caller_pc == reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()))) {
LOG(FATAL_WITHOUT_ABORT) << "Method: " << outer_method->PrettyMethod()
<< " native pc: " << caller_pc << " Instrumented!";
return;
}
const OatQuickMethodHeader* current_code = outer_method->GetOatQuickMethodHeader(caller_pc);
CHECK(current_code != nullptr);
CHECK(current_code->IsOptimized());
uintptr_t native_pc_offset = current_code->NativeQuickPcOffset(caller_pc);
CodeInfo code_info(current_code);
StackMap stack_map = code_info.GetStackMapForNativePcOffset(native_pc_offset);
CHECK(stack_map.IsValid());
uint32_t dex_pc = stack_map.GetDexPc();
// Log the outer method and its associated dex file and class table pointer which can be used
// to find out if the inlined methods were defined by other dex file(s) or class loader(s).
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
LOG(FATAL_WITHOUT_ABORT) << "Outer: " << outer_method->PrettyMethod()
<< " native pc: " << caller_pc
<< " dex pc: " << dex_pc
<< " dex file: " << outer_method->GetDexFile()->GetLocation()
<< " class table: " << class_linker->ClassTableForClassLoader(outer_method->GetClassLoader());
DumpB74410240ClassData(outer_method->GetDeclaringClass());
LOG(FATAL_WITHOUT_ABORT) << " instruction: " << DumpInstruction(outer_method, dex_pc);
ArtMethod* caller = outer_method;
BitTableRange<InlineInfo> inline_infos = code_info.GetInlineInfosOf(stack_map);
for (InlineInfo inline_info : inline_infos) {
const char* tag = "";
dex_pc = inline_info.GetDexPc();
if (inline_info.EncodesArtMethod()) {
tag = "encoded ";
caller = inline_info.GetArtMethod();
} else {
uint32_t method_index = code_info.GetMethodIndexOf(inline_info);
if (dex_pc == static_cast<uint32_t>(-1)) {
tag = "special ";
CHECK(inline_info.Equals(inline_infos.back()));
caller = jni::DecodeArtMethod(WellKnownClasses::java_lang_String_charAt);
CHECK_EQ(caller->GetDexMethodIndex(), method_index);
} else {
ObjPtr<mirror::DexCache> dex_cache = caller->GetDexCache();
ObjPtr<mirror::ClassLoader> class_loader = caller->GetClassLoader();
caller = class_linker->LookupResolvedMethod(method_index, dex_cache, class_loader);
CHECK(caller != nullptr);
}
}
LOG(FATAL_WITHOUT_ABORT) << "InlineInfo #" << inline_info.Row()
<< ": " << tag << caller->PrettyMethod()
<< " dex pc: " << dex_pc
<< " dex file: " << caller->GetDexFile()->GetLocation()
<< " class table: "
<< class_linker->ClassTableForClassLoader(caller->GetClassLoader());
DumpB74410240ClassData(caller->GetDeclaringClass());
LOG(FATAL_WITHOUT_ABORT) << " instruction: " << DumpInstruction(caller, dex_pc);
}
}
// Lazily resolve a method for quick. Called by stub code.
extern "C" const void* artQuickResolutionTrampoline(
ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
REQUIRES_SHARED(Locks::mutator_lock_) {
// The resolution trampoline stashes the resolved method into the callee-save frame to transport
// it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
// does not have the same stack layout as the callee-save method).
ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
// Start new JNI local reference state
JNIEnvExt* env = self->GetJniEnv();
ScopedObjectAccessUnchecked soa(env);
ScopedJniEnvLocalRefState env_state(env);
const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
// Compute details about the called method (avoid GCs)
ClassLinker* linker = Runtime::Current()->GetClassLinker();
InvokeType invoke_type;
MethodReference called_method(nullptr, 0);
const bool called_method_known_on_entry = !called->IsRuntimeMethod();
ArtMethod* caller = nullptr;
if (!called_method_known_on_entry) {
caller = QuickArgumentVisitor::GetCallingMethod(sp);
called_method.dex_file = caller->GetDexFile();
{
uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
CodeItemInstructionAccessor accessor(caller->DexInstructions());
CHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
const Instruction& instr = accessor.InstructionAt(dex_pc);
Instruction::Code instr_code = instr.Opcode();
bool is_range;
switch (instr_code) {
case Instruction::INVOKE_DIRECT:
invoke_type = kDirect;
is_range = false;
break;
case Instruction::INVOKE_DIRECT_RANGE:
invoke_type = kDirect;
is_range = true;
break;
case Instruction::INVOKE_STATIC:
invoke_type = kStatic;
is_range = false;
break;
case Instruction::INVOKE_STATIC_RANGE:
invoke_type = kStatic;
is_range = true;
break;
case Instruction::INVOKE_SUPER:
invoke_type = kSuper;
is_range = false;
break;
case Instruction::INVOKE_SUPER_RANGE:
invoke_type = kSuper;
is_range = true;
break;
case Instruction::INVOKE_VIRTUAL:
invoke_type = kVirtual;
is_range = false;
break;
case Instruction::INVOKE_VIRTUAL_RANGE:
invoke_type = kVirtual;
is_range = true;
break;
case Instruction::INVOKE_INTERFACE:
invoke_type = kInterface;
is_range = false;
break;
case Instruction::INVOKE_INTERFACE_RANGE:
invoke_type = kInterface;
is_range = true;
break;
default:
DumpB74410240DebugData(sp);
LOG(FATAL) << "Unexpected call into trampoline: " << instr.DumpString(nullptr);
UNREACHABLE();
}
called_method.index = (is_range) ? instr.VRegB_3rc() : instr.VRegB_35c();
VLOG(dex) << "Accessed dex file for invoke " << invoke_type << " "
<< called_method.index;
}
} else {
invoke_type = kStatic;
called_method.dex_file = called->GetDexFile();
called_method.index = called->GetDexMethodIndex();
}
uint32_t shorty_len;
const char* shorty =
called_method.dex_file->GetMethodShorty(called_method.GetMethodId(), &shorty_len);
RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
visitor.VisitArguments();
self->EndAssertNoThreadSuspension(old_cause);
const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
// Resolve method filling in dex cache.
if (!called_method_known_on_entry) {
StackHandleScope<1> hs(self);
mirror::Object* fake_receiver = nullptr;
HandleWrapper<mirror::Object> h_receiver(
hs.NewHandleWrapper(virtual_or_interface ? &receiver : &fake_receiver));
DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
called = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
self, called_method.index, caller, invoke_type);
}
const void* code = nullptr;
if (LIKELY(!self->IsExceptionPending())) {
// Incompatible class change should have been handled in resolve method.
CHECK(!called->CheckIncompatibleClassChange(invoke_type))
<< called->PrettyMethod() << " " << invoke_type;
if (virtual_or_interface || invoke_type == kSuper) {
// Refine called method based on receiver for kVirtual/kInterface, and
// caller for kSuper.
ArtMethod* orig_called = called;
if (invoke_type == kVirtual) {
CHECK(receiver != nullptr) << invoke_type;
called = receiver->GetClass()->FindVirtualMethodForVirtual(called, kRuntimePointerSize);
} else if (invoke_type == kInterface) {
CHECK(receiver != nullptr) << invoke_type;
called = receiver->GetClass()->FindVirtualMethodForInterface(called, kRuntimePointerSize);
} else {
DCHECK_EQ(invoke_type, kSuper);
CHECK(caller != nullptr) << invoke_type;
ObjPtr<mirror::Class> ref_class = linker->LookupResolvedType(
caller->GetDexFile()->GetMethodId(called_method.index).class_idx_, caller);
if (ref_class->IsInterface()) {
called = ref_class->FindVirtualMethodForInterfaceSuper(called, kRuntimePointerSize);
} else {
called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
called->GetMethodIndex(), kRuntimePointerSize);
}
}
CHECK(called != nullptr) << orig_called->PrettyMethod() << " "
<< mirror::Object::PrettyTypeOf(receiver) << " "
<< invoke_type << " " << orig_called->GetVtableIndex();
}
// Now that we know the actual target, update .bss entry in oat file, if
// any.
if (!called_method_known_on_entry) {
// We only put non copied methods in the BSS. Putting a copy can lead to an
// odd situation where the ArtMethod being executed is unrelated to the
// receiver of the method.
called = called->GetCanonicalMethod();
if (invoke_type == kSuper || invoke_type == kInterface || invoke_type == kVirtual) {
if (called->GetDexFile() == called_method.dex_file) {
called_method.index = called->GetDexMethodIndex();
} else {
called_method.index = called->FindDexMethodIndexInOtherDexFile(
*called_method.dex_file, called_method.index);
DCHECK_NE(called_method.index, dex::kDexNoIndex);
}
}
MaybeUpdateBssMethodEntry(called, called_method);
}
// Static invokes need class initialization check but instance invokes can proceed even if
// the class is erroneous, i.e. in the edge case of escaping instances of erroneous classes.
bool success = true;
ObjPtr<mirror::Class> called_class = called->GetDeclaringClass();
if (NeedsClinitCheckBeforeCall(called) && !called_class->IsVisiblyInitialized()) {
// Ensure that the called method's class is initialized.
StackHandleScope<1> hs(soa.Self());
HandleWrapperObjPtr<mirror::Class> h_called_class(hs.NewHandleWrapper(&called_class));
success = linker->EnsureInitialized(soa.Self(), h_called_class, true, true);
}
if (success) {
code = called->GetEntryPointFromQuickCompiledCode();
if (linker->IsQuickResolutionStub(code)) {
DCHECK_EQ(invoke_type, kStatic);
// Go to JIT or oat and grab code.
code = linker->GetQuickOatCodeFor(called);
}
if (linker->ShouldUseInterpreterEntrypoint(called, code)) {
code = GetQuickToInterpreterBridge();
}
} else {
DCHECK(called_class->IsErroneous());
DCHECK(self->IsExceptionPending());
}
}
CHECK_EQ(code == nullptr, self->IsExceptionPending());
// Fixup any locally saved objects may have moved during a GC.
visitor.FixupReferences();
// Place called method in callee-save frame to be placed as first argument to quick method.
*sp = called;
return code;
}
/*
* This class uses a couple of observations to unite the different calling conventions through
* a few constants.
*
* 1) Number of registers used for passing is normally even, so counting down has no penalty for
* possible alignment.
* 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
* types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
* when we have to split things
* 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
* and we can use Int handling directly.
* 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
* necessary when widening. Also, widening of Ints will take place implicitly, and the
* extension should be compatible with Aarch64, which mandates copying the available bits
* into LSB and leaving the rest unspecified.
* 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
* the stack.
* 6) There is only little endian.
*
*
* Actual work is supposed to be done in a delegate of the template type. The interface is as
* follows:
*
* void PushGpr(uintptr_t): Add a value for the next GPR
*
* void PushFpr4(float): Add a value for the next FPR of size 32b. Is only called if we need
* padding, that is, think the architecture is 32b and aligns 64b.
*
* void PushFpr8(uint64_t): Push a double. We _will_ call this on 32b, it's the callee's job to
* split this if necessary. The current state will have aligned, if
* necessary.
*
* void PushStack(uintptr_t): Push a value to the stack.
*/
template<class T> class BuildNativeCallFrameStateMachine {
public:
#if defined(__arm__)
static constexpr bool kNativeSoftFloatAbi = true;
static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs, r0-r3
static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs.
static constexpr size_t kRegistersNeededForLong = 2;
static constexpr size_t kRegistersNeededForDouble = 2;
static constexpr bool kMultiRegistersAligned = true;
static constexpr bool kMultiFPRegistersWidened = false;
static constexpr bool kMultiGPRegistersWidened = false;
static constexpr bool kAlignLongOnStack = true;
static constexpr bool kAlignDoubleOnStack = true;
#elif defined(__aarch64__)
static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI.
static constexpr size_t kNumNativeGprArgs = 8; // 8 arguments passed in GPRs.
static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs.
static constexpr size_t kRegistersNeededForLong = 1;
static constexpr size_t kRegistersNeededForDouble = 1;
static constexpr bool kMultiRegistersAligned = false;
static constexpr bool kMultiFPRegistersWidened = false;
static constexpr bool kMultiGPRegistersWidened = false;
static constexpr bool kAlignLongOnStack = false;
static constexpr bool kAlignDoubleOnStack = false;
#elif defined(__i386__)
static constexpr bool kNativeSoftFloatAbi = false; // Not using int registers for fp
static constexpr size_t kNumNativeGprArgs = 0; // 0 arguments passed in GPRs.
static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs.
static constexpr size_t kRegistersNeededForLong = 2;
static constexpr size_t kRegistersNeededForDouble = 2;
static constexpr bool kMultiRegistersAligned = false; // x86 not using regs, anyways
static constexpr bool kMultiFPRegistersWidened = false;
static constexpr bool kMultiGPRegistersWidened = false;
static constexpr bool kAlignLongOnStack = false;
static constexpr bool kAlignDoubleOnStack = false;
#elif defined(__x86_64__)
static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI.
static constexpr size_t kNumNativeGprArgs = 6; // 6 arguments passed in GPRs.
static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs.
static constexpr size_t kRegistersNeededForLong = 1;
static constexpr size_t kRegistersNeededForDouble = 1;
static constexpr bool kMultiRegistersAligned = false;
static constexpr bool kMultiFPRegistersWidened = false;
static constexpr bool kMultiGPRegistersWidened = false;
static constexpr bool kAlignLongOnStack = false;
static constexpr bool kAlignDoubleOnStack = false;
#else
#error "Unsupported architecture"
#endif
public:
explicit BuildNativeCallFrameStateMachine(T* delegate)
: gpr_index_(kNumNativeGprArgs),
fpr_index_(kNumNativeFprArgs),
stack_entries_(0),
delegate_(delegate) {
// For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
// the next register is even; counting down is just to make the compiler happy...
static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
}
virtual ~BuildNativeCallFrameStateMachine() {}
bool HavePointerGpr() const {
return gpr_index_ > 0;
}
void AdvancePointer(const void* val) {
if (HavePointerGpr()) {
gpr_index_--;
PushGpr(reinterpret_cast<uintptr_t>(val));
} else {
stack_entries_++; // TODO: have a field for pointer length as multiple of 32b
PushStack(reinterpret_cast<uintptr_t>(val));
gpr_index_ = 0;
}
}
bool HaveIntGpr() const {
return gpr_index_ > 0;
}
void AdvanceInt(uint32_t val) {
if (HaveIntGpr()) {
gpr_index_--;
if (kMultiGPRegistersWidened) {
DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
} else {
PushGpr(val);
}
} else {
stack_entries_++;
if (kMultiGPRegistersWidened) {
DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
} else {
PushStack(val);
}
gpr_index_ = 0;
}
}
bool HaveLongGpr() const {
return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
}
bool LongGprNeedsPadding() const {
return kRegistersNeededForLong > 1 && // only pad when using multiple registers
kAlignLongOnStack && // and when it needs alignment
(gpr_index_ & 1) == 1; // counter is odd, see constructor
}
bool LongStackNeedsPadding() const {
return kRegistersNeededForLong > 1 && // only pad when using multiple registers
kAlignLongOnStack && // and when it needs 8B alignment
(stack_entries_ & 1) == 1; // counter is odd
}
void AdvanceLong(uint64_t val) {
if (HaveLongGpr()) {
if (LongGprNeedsPadding()) {
PushGpr(0);
gpr_index_--;
}
if (kRegistersNeededForLong == 1) {
PushGpr(static_cast<uintptr_t>(val));
} else {
PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
}
gpr_index_ -= kRegistersNeededForLong;
} else {
if (LongStackNeedsPadding()) {
PushStack(0);
stack_entries_++;
}
if (kRegistersNeededForLong == 1) {
PushStack(static_cast<uintptr_t>(val));
stack_entries_++;
} else {
PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
stack_entries_ += 2;
}
gpr_index_ = 0;
}
}
bool HaveFloatFpr() const {
return fpr_index_ > 0;
}
void AdvanceFloat(float val) {
if (kNativeSoftFloatAbi) {
AdvanceInt(bit_cast<uint32_t, float>(val));
} else {
if (HaveFloatFpr()) {
fpr_index_--;
if (kRegistersNeededForDouble == 1) {
if (kMultiFPRegistersWidened) {
PushFpr8(bit_cast<uint64_t, double>(val));
} else {
// No widening, just use the bits.
PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
}
} else {
PushFpr4(val);
}
} else {
stack_entries_++;
if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
// Need to widen before storing: Note the "double" in the template instantiation.
// Note: We need to jump through those hoops to make the compiler happy.
DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
} else {
PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
}
fpr_index_ = 0;
}
}
}
bool HaveDoubleFpr() const {
return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
}
bool DoubleFprNeedsPadding() const {
return kRegistersNeededForDouble > 1 && // only pad when using multiple registers
kAlignDoubleOnStack && // and when it needs alignment
(fpr_index_ & 1) == 1; // counter is odd, see constructor
}
bool DoubleStackNeedsPadding() const {
return kRegistersNeededForDouble > 1 && // only pad when using multiple registers
kAlignDoubleOnStack && // and when it needs 8B alignment
(stack_entries_ & 1) == 1; // counter is odd
}
void AdvanceDouble(uint64_t val) {
if (kNativeSoftFloatAbi) {
AdvanceLong(val);
} else {
if (HaveDoubleFpr()) {
if (DoubleFprNeedsPadding()) {
PushFpr4(0);
fpr_index_--;
}
PushFpr8(val);
fpr_index_ -= kRegistersNeededForDouble;
} else {
if (DoubleStackNeedsPadding()) {
PushStack(0);
stack_entries_++;
}
if (kRegistersNeededForDouble == 1) {
PushStack(static_cast<uintptr_t>(val));
stack_entries_++;
} else {
PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
stack_entries_ += 2;
}
fpr_index_ = 0;
}
}
}
uint32_t GetStackEntries() const {
return stack_entries_;
}
uint32_t GetNumberOfUsedGprs() const {
return kNumNativeGprArgs - gpr_index_;
}
uint32_t GetNumberOfUsedFprs() const {
return kNumNativeFprArgs - fpr_index_;
}
private:
void PushGpr(uintptr_t val) {
delegate_->PushGpr(val);
}
void PushFpr4(float val) {
delegate_->PushFpr4(val);
}
void PushFpr8(uint64_t val) {
delegate_->PushFpr8(val);
}
void PushStack(uintptr_t val) {
delegate_->PushStack(val);
}
uint32_t gpr_index_; // Number of free GPRs
uint32_t fpr_index_; // Number of free FPRs
uint32_t stack_entries_; // Stack entries are in multiples of 32b, as floats are usually not
// extended
T* const delegate_; // What Push implementation gets called
};
// Computes the sizes of register stacks and call stack area. Handling of references can be extended
// in subclasses.
//
// To handle native pointers, use "L" in the shorty for an object reference, which simulates
// them with handles.
class ComputeNativeCallFrameSize {
public:
ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
virtual ~ComputeNativeCallFrameSize() {}
uint32_t GetStackSize() const {
return num_stack_entries_ * sizeof(uintptr_t);
}
uint8_t* LayoutStackArgs(uint8_t* sp8) const {
sp8 -= GetStackSize();
// Align by kStackAlignment; it is at least as strict as native stack alignment.
sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
return sp8;
}
virtual void WalkHeader(
BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED)
REQUIRES_SHARED(Locks::mutator_lock_) {
}
void Walk(const char* shorty, uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) {
BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
WalkHeader(&sm);
for (uint32_t i = 1; i < shorty_len; ++i) {
Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
switch (cur_type_) {
case Primitive::kPrimNot:
sm.AdvancePointer(nullptr);
break;
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
sm.AdvanceInt(0);
break;
case Primitive::kPrimFloat:
sm.AdvanceFloat(0);
break;
case Primitive::kPrimDouble:
sm.AdvanceDouble(0);
break;
case Primitive::kPrimLong:
sm.AdvanceLong(0);
break;
default:
LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
UNREACHABLE();
}
}
num_stack_entries_ = sm.GetStackEntries();
}
void PushGpr(uintptr_t /* val */) {
// not optimizing registers, yet
}
void PushFpr4(float /* val */) {
// not optimizing registers, yet
}
void PushFpr8(uint64_t /* val */) {
// not optimizing registers, yet
}
void PushStack(uintptr_t /* val */) {
// counting is already done in the superclass
}
protected:
uint32_t num_stack_entries_;
};
class ComputeGenericJniFrameSize final : public ComputeNativeCallFrameSize {
public:
explicit ComputeGenericJniFrameSize(bool critical_native)
: critical_native_(critical_native) {}
uintptr_t* ComputeLayout(ArtMethod** managed_sp, const char* shorty, uint32_t shorty_len)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
Walk(shorty, shorty_len);
// Add space for cookie.
DCHECK_ALIGNED(managed_sp, sizeof(uintptr_t));
static_assert(sizeof(uintptr_t) >= sizeof(IRTSegmentState));
uint8_t* sp8 = reinterpret_cast<uint8_t*>(managed_sp) - sizeof(uintptr_t);
// Layout stack arguments.
sp8 = LayoutStackArgs(sp8);
// Return the new bottom.
DCHECK_ALIGNED(sp8, sizeof(uintptr_t));
return reinterpret_cast<uintptr_t*>(sp8);
}
static uintptr_t* GetStartGprRegs(uintptr_t* reserved_area) {
return reserved_area;
}
static uint32_t* GetStartFprRegs(uintptr_t* reserved_area) {
constexpr size_t num_gprs =
BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
return reinterpret_cast<uint32_t*>(GetStartGprRegs(reserved_area) + num_gprs);
}
static uintptr_t* GetHiddenArgSlot(uintptr_t* reserved_area) {
// Note: `num_fprs` is 0 on architectures where sizeof(uintptr_t) does not match the
// FP register size (it is actually 0 on all supported 32-bit architectures).
constexpr size_t num_fprs =
BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
return reinterpret_cast<uintptr_t*>(GetStartFprRegs(reserved_area)) + num_fprs;
}
static uintptr_t* GetOutArgsSpSlot(uintptr_t* reserved_area) {
return GetHiddenArgSlot(reserved_area) + 1;
}
// Add JNIEnv* and jobj/jclass before the shorty-derived elements.
void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) override
REQUIRES_SHARED(Locks::mutator_lock_);
private:
const bool critical_native_;
};
void ComputeGenericJniFrameSize::WalkHeader(
BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
// First 2 parameters are always excluded for @CriticalNative.
if (UNLIKELY(critical_native_)) {
return;
}
// JNIEnv
sm->AdvancePointer(nullptr);
// Class object or this as first argument
sm->AdvancePointer(nullptr);
}
// Class to push values to three separate regions. Used to fill the native call part. Adheres to
// the template requirements of BuildGenericJniFrameStateMachine.
class FillNativeCall {
public:
FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
virtual ~FillNativeCall() {}
void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
cur_gpr_reg_ = gpr_regs;
cur_fpr_reg_ = fpr_regs;
cur_stack_arg_ = stack_args;
}
void PushGpr(uintptr_t val) {
*cur_gpr_reg_ = val;
cur_gpr_reg_++;
}
void PushFpr4(float val) {
*cur_fpr_reg_ = val;
cur_fpr_reg_++;
}
void PushFpr8(uint64_t val) {
uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
*tmp = val;
cur_fpr_reg_ += 2;
}
void PushStack(uintptr_t val) {
*cur_stack_arg_ = val;
cur_stack_arg_++;
}
private:
uintptr_t* cur_gpr_reg_;
uint32_t* cur_fpr_reg_;
uintptr_t* cur_stack_arg_;
};
// Visits arguments on the stack placing them into a region lower down the stack for the benefit
// of transitioning into native code.
class BuildGenericJniFrameVisitor final : public QuickArgumentVisitor {
public:
BuildGenericJniFrameVisitor(Thread* self,
bool is_static,
bool critical_native,
const char* shorty,
uint32_t shorty_len,
ArtMethod** managed_sp,
uintptr_t* reserved_area)
: QuickArgumentVisitor(managed_sp, is_static, shorty, shorty_len),
jni_call_(nullptr, nullptr, nullptr, critical_native),
sm_(&jni_call_),
current_vreg_(nullptr) {
DCHECK_ALIGNED(managed_sp, kStackAlignment);
DCHECK_ALIGNED(reserved_area, sizeof(uintptr_t));
ComputeGenericJniFrameSize fsc(critical_native);
uintptr_t* out_args_sp = fsc.ComputeLayout(managed_sp, shorty, shorty_len);
// Store hidden argument for @CriticalNative.
uintptr_t* hidden_arg_slot = fsc.GetHiddenArgSlot(reserved_area);
constexpr uintptr_t kGenericJniTag = 1u;
ArtMethod* method = *managed_sp;
*hidden_arg_slot = critical_native ? (reinterpret_cast<uintptr_t>(method) | kGenericJniTag)
: 0xebad6a89u; // Bad value.
// Set out args SP.
uintptr_t* out_args_sp_slot = fsc.GetOutArgsSpSlot(reserved_area);
*out_args_sp_slot = reinterpret_cast<uintptr_t>(out_args_sp);
// Prepare vreg pointer for spilling references.
static constexpr size_t frame_size =
RuntimeCalleeSaveFrame::GetFrameSize(CalleeSaveType::kSaveRefsAndArgs);
current_vreg_ = reinterpret_cast<uint32_t*>(
reinterpret_cast<uint8_t*>(managed_sp) + frame_size + sizeof(ArtMethod*));
jni_call_.Reset(fsc.GetStartGprRegs(reserved_area),
fsc.GetStartFprRegs(reserved_area),
out_args_sp);
// First 2 parameters are always excluded for CriticalNative methods.
if (LIKELY(!critical_native)) {
// jni environment is always first argument
sm_.AdvancePointer(self->GetJniEnv());
if (is_static) {
// The `jclass` is a pointer to the method's declaring class.
// The declaring class must be marked.
auto* declaring_class = reinterpret_cast<mirror::CompressedReference<mirror::Class>*>(
method->GetDeclaringClassAddressWithoutBarrier());
if (kUseReadBarrier) {
ReadBarrierJni(declaring_class, self);
}
sm_.AdvancePointer(declaring_class);
} // else "this" reference is already handled by QuickArgumentVisitor.
}
}
void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
private:
// A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
class FillJniCall final : public FillNativeCall {
public:
FillJniCall(uintptr_t* gpr_regs,
uint32_t* fpr_regs,
uintptr_t* stack_args,
bool critical_native)
: FillNativeCall(gpr_regs, fpr_regs, stack_args),
cur_entry_(0),
critical_native_(critical_native) {}
void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
cur_entry_ = 0U;
}
bool CriticalNative() const {
return critical_native_;
}
private:
size_t cur_entry_;
const bool critical_native_;
};
FillJniCall jni_call_;
BuildNativeCallFrameStateMachine<FillJniCall> sm_;
// Pointer to the current vreg in caller's reserved out vreg area.
// Used for spilling reference arguments.
uint32_t* current_vreg_;
DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
};
void BuildGenericJniFrameVisitor::Visit() {
Primitive::Type type = GetParamPrimitiveType();
switch (type) {
case Primitive::kPrimLong: {
jlong long_arg;
if (IsSplitLongOrDouble()) {
long_arg = ReadSplitLongParam();
} else {
long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
}
sm_.AdvanceLong(long_arg);
current_vreg_ += 2u;
break;
}
case Primitive::kPrimDouble: {
uint64_t double_arg;
if (IsSplitLongOrDouble()) {
// Read into union so that we don't case to a double.
double_arg = ReadSplitLongParam();
} else {
double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
}
sm_.AdvanceDouble(double_arg);
current_vreg_ += 2u;
break;
}
case Primitive::kPrimNot: {
mirror::Object* obj =
reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress())->AsMirrorPtr();
StackReference<mirror::Object>* spill_ref =
reinterpret_cast<StackReference<mirror::Object>*>(current_vreg_);
spill_ref->Assign(obj);
sm_.AdvancePointer(obj != nullptr ? spill_ref : nullptr);
current_vreg_ += 1u;
break;
}
case Primitive::kPrimFloat:
sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
current_vreg_ += 1u;
break;
case Primitive::kPrimBoolean: // Fall-through.
case Primitive::kPrimByte: // Fall-through.
case Primitive::kPrimChar: // Fall-through.
case Primitive::kPrimShort: // Fall-through.
case Primitive::kPrimInt: // Fall-through.
sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
current_vreg_ += 1u;
break;
case Primitive::kPrimVoid:
LOG(FATAL) << "UNREACHABLE";
UNREACHABLE();
}
}
/*
* Initializes the reserved area assumed to be directly below `managed_sp` for a native call:
*
* On entry, the stack has a standard callee-save frame above `managed_sp`,
* and the reserved area below it. Starting below `managed_sp`, we reserve space
* for local reference cookie (not present for @CriticalNative), HandleScope
* (not present for @CriticalNative) and stack args (if args do not fit into
* registers). At the bottom of the reserved area, there is space for register
* arguments, hidden arg (for @CriticalNative) and the SP for the native call
* (i.e. pointer to the stack args area), which the calling stub shall load
* to perform the native call. We fill all these fields, perform class init
* check (for static methods) and/or locking (for synchronized methods) if
* needed and return to the stub.
*
* The return value is the pointer to the native code, null on failure.
*/
extern "C" const void* artQuickGenericJniTrampoline(Thread* self,
ArtMethod** managed_sp,
uintptr_t* reserved_area)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Note: We cannot walk the stack properly until fixed up below.
ArtMethod* called = *managed_sp;
DCHECK(called->IsNative()) << called->PrettyMethod(true);
Runtime* runtime = Runtime::Current();
uint32_t shorty_len = 0;
const char* shorty = called->GetShorty(&shorty_len);
bool critical_native = called->IsCriticalNative();
bool fast_native = called->IsFastNative();
bool normal_native = !critical_native && !fast_native;
// Run the visitor and update sp.
BuildGenericJniFrameVisitor visitor(self,
called->IsStatic(),
critical_native,
shorty,
shorty_len,
managed_sp,
reserved_area);
{
ScopedAssertNoThreadSuspension sants(__FUNCTION__);
visitor.VisitArguments();
}
// Fix up managed-stack things in Thread. After this we can walk the stack.
self->SetTopOfStackTagged(managed_sp);
self->VerifyStack();
// We can now walk the stack if needed by JIT GC from MethodEntered() for JIT-on-first-use.
jit::Jit* jit = runtime->GetJit();
if (jit != nullptr) {
jit->MethodEntered(self, called);
}
// We can set the entrypoint of a native method to generic JNI even when the
// class hasn't been initialized, so we need to do the initialization check
// before invoking the native code.
if (NeedsClinitCheckBeforeCall(called)) {
ObjPtr<mirror::Class> declaring_class = called->GetDeclaringClass();
if (UNLIKELY(!declaring_class->IsVisiblyInitialized())) {
// Ensure static method's class is initialized.
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_class(hs.NewHandle(declaring_class));
if (!runtime->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
DCHECK(Thread::Current()->IsExceptionPending()) << called->PrettyMethod();
return nullptr; // Report error.
}
}
}
uint32_t cookie;
uint32_t* sp32;
// Skip calling JniMethodStart for @CriticalNative.
if (LIKELY(!critical_native)) {
// Start JNI, save the cookie.
if (called->IsSynchronized()) {
DCHECK(normal_native) << " @FastNative and synchronize is not supported";
jobject lock = GetGenericJniSynchronizationObject(self, called);
cookie = JniMethodStartSynchronized(lock, self);
if (self->IsExceptionPending()) {
return nullptr; // Report error.
}
} else {
if (fast_native) {
cookie = JniMethodFastStart(self);
} else {
DCHECK(normal_native);
cookie = JniMethodStart(self);
}
}
sp32 = reinterpret_cast<uint32_t*>(managed_sp);
*(sp32 - 1) = cookie;
}
// Retrieve the stored native code.
// Note that it may point to the lookup stub or trampoline.
// FIXME: This is broken for @CriticalNative as the art_jni_dlsym_lookup_stub
// does not handle that case. Calls from compiled stubs are also broken.
void const* nativeCode = called->GetEntryPointFromJni();
VLOG(third_party_jni) << "GenericJNI: "
<< called->PrettyMethod()
<< " -> "
<< std::hex << reinterpret_cast<uintptr_t>(nativeCode);
// Return native code.
return nativeCode;
}
// Defined in quick_jni_entrypoints.cc.
extern uint64_t GenericJniMethodEnd(Thread* self,
uint32_t saved_local_ref_cookie,
jvalue result,
uint64_t result_f,
ArtMethod* called);
/*
* Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
* unlocking.
*/
extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
jvalue result,
uint64_t result_f) {
// We're here just back from a native call. We don't have the shared mutator lock at this point
// yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
// anything that requires a mutator lock before that would cause problems as GC may have the
// exclusive mutator lock and may be moving objects, etc.
ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
DCHECK(self->GetManagedStack()->GetTopQuickFrameTag());
uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
ArtMethod* called = *sp;
uint32_t cookie = *(sp32 - 1);
return GenericJniMethodEnd(self, cookie, result, result_f, called);
}
// We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
// for the method pointer.
//
// It is valid to use this, as at the usage points here (returns from C functions) we are assuming
// to hold the mutator lock (see REQUIRES_SHARED(Locks::mutator_lock_) annotations).
template <InvokeType type, bool access_check>
static TwoWordReturn artInvokeCommon(uint32_t method_idx,
ObjPtr<mirror::Object> this_object,
Thread* self,
ArtMethod** sp) {
ScopedQuickEntrypointChecks sqec(self);
DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
ArtMethod* method = FindMethodFast<type, access_check>(method_idx, this_object, caller_method);
if (UNLIKELY(method == nullptr)) {
const DexFile* dex_file = caller_method->GetDexFile();
uint32_t shorty_len;
const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
{
// Remember the args in case a GC happens in FindMethodFromCode.
ScopedObjectAccessUnchecked soa(self->GetJniEnv());
RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
visitor.VisitArguments();
method = FindMethodFromCode<type, access_check>(method_idx,
&this_object,
caller_method,
self);
visitor.FixupReferences();
}
if (UNLIKELY(method == nullptr)) {
CHECK(self->IsExceptionPending());
return GetTwoWordFailureValue(); // Failure.
}
}
DCHECK(!self->IsExceptionPending());
const void* code = method->GetEntryPointFromQuickCompiledCode();
// When we return, the caller will branch to this address, so it had better not be 0!
DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
<< " location: "
<< method->GetDexFile()->GetLocation();
return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
reinterpret_cast<uintptr_t>(method));
}
// Explicit artInvokeCommon template function declarations to please analysis tool.
#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check) \
template REQUIRES_SHARED(Locks::mutator_lock_) \
TwoWordReturn artInvokeCommon<type, access_check>( \
uint32_t method_idx, ObjPtr<mirror::Object> his_object, Thread* self, ArtMethod** sp)
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
// See comments in runtime_support_asm.S
extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
REQUIRES_SHARED(Locks::mutator_lock_) {
return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp);
}
extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
REQUIRES_SHARED(Locks::mutator_lock_) {
return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp);
}
extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
uint32_t method_idx,
mirror::Object* this_object ATTRIBUTE_UNUSED,
Thread* self,
ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
// For static, this_object is not required and may be random garbage. Don't pass it down so that
// it doesn't cause ObjPtr alignment failure check.
return artInvokeCommon<kStatic, true>(method_idx, nullptr, self, sp);
}
extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
REQUIRES_SHARED(Locks::mutator_lock_) {
return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp);
}
extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
REQUIRES_SHARED(Locks::mutator_lock_) {
return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp);
}
// Determine target of interface dispatch. The interface method and this object are known non-null.
// The interface method is the method returned by the dex cache in the conflict trampoline.
extern "C" TwoWordReturn artInvokeInterfaceTrampoline(ArtMethod* interface_method,
mirror::Object* raw_this_object,
Thread* self,
ArtMethod** sp)
REQUIRES_SHARED(Locks::mutator_lock_) {
ScopedQuickEntrypointChecks sqec(self);
Runtime* runtime = Runtime::Current();
bool resolve_method = ((interface_method == nullptr) || interface_method->IsRuntimeMethod());
if (UNLIKELY(resolve_method)) {
// The interface method is unresolved, so resolve it in the dex file of the caller.
// Fetch the dex_method_idx of the target interface method from the caller.
StackHandleScope<1> hs(self);
Handle<mirror::Object> this_object = hs.NewHandle(raw_this_object);
ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
uint32_t dex_method_idx;
uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
const Instruction& instr = caller_method->DexInstructions().InstructionAt(dex_pc);
Instruction::Code instr_code = instr.Opcode();
DCHECK(instr_code == Instruction::INVOKE_INTERFACE ||
instr_code == Instruction::INVOKE_INTERFACE_RANGE)
<< "Unexpected call into interface trampoline: " << instr.DumpString(nullptr);
if (instr_code == Instruction::INVOKE_INTERFACE) {
dex_method_idx = instr.VRegB_35c();
} else {
DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
dex_method_idx = instr.VRegB_3rc();
}
const DexFile& dex_file = *caller_method->GetDexFile();
uint32_t shorty_len;
const char* shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(dex_method_idx),
&shorty_len);
{
// Remember the args in case a GC happens in ClassLinker::ResolveMethod().
ScopedObjectAccessUnchecked soa(self->GetJniEnv());
RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
visitor.VisitArguments();
ClassLinker* class_linker = runtime->GetClassLinker();
interface_method = class_linker->ResolveMethod<ClassLinker::ResolveMode::kNoChecks>(
self, dex_method_idx, caller_method, kInterface);
visitor.FixupReferences();
}
if (UNLIKELY(interface_method == nullptr)) {
CHECK(self->IsExceptionPending());
return GetTwoWordFailureValue(); // Failure.
}
MaybeUpdateBssMethodEntry(interface_method, MethodReference(&dex_file, dex_method_idx));
// Refresh `raw_this_object` which may have changed after resolution.
raw_this_object = this_object.Get();
}
// The compiler and interpreter make sure the conflict trampoline is never
// called on a method that resolves to j.l.Object.
DCHECK(!interface_method->GetDeclaringClass()->IsObjectClass());
DCHECK(interface_method->GetDeclaringClass()->IsInterface());
DCHECK(!interface_method->IsRuntimeMethod());
DCHECK(!interface_method->IsCopied());
ObjPtr<mirror::Object> obj_this = raw_this_object;
ObjPtr<mirror::Class> cls = obj_this->GetClass();
uint32_t imt_index = interface_method->GetImtIndex();
ImTable* imt = cls->GetImt(kRuntimePointerSize);
ArtMethod* conflict_method = imt->Get(imt_index, kRuntimePointerSize);
DCHECK(conflict_method->IsRuntimeMethod());
if (UNLIKELY(resolve_method)) {
// Now that we know the interface method, look it up in the conflict table.
ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize);
DCHECK(current_table != nullptr);
ArtMethod* method = current_table->Lookup(interface_method, kRuntimePointerSize);
if (method != nullptr) {
return GetTwoWordSuccessValue(
reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
reinterpret_cast<uintptr_t>(method));
}
// Interface method is not in the conflict table. Continue looking up in the
// iftable.
}
ArtMethod* method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
if (UNLIKELY(method == nullptr)) {
ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
interface_method, obj_this.Ptr(), caller_method);
return GetTwoWordFailureValue();
}
// We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
// We create a new table with the new pair { interface_method, method }.
// Classes in the boot image should never need to update conflict methods in
// their IMT.
CHECK(!runtime->GetHeap()->ObjectIsInBootImageSpace(cls.Ptr())) << cls->PrettyClass();
ArtMethod* new_conflict_method = runtime->GetClassLinker()->AddMethodToConflictTable(
cls.Ptr(),
conflict_method,
interface_method,
method);
if (new_conflict_method != conflict_method) {
// Update the IMT if we create a new conflict method. No fence needed here, as the
// data is consistent.
imt->Set(imt_index,
new_conflict_method,
kRuntimePointerSize);
}
const void* code = method->GetEntryPointFromQuickCompiledCode();
// When we return, the caller will branch to this address, so it had better not be 0!
DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
<< " location: " << method->GetDexFile()->GetLocation();
return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
reinterpret_cast<uintptr_t>(method));
}
// Returns uint64_t representing raw bits from JValue.
extern "C" uint64_t artInvokePolymorphic(mirror::Object* raw_receiver, Thread* self, ArtMethod** sp)
REQUIRES_SHARED(Locks::mutator_lock_) {
ScopedQuickEntrypointChecks sqec(self);
DCHECK(raw_receiver != nullptr);
DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
// Start new JNI local reference state
JNIEnvExt* env = self->GetJniEnv();
ScopedObjectAccessUnchecked soa(env);
ScopedJniEnvLocalRefState env_state(env);
const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
// From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
const Instruction& inst = caller_method->DexInstructions().InstructionAt(dex_pc);
DCHECK(inst.Opcode() == Instruction::INVOKE_POLYMORPHIC ||
inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
const dex::ProtoIndex proto_idx(inst.VRegH());
const char* shorty = caller_method->GetDexFile()->GetShorty(proto_idx);
const size_t shorty_length = strlen(shorty);
static const bool kMethodIsStatic = false; // invoke() and invokeExact() are not static.
RememberForGcArgumentVisitor gc_visitor(sp, kMethodIsStatic, shorty, shorty_length, &soa);
gc_visitor.VisitArguments();
// Wrap raw_receiver in a Handle for safety.
StackHandleScope<3> hs(self);
Handle<mirror::Object> receiver_handle(hs.NewHandle(raw_receiver));
raw_receiver = nullptr;
self->EndAssertNoThreadSuspension(old_cause);
// Resolve method.
ClassLinker* linker = Runtime::Current()->GetClassLinker();
ArtMethod* resolved_method = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
self, inst.VRegB(), caller_method, kVirtual);
Handle<mirror::MethodType> method_type(
hs.NewHandle(linker->ResolveMethodType(self, proto_idx, caller_method)));
if (UNLIKELY(method_type.IsNull())) {
// This implies we couldn't resolve one or more types in this method handle.
CHECK(self->IsExceptionPending());
return 0UL;
}
DCHECK_EQ(ArtMethod::NumArgRegisters(shorty) + 1u, (uint32_t)inst.VRegA());
DCHECK_EQ(resolved_method->IsStatic(), kMethodIsStatic);
// Fix references before constructing the shadow frame.
gc_visitor.FixupReferences();
// Construct shadow frame placing arguments consecutively from |first_arg|.
const bool is_range = (inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
const size_t num_vregs = is_range ? inst.VRegA_4rcc() : inst.VRegA_45cc();
const size_t first_arg = 0;
ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
CREATE_SHADOW_FRAME(num_vregs, /* link= */ nullptr, resolved_method, dex_pc);
ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
ScopedStackedShadowFramePusher
frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
kMethodIsStatic,
shorty,
strlen(shorty),
shadow_frame,
first_arg);
shadow_frame_builder.VisitArguments();
// Push a transition back into managed code onto the linked list in thread.
ManagedStack fragment;
self->PushManagedStackFragment(&fragment);
// Call DoInvokePolymorphic with |is_range| = true, as shadow frame has argument registers in
// consecutive order.
RangeInstructionOperands operands(first_arg + 1, num_vregs - 1);
Intrinsics intrinsic = static_cast<Intrinsics>(resolved_method->GetIntrinsic());
JValue result;
bool success = false;
if (resolved_method->GetDeclaringClass() == GetClassRoot<mirror::MethodHandle>(linker)) {
Handle<mirror::MethodHandle> method_handle(hs.NewHandle(
ObjPtr<mirror::MethodHandle>::DownCast(receiver_handle.Get())));
if (intrinsic == Intrinsics::kMethodHandleInvokeExact) {
success = MethodHandleInvokeExact(self,
*shadow_frame,
method_handle,
method_type,
&operands,
&result);
} else {
DCHECK_EQ(static_cast<uint32_t>(intrinsic),
static_cast<uint32_t>(Intrinsics::kMethodHandleInvoke));
success = MethodHandleInvoke(self,
*shadow_frame,
method_handle,
method_type,
&operands,
&result);
}
} else {
DCHECK_EQ(GetClassRoot<mirror::VarHandle>(linker), resolved_method->GetDeclaringClass());
Handle<mirror::VarHandle> var_handle(hs.NewHandle(
ObjPtr<mirror::VarHandle>::DownCast(receiver_handle.Get())));
mirror::VarHandle::AccessMode access_mode =
mirror::VarHandle::GetAccessModeByIntrinsic(intrinsic);
success = VarHandleInvokeAccessor(self,
*shadow_frame,
var_handle,
method_type,
access_mode,
&operands,
&result);
}
DCHECK(success || self->IsExceptionPending());
// Pop transition record.
self->PopManagedStackFragment(fragment);
return result.GetJ();
}
// Returns uint64_t representing raw bits from JValue.
extern "C" uint64_t artInvokeCustom(uint32_t call_site_idx, Thread* self, ArtMethod** sp)
REQUIRES_SHARED(Locks::mutator_lock_) {
ScopedQuickEntrypointChecks sqec(self);
DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
// invoke-custom is effectively a static call (no receiver).
static constexpr bool kMethodIsStatic = true;
// Start new JNI local reference state
JNIEnvExt* env = self->GetJniEnv();
ScopedObjectAccessUnchecked soa(env);
ScopedJniEnvLocalRefState env_state(env);
const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
// From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
const DexFile* dex_file = caller_method->GetDexFile();
const dex::ProtoIndex proto_idx(dex_file->GetProtoIndexForCallSite(call_site_idx));
const char* shorty = caller_method->GetDexFile()->GetShorty(proto_idx);
const uint32_t shorty_len = strlen(shorty);
// Construct the shadow frame placing arguments consecutively from |first_arg|.
const size_t first_arg = 0;
const size_t num_vregs = ArtMethod::NumArgRegisters(shorty);
ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
CREATE_SHADOW_FRAME(num_vregs, /* link= */ nullptr, caller_method, dex_pc);
ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
ScopedStackedShadowFramePusher
frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
kMethodIsStatic,
shorty,
shorty_len,
shadow_frame,
first_arg);
shadow_frame_builder.VisitArguments();
// Push a transition back into managed code onto the linked list in thread.
ManagedStack fragment;
self->PushManagedStackFragment(&fragment);
self->EndAssertNoThreadSuspension(old_cause);
// Perform the invoke-custom operation.
RangeInstructionOperands operands(first_arg, num_vregs);
JValue result;
bool success =
interpreter::DoInvokeCustom(self, *shadow_frame, call_site_idx, &operands, &result);
DCHECK(success || self->IsExceptionPending());
// Pop transition record.
self->PopManagedStackFragment(fragment);
return result.GetJ();
}
} // namespace art