You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1252 lines
32 KiB

/* $OpenBSD: findfp.c,v 1.15 2013/12/17 16:33:27 deraadt Exp $ */
/*-
* Copyright (c) 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Chris Torek.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#define __BIONIC_NO_STDIO_FORTIFY
#include <stdio.h>
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <paths.h>
#include <stdlib.h>
#include <string.h>
#include <sys/param.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <unistd.h>
#include <android/fdsan.h>
#include <async_safe/log.h>
#include "glue.h"
#include "local.h"
#include "private/ErrnoRestorer.h"
#include "private/FdPath.h"
#include "private/__bionic_get_shell_path.h"
#include "private/bionic_fortify.h"
#include "private/thread_private.h"
#include "private/bsd_sys_param.h" // For ALIGN/ALIGNBYTES.
#define NDYNAMIC 10 /* add ten more whenever necessary */
#define PRINTF_IMPL(expr) \
va_list ap; \
va_start(ap, fmt); \
int result = (expr); \
va_end(ap); \
return result;
#define MAKE_STD_STREAM(flags, fd) \
{ \
._flags = flags, ._file = fd, ._cookie = __sF + fd, ._close = __sclose, \
._read = __sread, ._write = __swrite, ._ext = { \
._base = reinterpret_cast<uint8_t*>(__sFext + fd) \
} \
}
static struct __sfileext __sFext[3] = {
{._lock = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP,
._caller_handles_locking = false,
._seek64 = __sseek64,
._popen_pid = 0},
{._lock = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP,
._caller_handles_locking = false,
._seek64 = __sseek64,
._popen_pid = 0},
{._lock = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP,
._caller_handles_locking = false,
._seek64 = __sseek64,
._popen_pid = 0},
};
// __sF is exported for backwards compatibility. Until M, we didn't have symbols
// for stdin/stdout/stderr; they were macros accessing __sF.
FILE __sF[3] = {
MAKE_STD_STREAM(__SRD, STDIN_FILENO),
MAKE_STD_STREAM(__SWR, STDOUT_FILENO),
MAKE_STD_STREAM(__SWR|__SNBF, STDERR_FILENO),
};
FILE* stdin = &__sF[0];
FILE* stdout = &__sF[1];
FILE* stderr = &__sF[2];
static pthread_mutex_t __stdio_mutex = PTHREAD_MUTEX_INITIALIZER;
static uint64_t __get_file_tag(FILE* fp) {
// Don't use a tag for the standard streams.
// They don't really own their file descriptors, because the values are well-known, and you're
// allowed to do things like `close(STDIN_FILENO); open("foo", O_RDONLY)` when single-threaded.
if (fp == stdin || fp == stderr || fp == stdout) {
return 0;
}
return android_fdsan_create_owner_tag(ANDROID_FDSAN_OWNER_TYPE_FILE,
reinterpret_cast<uint64_t>(fp));
}
struct glue __sglue = { nullptr, 3, __sF };
static struct glue* lastglue = &__sglue;
class ScopedFileLock {
public:
explicit ScopedFileLock(FILE* fp) : fp_(fp) {
FLOCKFILE(fp_);
}
~ScopedFileLock() {
FUNLOCKFILE(fp_);
}
private:
FILE* fp_;
};
static glue* moreglue(int n) {
char* data = new char[sizeof(glue) + ALIGNBYTES + n * sizeof(FILE) + n * sizeof(__sfileext)];
if (data == nullptr) return nullptr;
glue* g = reinterpret_cast<glue*>(data);
FILE* p = reinterpret_cast<FILE*>(ALIGN(data + sizeof(*g)));
__sfileext* pext = reinterpret_cast<__sfileext*>(ALIGN(data + sizeof(*g)) + n * sizeof(FILE));
g->next = nullptr;
g->niobs = n;
g->iobs = p;
while (--n >= 0) {
*p = {};
_FILEEXT_SETUP(p, pext);
p++;
pext++;
}
return g;
}
static inline void free_fgetln_buffer(FILE* fp) {
if (__predict_false(fp->_lb._base != nullptr)) {
free(fp->_lb._base);
fp->_lb._base = nullptr;
}
}
/*
* Find a free FILE for fopen et al.
*/
FILE* __sfp(void) {
FILE *fp;
int n;
struct glue *g;
pthread_mutex_lock(&__stdio_mutex);
for (g = &__sglue; g != nullptr; g = g->next) {
for (fp = g->iobs, n = g->niobs; --n >= 0; fp++)
if (fp->_flags == 0)
goto found;
}
/* release lock while mallocing */
pthread_mutex_unlock(&__stdio_mutex);
if ((g = moreglue(NDYNAMIC)) == nullptr) return nullptr;
pthread_mutex_lock(&__stdio_mutex);
lastglue->next = g;
lastglue = g;
fp = g->iobs;
found:
fp->_flags = 1; /* reserve this slot; caller sets real flags */
pthread_mutex_unlock(&__stdio_mutex);
fp->_p = nullptr; /* no current pointer */
fp->_w = 0; /* nothing to read or write */
fp->_r = 0;
fp->_bf._base = nullptr; /* no buffer */
fp->_bf._size = 0;
fp->_lbfsize = 0; /* not line buffered */
fp->_file = -1; /* no file */
fp->_lb._base = nullptr; /* no line buffer */
fp->_lb._size = 0;
memset(_EXT(fp), 0, sizeof(struct __sfileext));
_FLOCK(fp) = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
_EXT(fp)->_caller_handles_locking = false;
// Caller sets cookie, _read/_write etc.
// We explicitly clear _seek and _seek64 to prevent subtle bugs.
fp->_seek = nullptr;
_EXT(fp)->_seek64 = nullptr;
return fp;
}
int _fwalk(int (*callback)(FILE*)) {
int result = 0;
for (glue* g = &__sglue; g != nullptr; g = g->next) {
FILE* fp = g->iobs;
for (int n = g->niobs; --n >= 0; ++fp) {
if (fp->_flags != 0 && (fp->_flags & __SIGN) == 0) {
result |= (*callback)(fp);
}
}
}
return result;
}
extern "C" __LIBC_HIDDEN__ void __libc_stdio_cleanup(void) {
// Equivalent to fflush(nullptr), but without all the locking since we're shutting down anyway.
_fwalk(__sflush);
}
static FILE* __FILE_init(FILE* fp, int fd, int flags) {
if (fp == nullptr) return nullptr;
#if !defined(__LP64__)
if (fd > SHRT_MAX) __fortify_fatal("stdio: fd %d > SHRT_MAX", fd);
#endif
fp->_file = fd;
android_fdsan_exchange_owner_tag(fd, 0, __get_file_tag(fp));
fp->_flags = flags;
fp->_cookie = fp;
fp->_read = __sread;
fp->_write = __swrite;
fp->_close = __sclose;
_EXT(fp)->_seek64 = __sseek64;
return fp;
}
FILE* fopen(const char* file, const char* mode) {
int mode_flags;
int flags = __sflags(mode, &mode_flags);
if (flags == 0) return nullptr;
int fd = open(file, mode_flags, DEFFILEMODE);
if (fd == -1) {
return nullptr;
}
FILE* fp = __FILE_init(__sfp(), fd, flags);
if (fp == nullptr) {
ErrnoRestorer errno_restorer;
close(fd);
return nullptr;
}
// For append mode, O_APPEND sets the write position for free, but we need to
// set the read position manually.
if ((mode_flags & O_APPEND) != 0) __sseek64(fp, 0, SEEK_END);
return fp;
}
__strong_alias(fopen64, fopen);
FILE* fdopen(int fd, const char* mode) {
int mode_flags;
int flags = __sflags(mode, &mode_flags);
if (flags == 0) return nullptr;
// Make sure the mode the user wants is a subset of the actual mode.
int fd_flags = fcntl(fd, F_GETFL, 0);
if (fd_flags == -1) return nullptr;
int tmp = fd_flags & O_ACCMODE;
if (tmp != O_RDWR && (tmp != (mode_flags & O_ACCMODE))) {
errno = EINVAL;
return nullptr;
}
// Make sure O_APPEND is set on the underlying fd if our mode has 'a'.
// POSIX says we just take the current offset of the underlying fd.
if ((mode_flags & O_APPEND) && !(fd_flags & O_APPEND)) {
if (fcntl(fd, F_SETFL, fd_flags | O_APPEND) == -1) return nullptr;
}
// Make sure O_CLOEXEC is set on the underlying fd if our mode has 'e'.
if ((mode_flags & O_CLOEXEC) && !((tmp = fcntl(fd, F_GETFD)) & FD_CLOEXEC)) {
fcntl(fd, F_SETFD, tmp | FD_CLOEXEC);
}
return __FILE_init(__sfp(), fd, flags);
}
FILE* freopen(const char* file, const char* mode, FILE* fp) {
CHECK_FP(fp);
// POSIX says: "If pathname is a null pointer, the freopen() function shall
// attempt to change the mode of the stream to that specified by mode, as if
// the name of the file currently associated with the stream had been used. In
// this case, the file descriptor associated with the stream need not be
// closed if the call to freopen() succeeds. It is implementation-defined
// which changes of mode are permitted (if any), and under what
// circumstances."
//
// Linux is quite restrictive about what changes you can make with F_SETFL,
// and in particular won't let you touch the access bits. It's easiest and
// most effective to just rely on /proc/self/fd/...
FdPath fd_path(fp->_file);
if (file == nullptr) file = fd_path.c_str();
int mode_flags;
int flags = __sflags(mode, &mode_flags);
if (flags == 0) {
fclose(fp);
return nullptr;
}
ScopedFileLock sfl(fp);
// TODO: rewrite this mess completely.
// There are actually programs that depend on being able to "freopen"
// descriptors that weren't originally open. Keep this from breaking.
// Remember whether the stream was open to begin with, and which file
// descriptor (if any) was associated with it. If it was attached to
// a descriptor, defer closing it; freopen("/dev/stdin", "r", stdin)
// should work. This is unnecessary if it was not a Unix file.
int isopen, wantfd;
if (fp->_flags == 0) {
fp->_flags = __SEOF; // Hold on to it.
isopen = 0;
wantfd = -1;
} else {
// Flush the stream; ANSI doesn't require this.
if (fp->_flags & __SWR) __sflush(fp);
// If close is null, closing is a no-op, hence pointless.
isopen = (fp->_close != nullptr);
if ((wantfd = fp->_file) < 0 && isopen) {
(*fp->_close)(fp->_cookie);
isopen = 0;
}
}
// Get a new descriptor to refer to the new file.
int fd = open(file, mode_flags, DEFFILEMODE);
if (fd < 0 && isopen) {
// If out of fd's close the old one and try again.
if (errno == ENFILE || errno == EMFILE) {
(*fp->_close)(fp->_cookie);
isopen = 0;
fd = open(file, mode_flags, DEFFILEMODE);
}
}
int sverrno = errno;
// Finish closing fp. Even if the open succeeded above, we cannot
// keep fp->_base: it may be the wrong size. This loses the effect
// of any setbuffer calls, but stdio has always done this before.
if (isopen && fd != wantfd) (*fp->_close)(fp->_cookie);
if (fp->_flags & __SMBF) free(fp->_bf._base);
fp->_w = 0;
fp->_r = 0;
fp->_p = nullptr;
fp->_bf._base = nullptr;
fp->_bf._size = 0;
fp->_lbfsize = 0;
if (HASUB(fp)) FREEUB(fp);
_UB(fp)._size = 0;
WCIO_FREE(fp);
free_fgetln_buffer(fp);
fp->_lb._size = 0;
if (fd < 0) { // Did not get it after all.
fp->_flags = 0; // Release.
errno = sverrno; // Restore errno in case _close clobbered it.
return nullptr;
}
// If reopening something that was open before on a real file, try
// to maintain the descriptor. Various C library routines (perror)
// assume stderr is always fd STDERR_FILENO, even if being freopen'd.
if (wantfd >= 0 && fd != wantfd) {
if (dup3(fd, wantfd, mode_flags & O_CLOEXEC) >= 0) {
close(fd);
fd = wantfd;
}
}
__FILE_init(fp, fd, flags);
// For append mode, O_APPEND sets the write position for free, but we need to
// set the read position manually.
if ((mode_flags & O_APPEND) != 0) __sseek64(fp, 0, SEEK_END);
return fp;
}
__strong_alias(freopen64, freopen);
static int __FILE_close(FILE* fp) {
if (fp->_flags == 0) {
// Already freed!
errno = EBADF;
return EOF;
}
ScopedFileLock sfl(fp);
WCIO_FREE(fp);
int r = fp->_flags & __SWR ? __sflush(fp) : 0;
if (fp->_close != nullptr && (*fp->_close)(fp->_cookie) < 0) {
r = EOF;
}
if (fp->_flags & __SMBF) free(fp->_bf._base);
if (HASUB(fp)) FREEUB(fp);
free_fgetln_buffer(fp);
// If we were created by popen(3), wait for the child.
pid_t pid = _EXT(fp)->_popen_pid;
if (pid > 0) {
int status;
if (TEMP_FAILURE_RETRY(wait4(pid, &status, 0, nullptr)) != -1) {
r = status;
}
}
_EXT(fp)->_popen_pid = 0;
// Poison this FILE so accesses after fclose will be obvious.
fp->_file = -1;
fp->_r = fp->_w = 0;
// Release this FILE for reuse.
fp->_flags = 0;
return r;
}
int fclose(FILE* fp) {
CHECK_FP(fp);
return __FILE_close(fp);
}
int fileno_unlocked(FILE* fp) {
CHECK_FP(fp);
int fd = fp->_file;
if (fd == -1) {
errno = EBADF;
return -1;
}
return fd;
}
int fileno(FILE* fp) {
CHECK_FP(fp);
ScopedFileLock sfl(fp);
return fileno_unlocked(fp);
}
void clearerr_unlocked(FILE* fp) {
CHECK_FP(fp);
return __sclearerr(fp);
}
void clearerr(FILE* fp) {
CHECK_FP(fp);
ScopedFileLock sfl(fp);
clearerr_unlocked(fp);
}
int feof_unlocked(FILE* fp) {
CHECK_FP(fp);
return ((fp->_flags & __SEOF) != 0);
}
int feof(FILE* fp) {
CHECK_FP(fp);
ScopedFileLock sfl(fp);
return feof_unlocked(fp);
}
int ferror_unlocked(FILE* fp) {
CHECK_FP(fp);
return __sferror(fp);
}
int ferror(FILE* fp) {
CHECK_FP(fp);
ScopedFileLock sfl(fp);
return ferror_unlocked(fp);
}
int __sflush(FILE* fp) {
// Flushing a read-only file is a no-op.
if ((fp->_flags & __SWR) == 0) return 0;
// Flushing a file without a buffer is a no-op.
unsigned char* p = fp->_bf._base;
if (p == nullptr) return 0;
// Set these immediately to avoid problems with longjmp and to allow
// exchange buffering (via setvbuf) in user write function.
int n = fp->_p - p;
fp->_p = p;
fp->_w = (fp->_flags & (__SLBF|__SNBF)) ? 0 : fp->_bf._size;
while (n > 0) {
int written = (*fp->_write)(fp->_cookie, reinterpret_cast<char*>(p), n);
if (written <= 0) {
fp->_flags |= __SERR;
return EOF;
}
n -= written, p += written;
}
return 0;
}
int __sflush_locked(FILE* fp) {
ScopedFileLock sfl(fp);
return __sflush(fp);
}
int __sread(void* cookie, char* buf, int n) {
FILE* fp = reinterpret_cast<FILE*>(cookie);
return TEMP_FAILURE_RETRY(read(fp->_file, buf, n));
}
int __swrite(void* cookie, const char* buf, int n) {
FILE* fp = reinterpret_cast<FILE*>(cookie);
return TEMP_FAILURE_RETRY(write(fp->_file, buf, n));
}
fpos_t __sseek(void* cookie, fpos_t offset, int whence) {
FILE* fp = reinterpret_cast<FILE*>(cookie);
return TEMP_FAILURE_RETRY(lseek(fp->_file, offset, whence));
}
off64_t __sseek64(void* cookie, off64_t offset, int whence) {
FILE* fp = reinterpret_cast<FILE*>(cookie);
return TEMP_FAILURE_RETRY(lseek64(fp->_file, offset, whence));
}
int __sclose(void* cookie) {
FILE* fp = reinterpret_cast<FILE*>(cookie);
return android_fdsan_close_with_tag(fp->_file, __get_file_tag(fp));
}
static off64_t __seek_unlocked(FILE* fp, off64_t offset, int whence) {
// Use `_seek64` if set, but fall back to `_seek`.
if (_EXT(fp)->_seek64 != nullptr) {
return (*_EXT(fp)->_seek64)(fp->_cookie, offset, whence);
} else if (fp->_seek != nullptr) {
off64_t result = (*fp->_seek)(fp->_cookie, offset, whence);
#if !defined(__LP64__)
// Avoid sign extension if off64_t is larger than off_t.
if (result != -1) result &= 0xffffffff;
#endif
return result;
} else {
errno = ESPIPE;
return -1;
}
}
static off64_t __ftello64_unlocked(FILE* fp) {
// Find offset of underlying I/O object, then adjust for buffered bytes.
__sflush(fp); // May adjust seek offset on append stream.
off64_t result = __seek_unlocked(fp, 0, SEEK_CUR);
if (result == -1) {
return -1;
}
if (fp->_flags & __SRD) {
// Reading. Any unread characters (including
// those from ungetc) cause the position to be
// smaller than that in the underlying object.
result -= fp->_r;
if (HASUB(fp)) result -= fp->_ur;
} else if (fp->_flags & __SWR && fp->_p != nullptr) {
// Writing. Any buffered characters cause the
// position to be greater than that in the
// underlying object.
result += fp->_p - fp->_bf._base;
}
return result;
}
int __fseeko64(FILE* fp, off64_t offset, int whence, int off_t_bits) {
ScopedFileLock sfl(fp);
// Change any SEEK_CUR to SEEK_SET, and check `whence` argument.
// After this, whence is either SEEK_SET or SEEK_END.
if (whence == SEEK_CUR) {
fpos64_t current_offset = __ftello64_unlocked(fp);
if (current_offset == -1) {
return -1;
}
offset += current_offset;
whence = SEEK_SET;
} else if (whence != SEEK_SET && whence != SEEK_END) {
errno = EINVAL;
return -1;
}
// If our caller has a 32-bit interface, refuse to go past a 32-bit file offset.
if (off_t_bits == 32 && offset > LONG_MAX) {
errno = EOVERFLOW;
return -1;
}
if (fp->_bf._base == nullptr) __smakebuf(fp);
// Flush unwritten data and attempt the seek.
if (__sflush(fp) || __seek_unlocked(fp, offset, whence) == -1) {
return -1;
}
// Success: clear EOF indicator and discard ungetc() data.
if (HASUB(fp)) FREEUB(fp);
fp->_p = fp->_bf._base;
fp->_r = 0;
/* fp->_w = 0; */ /* unnecessary (I think...) */
fp->_flags &= ~__SEOF;
return 0;
}
int fseeko(FILE* fp, off_t offset, int whence) {
CHECK_FP(fp);
static_assert(sizeof(off_t) == sizeof(long), "sizeof(off_t) != sizeof(long)");
return __fseeko64(fp, offset, whence, 8*sizeof(off_t));
}
__strong_alias(fseek, fseeko);
int fseeko64(FILE* fp, off64_t offset, int whence) {
CHECK_FP(fp);
return __fseeko64(fp, offset, whence, 8*sizeof(off64_t));
}
int fsetpos(FILE* fp, const fpos_t* pos) {
CHECK_FP(fp);
return fseeko(fp, *pos, SEEK_SET);
}
int fsetpos64(FILE* fp, const fpos64_t* pos) {
CHECK_FP(fp);
return fseeko64(fp, *pos, SEEK_SET);
}
off_t ftello(FILE* fp) {
CHECK_FP(fp);
static_assert(sizeof(off_t) == sizeof(long), "sizeof(off_t) != sizeof(long)");
off64_t result = ftello64(fp);
if (result > LONG_MAX) {
errno = EOVERFLOW;
return -1;
}
return result;
}
__strong_alias(ftell, ftello);
off64_t ftello64(FILE* fp) {
CHECK_FP(fp);
ScopedFileLock sfl(fp);
return __ftello64_unlocked(fp);
}
int fgetpos(FILE* fp, fpos_t* pos) {
CHECK_FP(fp);
*pos = ftello(fp);
return (*pos == -1) ? -1 : 0;
}
int fgetpos64(FILE* fp, fpos64_t* pos) {
CHECK_FP(fp);
*pos = ftello64(fp);
return (*pos == -1) ? -1 : 0;
}
static FILE* __funopen(const void* cookie,
int (*read_fn)(void*, char*, int),
int (*write_fn)(void*, const char*, int),
int (*close_fn)(void*)) {
if (read_fn == nullptr && write_fn == nullptr) {
errno = EINVAL;
return nullptr;
}
FILE* fp = __sfp();
if (fp == nullptr) return nullptr;
if (read_fn != nullptr && write_fn != nullptr) {
fp->_flags = __SRW;
} else if (read_fn != nullptr) {
fp->_flags = __SRD;
} else if (write_fn != nullptr) {
fp->_flags = __SWR;
}
fp->_file = -1;
fp->_cookie = const_cast<void*>(cookie); // The funopen(3) API is incoherent.
fp->_read = read_fn;
fp->_write = write_fn;
fp->_close = close_fn;
return fp;
}
FILE* funopen(const void* cookie,
int (*read_fn)(void*, char*, int),
int (*write_fn)(void*, const char*, int),
fpos_t (*seek_fn)(void*, fpos_t, int),
int (*close_fn)(void*)) {
FILE* fp = __funopen(cookie, read_fn, write_fn, close_fn);
if (fp != nullptr) {
fp->_seek = seek_fn;
}
return fp;
}
FILE* funopen64(const void* cookie,
int (*read_fn)(void*, char*, int),
int (*write_fn)(void*, const char*, int),
fpos64_t (*seek_fn)(void*, fpos64_t, int),
int (*close_fn)(void*)) {
FILE* fp = __funopen(cookie, read_fn, write_fn, close_fn);
if (fp != nullptr) {
_EXT(fp)->_seek64 = seek_fn;
}
return fp;
}
int asprintf(char** s, const char* fmt, ...) {
PRINTF_IMPL(vasprintf(s, fmt, ap));
}
char* ctermid(char* s) {
return s ? strcpy(s, _PATH_TTY) : const_cast<char*>(_PATH_TTY);
}
int dprintf(int fd, const char* fmt, ...) {
PRINTF_IMPL(vdprintf(fd, fmt, ap));
}
int fprintf(FILE* fp, const char* fmt, ...) {
CHECK_FP(fp);
PRINTF_IMPL(vfprintf(fp, fmt, ap));
}
int fgetc(FILE* fp) {
CHECK_FP(fp);
return getc(fp);
}
int fgetc_unlocked(FILE* fp) {
CHECK_FP(fp);
return getc_unlocked(fp);
}
char* fgets(char* buf, int n, FILE* fp) {
CHECK_FP(fp);
ScopedFileLock sfl(fp);
return fgets_unlocked(buf, n, fp);
}
// Reads at most n-1 characters from the given file.
// Stops when a newline has been read, or the count runs out.
// Returns first argument, or nullptr if no characters were read.
// Does not return nullptr if n == 1.
char* fgets_unlocked(char* buf, int n, FILE* fp) {
if (n <= 0) __fortify_fatal("fgets: buffer size %d <= 0", n);
_SET_ORIENTATION(fp, -1);
char* s = buf;
n--; // Leave space for NUL.
while (n != 0) {
// If the buffer is empty, refill it.
if (fp->_r <= 0) {
if (__srefill(fp)) {
// EOF/error: stop with partial or no line.
if (s == buf) return nullptr;
break;
}
}
size_t len = fp->_r;
unsigned char* p = fp->_p;
// Scan through at most n bytes of the current buffer,
// looking for '\n'. If found, copy up to and including
// newline, and stop. Otherwise, copy entire chunk and loop.
if (len > static_cast<size_t>(n)) len = n;
unsigned char* t = static_cast<unsigned char*>(memchr(p, '\n', len));
if (t != nullptr) {
len = ++t - p;
fp->_r -= len;
fp->_p = t;
memcpy(s, p, len);
s[len] = '\0';
return buf;
}
fp->_r -= len;
fp->_p += len;
memcpy(s, p, len);
s += len;
n -= len;
}
*s = '\0';
return buf;
}
int fputc(int c, FILE* fp) {
CHECK_FP(fp);
return putc(c, fp);
}
int fputc_unlocked(int c, FILE* fp) {
CHECK_FP(fp);
return putc_unlocked(c, fp);
}
int fputs(const char* s, FILE* fp) {
CHECK_FP(fp);
ScopedFileLock sfl(fp);
return fputs_unlocked(s, fp);
}
int fputs_unlocked(const char* s, FILE* fp) {
CHECK_FP(fp);
size_t length = strlen(s);
return (fwrite_unlocked(s, 1, length, fp) == length) ? 0 : EOF;
}
int fscanf(FILE* fp, const char* fmt, ...) {
CHECK_FP(fp);
PRINTF_IMPL(vfscanf(fp, fmt, ap));
}
int fwprintf(FILE* fp, const wchar_t* fmt, ...) {
CHECK_FP(fp);
PRINTF_IMPL(vfwprintf(fp, fmt, ap));
}
int fwscanf(FILE* fp, const wchar_t* fmt, ...) {
CHECK_FP(fp);
PRINTF_IMPL(vfwscanf(fp, fmt, ap));
}
int getc(FILE* fp) {
CHECK_FP(fp);
ScopedFileLock sfl(fp);
return getc_unlocked(fp);
}
int getc_unlocked(FILE* fp) {
CHECK_FP(fp);
return __sgetc(fp);
}
int getchar_unlocked() {
return getc_unlocked(stdin);
}
int getchar() {
return getc(stdin);
}
ssize_t getline(char** buf, size_t* len, FILE* fp) {
CHECK_FP(fp);
return getdelim(buf, len, '\n', fp);
}
wint_t getwc(FILE* fp) {
CHECK_FP(fp);
return fgetwc(fp);
}
wint_t getwchar() {
return fgetwc(stdin);
}
void perror(const char* msg) {
if (msg == nullptr) msg = "";
fprintf(stderr, "%s%s%s\n", msg, (*msg == '\0') ? "" : ": ", strerror(errno));
}
int printf(const char* fmt, ...) {
PRINTF_IMPL(vfprintf(stdout, fmt, ap));
}
int putc(int c, FILE* fp) {
CHECK_FP(fp);
ScopedFileLock sfl(fp);
return putc_unlocked(c, fp);
}
int putc_unlocked(int c, FILE* fp) {
CHECK_FP(fp);
if (cantwrite(fp)) {
errno = EBADF;
return EOF;
}
_SET_ORIENTATION(fp, -1);
if (--fp->_w >= 0 || (fp->_w >= fp->_lbfsize && c != '\n')) {
return (*fp->_p++ = c);
}
return (__swbuf(c, fp));
}
int putchar(int c) {
return putc(c, stdout);
}
int putchar_unlocked(int c) {
return putc_unlocked(c, stdout);
}
int puts(const char* s) {
size_t length = strlen(s);
ScopedFileLock sfl(stdout);
return (fwrite_unlocked(s, 1, length, stdout) == length &&
putc_unlocked('\n', stdout) != EOF) ? 0 : EOF;
}
wint_t putwc(wchar_t wc, FILE* fp) {
CHECK_FP(fp);
return fputwc(wc, fp);
}
wint_t putwchar(wchar_t wc) {
return fputwc(wc, stdout);
}
int remove(const char* path) {
if (unlink(path) != -1) return 0;
if (errno != EISDIR) return -1;
return rmdir(path);
}
void rewind(FILE* fp) {
CHECK_FP(fp);
ScopedFileLock sfl(fp);
fseek(fp, 0, SEEK_SET);
clearerr_unlocked(fp);
}
int scanf(const char* fmt, ...) {
PRINTF_IMPL(vfscanf(stdin, fmt, ap));
}
void setbuf(FILE* fp, char* buf) {
CHECK_FP(fp);
setbuffer(fp, buf, BUFSIZ);
}
void setbuffer(FILE* fp, char* buf, int size) {
CHECK_FP(fp);
setvbuf(fp, buf, buf ? _IOFBF : _IONBF, size);
}
int setlinebuf(FILE* fp) {
CHECK_FP(fp);
return setvbuf(fp, nullptr, _IOLBF, 0);
}
int snprintf(char* s, size_t n, const char* fmt, ...) {
PRINTF_IMPL(vsnprintf(s, n, fmt, ap));
}
int sprintf(char* s, const char* fmt, ...) {
PRINTF_IMPL(vsprintf(s, fmt, ap));
}
int sscanf(const char* s, const char* fmt, ...) {
PRINTF_IMPL(vsscanf(s, fmt, ap));
}
int swprintf(wchar_t* s, size_t n, const wchar_t* fmt, ...) {
PRINTF_IMPL(vswprintf(s, n, fmt, ap));
}
int swscanf(const wchar_t* s, const wchar_t* fmt, ...) {
PRINTF_IMPL(vswscanf(s, fmt, ap));
}
int vfprintf(FILE* fp, const char* fmt, va_list ap) {
ScopedFileLock sfl(fp);
return __vfprintf(fp, fmt, ap);
}
int vfscanf(FILE* fp, const char* fmt, va_list ap) {
ScopedFileLock sfl(fp);
return __svfscanf(fp, fmt, ap);
}
int vfwprintf(FILE* fp, const wchar_t* fmt, va_list ap) {
ScopedFileLock sfl(fp);
return __vfwprintf(fp, fmt, ap);
}
int vfwscanf(FILE* fp, const wchar_t* fmt, va_list ap) {
ScopedFileLock sfl(fp);
return __vfwscanf(fp, fmt, ap);
}
int vprintf(const char* fmt, va_list ap) {
return vfprintf(stdout, fmt, ap);
}
int vscanf(const char* fmt, va_list ap) {
return vfscanf(stdin, fmt, ap);
}
int vsnprintf(char* s, size_t n, const char* fmt, va_list ap) {
// stdio internals use int rather than size_t.
static_assert(INT_MAX <= SSIZE_MAX, "SSIZE_MAX too large to fit in int");
__check_count("vsnprintf", "size", n);
// Stdio internals do not deal correctly with zero length buffer.
char one_byte_buffer[1];
if (n == 0) {
s = one_byte_buffer;
n = 1;
}
FILE f;
__sfileext fext;
_FILEEXT_SETUP(&f, &fext);
f._file = -1;
f._flags = __SWR | __SSTR;
f._bf._base = f._p = reinterpret_cast<unsigned char*>(s);
f._bf._size = f._w = n - 1;
int result = __vfprintf(&f, fmt, ap);
*f._p = '\0';
return result;
}
int vsprintf(char* s, const char* fmt, va_list ap) {
return vsnprintf(s, SSIZE_MAX, fmt, ap);
}
int vwprintf(const wchar_t* fmt, va_list ap) {
return vfwprintf(stdout, fmt, ap);
}
int vwscanf(const wchar_t* fmt, va_list ap) {
return vfwscanf(stdin, fmt, ap);
}
int wprintf(const wchar_t* fmt, ...) {
PRINTF_IMPL(vfwprintf(stdout, fmt, ap));
}
int wscanf(const wchar_t* fmt, ...) {
PRINTF_IMPL(vfwscanf(stdin, fmt, ap));
}
static int fflush_all() {
return _fwalk(__sflush_locked);
}
int fflush(FILE* fp) {
if (fp == nullptr) return fflush_all();
ScopedFileLock sfl(fp);
return fflush_unlocked(fp);
}
int fflush_unlocked(FILE* fp) {
if (fp == nullptr) return fflush_all();
if ((fp->_flags & (__SWR | __SRW)) == 0) {
errno = EBADF;
return EOF;
}
return __sflush(fp);
}
size_t fread(void* buf, size_t size, size_t count, FILE* fp) {
CHECK_FP(fp);
ScopedFileLock sfl(fp);
return fread_unlocked(buf, size, count, fp);
}
size_t fread_unlocked(void* buf, size_t size, size_t count, FILE* fp) {
CHECK_FP(fp);
size_t desired_total;
if (__builtin_mul_overflow(size, count, &desired_total)) {
errno = EOVERFLOW;
fp->_flags |= __SERR;
return 0;
}
size_t total = desired_total;
if (total == 0) return 0;
_SET_ORIENTATION(fp, -1);
// TODO: how can this ever happen?!
if (fp->_r < 0) fp->_r = 0;
// Ensure _bf._size is valid.
if (fp->_bf._base == nullptr) __smakebuf(fp);
char* dst = static_cast<char*>(buf);
while (total > 0) {
// Copy data out of the buffer.
size_t buffered_bytes = MIN(static_cast<size_t>(fp->_r), total);
memcpy(dst, fp->_p, buffered_bytes);
fp->_p += buffered_bytes;
fp->_r -= buffered_bytes;
dst += buffered_bytes;
total -= buffered_bytes;
// Are we done?
if (total == 0) goto out;
// Do we have so much more to read that we should avoid copying it through the buffer?
if (total > static_cast<size_t>(fp->_bf._size)) break;
// Less than a buffer to go, so refill the buffer and go around the loop again.
if (__srefill(fp)) goto out;
}
// Read directly into the caller's buffer.
while (total > 0) {
ssize_t bytes_read = (*fp->_read)(fp->_cookie, dst, total);
if (bytes_read <= 0) {
fp->_flags |= (bytes_read == 0) ? __SEOF : __SERR;
break;
}
dst += bytes_read;
total -= bytes_read;
}
out:
return ((desired_total - total) / size);
}
size_t fwrite(const void* buf, size_t size, size_t count, FILE* fp) {
CHECK_FP(fp);
ScopedFileLock sfl(fp);
return fwrite_unlocked(buf, size, count, fp);
}
size_t fwrite_unlocked(const void* buf, size_t size, size_t count, FILE* fp) {
CHECK_FP(fp);
size_t n;
if (__builtin_mul_overflow(size, count, &n)) {
errno = EOVERFLOW;
fp->_flags |= __SERR;
return 0;
}
if (n == 0) return 0;
__siov iov = { .iov_base = const_cast<void*>(buf), .iov_len = n };
__suio uio = { .uio_iov = &iov, .uio_iovcnt = 1, .uio_resid = n };
_SET_ORIENTATION(fp, -1);
// The usual case is success (__sfvwrite returns 0); skip the divide if this happens,
// since divides are generally slow.
return (__sfvwrite(fp, &uio) == 0) ? count : ((n - uio.uio_resid) / size);
}
static FILE* __popen_fail(int fds[2]) {
ErrnoRestorer errno_restorer;
close(fds[0]);
close(fds[1]);
return nullptr;
}
FILE* popen(const char* cmd, const char* mode) {
// Was the request for a socketpair or just a pipe?
int fds[2];
bool bidirectional = false;
if (strchr(mode, '+') != nullptr) {
if (socketpair(AF_LOCAL, SOCK_CLOEXEC | SOCK_STREAM, 0, fds) == -1) return nullptr;
bidirectional = true;
mode = "r+";
} else {
if (pipe2(fds, O_CLOEXEC) == -1) return nullptr;
mode = strrchr(mode, 'r') ? "r" : "w";
}
// If the parent wants to read, the child's fd needs to be stdout.
int parent, child, desired_child_fd;
if (*mode == 'r') {
parent = 0;
child = 1;
desired_child_fd = STDOUT_FILENO;
} else {
parent = 1;
child = 0;
desired_child_fd = STDIN_FILENO;
}
// Ensure that the child fd isn't the desired child fd.
if (fds[child] == desired_child_fd) {
int new_fd = fcntl(fds[child], F_DUPFD_CLOEXEC, 0);
if (new_fd == -1) return __popen_fail(fds);
close(fds[child]);
fds[child] = new_fd;
}
pid_t pid = vfork();
if (pid == -1) return __popen_fail(fds);
if (pid == 0) {
close(fds[parent]);
// dup2 so that the child fd isn't closed on exec.
if (dup2(fds[child], desired_child_fd) == -1) _exit(127);
close(fds[child]);
if (bidirectional) dup2(STDOUT_FILENO, STDIN_FILENO);
execl(__bionic_get_shell_path(), "sh", "-c", cmd, nullptr);
_exit(127);
}
FILE* fp = fdopen(fds[parent], mode);
if (fp == nullptr) return __popen_fail(fds);
close(fds[child]);
_EXT(fp)->_popen_pid = pid;
return fp;
}
int pclose(FILE* fp) {
CHECK_FP(fp);
return __FILE_close(fp);
}
namespace {
namespace phony {
#include <bits/struct_file.h>
}
static_assert(sizeof(::__sFILE) == sizeof(phony::__sFILE),
"size mismatch between `struct __sFILE` implementation and public stub");
static_assert(alignof(::__sFILE) == alignof(phony::__sFILE),
"alignment mismatch between `struct __sFILE` implementation and public stub");
}